Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

REACT-1 round 7 interim report: fall in prevalence of swab-positivity in England during national lockdown

View ORCID ProfileSteven Riley, View ORCID ProfileOliver Eales, View ORCID ProfileCaroline E. Walters, View ORCID ProfileHaowei Wang, View ORCID ProfileKylie E. C. Ainslie, View ORCID ProfileChristina Atchison, Claudio Fronterre, View ORCID ProfilePeter J. Diggle, View ORCID ProfileDeborah Ashby, View ORCID ProfileChristl A. Donnelly, View ORCID ProfileGraham Cooke, View ORCID ProfileWendy Barclay, View ORCID ProfileHelen Ward, View ORCID ProfileAra Darzi, View ORCID ProfilePaul Elliott
doi: https://doi.org/10.1101/2020.11.30.20239806
Steven Riley
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Steven Riley
  • For correspondence: s.riley@imperial.ac.uk p.elliott@imperial.ac.uk
Oliver Eales
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Oliver Eales
Caroline E. Walters
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Caroline E. Walters
Haowei Wang
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Haowei Wang
Kylie E. C. Ainslie
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kylie E. C. Ainslie
Christina Atchison
1School of Public Health, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christina Atchison
Claudio Fronterre
3CHICAS, Lancaster Medical School, Lancaster University, UK and Health Data Research, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter J. Diggle
3CHICAS, Lancaster Medical School, Lancaster University, UK and Health Data Research, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter J. Diggle
Deborah Ashby
1School of Public Health, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Deborah Ashby
Christl A. Donnelly
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
4Department of Statistics, University of Oxford, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christl A. Donnelly
Graham Cooke
5Department of Infectious Disease, Imperial College London, UK
6Imperial College Healthcare NHS Trust, UK
7National Institute for Health Research Imperial Biomedical Research Centre, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Graham Cooke
Wendy Barclay
5Department of Infectious Disease, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wendy Barclay
Helen Ward
1School of Public Health, Imperial College London, UK
6Imperial College Healthcare NHS Trust, UK
7National Institute for Health Research Imperial Biomedical Research Centre, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Helen Ward
Ara Darzi
6Imperial College Healthcare NHS Trust, UK
7National Institute for Health Research Imperial Biomedical Research Centre, UK
8Institute of Global Health Innovation at Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ara Darzi
Paul Elliott
1School of Public Health, Imperial College London, UK
6Imperial College Healthcare NHS Trust, UK
7National Institute for Health Research Imperial Biomedical Research Centre, UK
9MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
10Health Data Research (HDR) UK London at Imperial College
11UK Dementia Research Institute at Imperial College
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Paul Elliott
  • For correspondence: s.riley@imperial.ac.uk p.elliott@imperial.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background The second wave of the 2020 COVID-19 pandemic in England has been characterized by high growth and prevalence in the North with lower prevalence in the South. High prevalence was first observed at younger adult ages before spreading out to school-aged children and older adults. Local tiered interventions were in place up to 5th November 2020 at which time a second national lockdown was implemented.

Methods REACT-1 is a repeated cross-sectional survey of SARS-CoV-2 swab-positivity in random samples of the population of England. The current period of data collection (round 7) commenced on 13th November 2020 and we report interim results here for swabs collected up to and including 24th November 2020. Because there were two distinct periods of growth during the previous round 6, here we compare results from round 7 (mainly) with the second half of round 6, which obtained swabs between 26th October and 2nd November 2020. We report prevalence both unweighted and reweighted to be representative of the population of England. We describe trends in unweighted prevalence with daily growth rates, doubling times, reproduction numbers (R) and splines. We estimated odds ratios for swab-positivity using mutually-adjusted multivariable logistic regression models.

