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Abstract

The European gold standard measurement of vascular ageing, a risk factor for
cardiovascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which
requires an experienced operator to measure pulse waves at multiple sites. In this work,
two machine learning pipelines have been proposed to estimate cfPWV from a
peripheral pulse wave measured at a single site, the radial pressure wave measured by
applanation tonometry. The study populations were the Twins UK cohort containing
3,082 subjects aged from 18 to 110 years, and a database containing 4,374 virtual
subjects aged from 25 to 75 years. The first pipeline uses Gaussian process regression to
estimate cfPWV from features extracted from the radial pressure wave using pulse wave
analysis. The mean difference and upper and lower limit of agreement (LOA) of the
estimation on the 924 hold-out test subjects from the Twins UK cohort were 0.2 m/s,
and 3.75 m/s & -3.34 m/s, respectively. The estimation also included a 95% confidence
interval for each estimation, which covered 98% of the measured data. The second
pipeline uses a recurrent neural network (RNN) to estimate cfPWV from the entire
radial pressure wave. The mean difference and upper and lower LOA of the estimation
on the 924 hold-out test subjects from the Twins UK cohort were 0.05 m/s, and 3.21
m/s & -3.11m/s, respectively. Further test on the noise sensitivity of the estimation
using the RNN on the database of virtual subjects shows that the percentage error
increased by less than 2% when adding 20% noise to the waveform. These results have
shown the possibility of replacing cfPWV with a peripheral pulse wave, such as the
radial pressure wave, for vascular ageing assessment. The code for the machine learning
pipelines proposed is available from the following online depository (https://github.
com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal).

Introduction 1

Vascular ageing is a result of the age-induced damage inflicted upon the vascular 2

structure and function, which leads to increased risk of chronic diseases, such as 3

cardiovascular disease (CVD), and type 2 diabetes [1, 2]. Reducing the risk factors 4

related to vascular ageing (e.g. blood pressure, glycemia, and lipids) at an early stage 5

could prevent further progression of the disease [3]. Further studies also have shown 6

that vascular ageing is associated with lifestyles [4] and exercise [5]. Thus, detecting 7

vascular ageing at an early stage can lead to early intervention and prevention of the 8

relevant diseases. 9
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Studies have shown that arterial stiffening as a result of lacking compliance function, 10

acts as a proxy for vascular ageing [6,7]. It has been suggested that arterial stiffness can 11

be evaluated through the measurement of pulse wave velocity (PWV) [8,9], for which 12

the European standard assessment is the carotid-femoral PWV (cfPWV) [10]. Despite 13

its wide use, cfPWV requires measurements at two arterial sites, manually handling the 14

probes, and estimating the distance between the carotid and femoral arteries, which 15

makes the measurement operator dependent. A single-site and automated measurement 16

could overcome the limitations of the current clinical assessment of vascular ageing. 17

Machine learning methods have been applied to solve a range of medical issues, 18

including detecting CVD. The majority of the machine learning research involving 19

medical signals is based on either electrocardiogram (ECG) [11,12] or 20

photoplethysmogram (PPG) [13] data. Those studies mainly focused on critical CVD 21

that could lead to mortality, such as heart failure [14, 15]. Whereas, the development of 22

CVD is a long process, and early detection and intervention can stop disease progression 23

and avoid expensive medical cost and mortality [16]. Using machine learning methods 24

to detect earlier signs of CVD would be beneficial in improving cardiovascular health. 25

Although little effort has been carried out to assess the CVD risk via machine learning 26

methods, researchers have recently become engaged in the subject. For instance, a 27

recent study has proposed a potential algorithm to estimate the size of an abdominal 28

aortic aneurysm from pressure waves measured at carotid, brachial and femoral arteries 29

using deep learning methods [17]. In vascular ageing research, Tavallali et al. used an 30

artificial neural network to estimate cfPWV with an RMSE of 1.1244 m/s. However, 31

their appraoch required a central pressure wave, the carotid pressure wave, and also 32

included other medical record information, such as chronological age [18]. 33

This study aims to estimate cfPWV (hereafter refers as PWV) from only the pulse 34

wave measured at a single peripheral site (the radial artery in this study) using machine 35

learning algorithms, which can be broken down into the following three case studies. 36

Case Study 1 has proposed a machine learning pipeline that uses the Gaussian 37

process regression to estimate the PWV from the key features (timing and magnitude of 38

the fiducial points and the heart rate) extracted from the radial pressure wave on the 39

data from the Twins UK cohort. Case Study 2 has presented a second machine 40

learning pipeline that uses a recurrent neural network (RNN) with long short-term 41

memory (LSTM) to estimate PWV from the entire radial pressure waveform also on the 42

data from the Twins UK cohort. Case Study 3 has assessed the ability of RNN for 43

estimating PWV from the radial pressure waveforms with random noises on the data 44

from a database of virtual subjects, as the input for RNN can be an entire pulse 45

waveform without any noise reduction. Both machine learning pipelines established in 46

this article are available from the following online depository (https://github.com/ 47

WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal). 48

Case Study 1: Estimate PWV from Radial Pressure 49

Wave Features 50

Methods 51

Study population 52

The study population in case study 1 consisted of 3,082 unselected twins (99% are 53

females) from the Twins UK cohort. The mean and standard deviation of the biological 54

characteristics of these subjects can be found in Table 1. The study was approved by 55

the St Thomas’ Hospital Research Ethics Committees, and all subjects have signed the 56

written informed consent. Most of the measurement data from the Twins UK cohort is 57
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available for external researchers via an application. More information about this cohort 58

can be found on its official website (https://twinsuk.ac.uk) and relevant 59

publications [19,20]. The data used in this case study were the radial pressure waves 60

measured by applanation tonometry and cfPWV measured by SphygmoCor CvMS. The 61

data were acquired by an experienced operator over the period 2006 to 2017. 62

Table 1. Biological characteristics of the subjects from the Twins UK cohort (N =
3,082). SD: Standard Deviation; BMI: body mass index; DBP: diastolic blood pressure;
SBP: systolic blood pressure; MAP: mean arterial pressure; PWV: pulse wave velocity.

Mean ± SD

Height (cm) 163.2 ± 22.5
Weight (kg) 69.2 ± 27.1
BMI (kg/m2) 26.2 ± 18.1
Age (year) 57.8 ± 12.8
DBP (mmHg) 74.1 ± 8.9
SBP (mmHg) 126.5 ± 17.5
MAP (mmHg) 93.6 ± 11.9
PWV (m/s) 9.39 ± 2.18

Wave feature extraction 63

The features of the radial pressure wave were extracted as the timings and magnitudes 64

of the fiducial points identified on the waveform and the heart rate using the pulse wave 65

analyser developed by Charlton et al. [21]. In total, 14 fiducial points on each waveform 66

were identified, which made the numbers of the features from one radial pressure wave 67

to be 29. More detailed descriptions of the fiducial points can be found in previous 68

studies by Charlton et al. [21, 22]. 69

Preprocessing for Gaussian process regression 70

Before performing the Guassian process regression, LASSO regression was performed to 71

identify the key features from all features identified on the waveform. Then principal 72

component analysis (PCA) was performed after LASSO regression to exclude outliners 73

in the analysed dataset, as the outliers could affect the accuracy of machine learning 74

algorithms [23]. The linear model module from the scikit-learn package was used to 75

perform the LASSO regression in Python. The hyperparameter in the model was found 76

by cross-validation using the GridSearchCV library. Then, PCA was performed on the 77

key features that were identified by the LASSO regression using the PCA library from 78

the scikit-learn package. Finally, based on the distance of the data points away from the 79

origin, outliers were identified and excluded from the machine learning training and 80

testing. 81

Gaussian process regression 82

Gaussian process regression was used to estimate the PWV based on the key features 83

from the radial pressure wave identified by LASSO regression. The advantages of using 84

Gaussian process regression are i) it can provide uncertainty of the estimation, which 85

most machine learning regression methods are not able to; ii) the hyperparameters in 86

the model can be identified by maximising the log likelihood, which is less time 87

consuming than cross-validation. The GaussianProcessRegressor library and kernel 88

functions from the scikit-learn package were used to perform Gaussian process 89
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regression in Python. Three kernel functions: radial basis function (RBF), Matérn 90

kernel with ν = 5/2, rational quadratic kernel, and their sum combinations were tested 91

(results shown in S1 Fig). Finally, the rational quadratic kernel was chosen to be used in 92

this study based on the accuracy of the estimation. 93

Other machine learning methods 94

To confirm the accuracy of the PWV estimation by Gaussian process regression, three 95

other machine learning methods: support vector regression (SVR), and two tree-based 96

methods (i.e. random forest regression and gradient boosting regression) were also used 97

to estimate the PWV. All machine learning algorithms were performed using the 98

libraries from the scikit-learn package. The hyperparameters in the SVR were tuned by 99

cross-validation using the optunity package. The hyperparameters in the tree-based 100

methods were tuned by cross-validation with random search using the scikit-learn 101

package. In addition, apart from the tree-based methods, the features from the radial 102

pressure wave were normalised using the StandardScaler library in the scikit-learn 103

package. The training and testing/developing data ratio for all machine learning 104

analysis was 7:3. 105

Error evaluation 106

The root mean square error (RMSE) has been calculated to evaluate each machine 107

learning approach, which is defined as, 108

RMSE =

√∑n
i=1( ˆPWVi − PWVi)2

n
, (1)

where n is the size of the test dataset; ˆPWVi and PWViare the ith estimated and 109

measured PWV, respectively. Then, a percentage error, ε, was also calculated based on 110

the RMSE: 111

ε =
RMSE

PWV
× 100%, (2)

where PWV is the mean value of the PWV of the study population. 112

Results 113

The features from the radial pressure wave were reduced from 29 to 17 after performing 114

the LASSO regression. The fiducial points containing those key features are shown in 115