Results We found 821 positives from 105,123 swabs giving an unweighted prevalence of 0.78% (95% CI, 0.73%, 0.84%) and a weighted prevalence of 0.96% (0.87%, 1.05%). The weighted prevalence estimate was ∼30% lower than that of 1.32% (1.20%, 1.45%) obtained in the second half of round 6. This decrease corresponds to a halving time of 37 (30, 47) days and an R number of 0.88 (0.86, 0.91). Using only data from the most recent period, we estimate an R number of 0.71 (0.54, 0.90). A spline fit to prevalence showed a rise shortly after the previous period of data collection followed by a fall coinciding with the start of lockdown. The national trends were driven mainly by reductions in higher-prevalence northern regions, with prevalence approximately unchanged in the Midlands and London, and smaller reductions in southern lower-prevalence regions. Sub-regional analyses showed variable changes in prevalence at the local level including marked declines in the North, but also local areas of growth in East and West Midlands. Mutually adjusted models in the most recent period indicated: people of Asian ethnicity, those living in the most deprived neighbourhoods, and those living in the largest households, had higher odds of swab-positivity.

Conclusion Three weeks into the second national lockdown in England there has been a ∼30% proportionate reduction in prevalence overall, with greater reductions in the North. As a result, inter-regional heterogeneity has reduced, although average absolute prevalence remains high at ∼1%. Continued monitoring of the epidemic in the community remains essential until prevalence is reliably suppressed to much lower levels, for example, through widespread vaccination.

Competing Interest Statement

The authors have declared no competing interest.

Clinical Trial

NA

Funding Statement

The study was funded by the Department of Health and Social Care in England.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

We obtained research ethics approval from the South Central-Berkshire B Research Ethics Committee (IRAS ID: 283787).

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The datasets generated or analysed, or both, during this study are not publicly available because of governance restrictions.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted December 02, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
REACT-1 round 7 interim report: fall in prevalence of swab-positivity in England during national lockdown
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
REACT-1 round 7 interim report: fall in prevalence of swab-positivity in England during national lockdown
Steven Riley, Oliver Eales, Caroline E. Walters, Haowei Wang, Kylie E. C. Ainslie, Christina Atchison, Claudio Fronterre, Peter J. Diggle, Deborah Ashby, Christl A. Donnelly, Graham Cooke, Wendy Barclay, Helen Ward, Ara Darzi, Paul Elliott
medRxiv 2020.11.30.20239806; doi: https://doi.org/10.1101/2020.11.30.20239806
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
REACT-1 round 7 interim report: fall in prevalence of swab-positivity in England during national lockdown
Steven Riley, Oliver Eales, Caroline E. Walters, Haowei Wang, Kylie E. C. Ainslie, Christina Atchison, Claudio Fronterre, Peter J. Diggle, Deborah Ashby, Christl A. Donnelly, Graham Cooke, Wendy Barclay, Helen Ward, Ara Darzi, Paul Elliott
medRxiv 2020.11.30.20239806; doi: https://doi.org/10.1101/2020.11.30.20239806

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (179)
  • Allergy and Immunology (431)
  • Anesthesia (99)
  • Cardiovascular Medicine (940)
  • Dentistry and Oral Medicine (178)
  • Dermatology (109)
  • Emergency Medicine (260)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (418)
  • Epidemiology (8967)
  • Forensic Medicine (4)
  • Gastroenterology (417)
  • Genetic and Genomic Medicine (1938)
  • Geriatric Medicine (190)
  • Health Economics (400)
  • Health Informatics (1320)
  • Health Policy (657)
  • Health Systems and Quality Improvement (517)
  • Hematology (211)
  • HIV/AIDS (416)
  • Infectious Diseases (except HIV/AIDS) (10764)
  • Intensive Care and Critical Care Medicine (570)
  • Medical Education (199)
  • Medical Ethics (52)
  • Nephrology (221)
  • Neurology (1815)
  • Nursing (108)
  • Nutrition (271)
  • Obstetrics and Gynecology (351)
  • Occupational and Environmental Health (469)
  • Oncology (992)
  • Ophthalmology (296)
  • Orthopedics (111)
  • Otolaryngology (182)
  • Pain Medicine (126)
  • Palliative Medicine (44)
  • Pathology (265)
  • Pediatrics (576)
  • Pharmacology and Therapeutics (275)
  • Primary Care Research (234)
  • Psychiatry and Clinical Psychology (1891)
  • Public and Global Health (4107)
  • Radiology and Imaging (674)
  • Rehabilitation Medicine and Physical Therapy (361)
  • Respiratory Medicine (547)
  • Rheumatology (224)
  • Sexual and Reproductive Health (190)
  • Sports Medicine (177)
  • Surgery (206)
  • Toxicology (38)
  • Transplantation (109)
  • Urology (80)