Fig 1a. Then, PCA was performed on the subjects using only those key features (Fig 116

1b). The results have shown that 3 of the 3082 subjects were outliers, therefore were 117

excluded from the machine learning analysis. 118

Fig 1. Data pre-processing for pulse wave velocity estimation from the
features extracted from the radial pressure wave.
(a) The fiducial points containing key features identified by the LASSO regression. (b)
Identify outliers in the database using principal component analysis (PCA). Red, blue
and green dots represent subject groups with pulse wave velocity (PWV) less than 7
m/s, 7-9 m/s, and greater than 9 m/s, respectively.

The Gaussian process regression was performed on the study population without the 119

outliers (3079 data samples). The model was trained on 2155 data samples, and the 120

estimation results and errors when testing on the hold-out test data set containing 924 121

November 27, 2020 4/13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.29.20239962doi: medRxiv preprint 

https://optunity.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://doi.org/10.1101/2020.11.29.20239962
http://creativecommons.org/licenses/by-nc-nd/4.0/


samples are shown in Fig 2a&c, and Table 2, respectively. Fig 2a shows a linear 122

relationship between the estimated and measured PWV, with a slope of 1.00 and an 123

offset of 0.24 m/s. The coefficient of determination, r2 equals to 0.42, and the p-value is 124

less than 0.0001. The Bland-Altman plot shows a mean difference of 0.2 m/s, and the 125

upper and lower limit of agreement (LOA) of 3.75 m/s & -3.34 m/s (Fig 2c). Both plots 126

suggested that the accuracy of the PWV estimation deteriorated as the value of PWV 127

increased. Table 2 illustrated that PWV could be estimated from the radial pulse 128

waveform with an RMSE of 1.82 m/s and a percentage error, ε, of 19.4% over the whole 129

test data set. In addition, Gaussian process regression can also provide a 95% 130

confidence interval additional to the estimated PWV (S2 Fig), which 98% of the 131

measured PWV values were within the 95% confidence interval range. 132

Fig 2. Estimation of pulse wave velocity (PWV) on a hold-out test set
containing 924 subjects using Gaussian process regression and recurrent
neural network (RNN) with long short-term memory (LSTM).
(a) and (b) show the estimated PWV plot against measured PWV with a linear regression
line in red, the coefficient of determination, r2, and the p-value. (c) and (d) show the Band-
Altman plots comparing the estimated and measured PWV. (e) and (f) show Pearson
correlation coefficients (r) between the biological characteristics and the Difference value
shown on panel (c) and (d), respectively. BMI: body mass index; DBP: diastolic blood
pressure; SBP: systolic blood pressure; MAP: mean arterial pressure.

Table 2. The root mean square error (RMSE) and percentage error (ε) on the
estimated pulse wave velocity (PWV) using different machine learning methods.

RMSE (m/s) ε (%)

Gaussian Process Regression 1.82 19.4
Support Vector Regression 1.74 18.5
Random Forest Regression 1.64 17.4
Gradient Boosting Regression 1.63 17.4
RNN 1.59 16.9

To confirm the accuracy of the estimation made by Gaussian process regression, 133

three other machine learning methods were applied to the same training and hold-out 134

testing data set to estimate the PWV, which the error evaluations can be found in 135

Table 2. The results show that the other three machine learning methods can provide a 136

PWV estimation with less errors than Gaussian process regression, with Gradient 137

Boosting regression obtaining the lowest RMSE (= 1.63 m/s) and ε (=17.4%). Still, the 138

improvement of the errors was limited (less than 0.2 m/s for RMSE, and less than 2% 139

for ε). Besides, these alternative methods do not provide uncertainty for the estimation 140

(i.e. 95% confidence interval), and take longer to train (≤ 1 minute vs ≥ 30 minutes). 141

In addition, the measured PWV plot against estimated PWV and Bland-Altman plots 142

simulated by these three algorithms can be found in S3 Fig. 143

Furthermore, Pearson’s correlation coefficient, r, was used to investigate if the 144

accuracy of the estimations using Gaussian process regression could be related to the 145

biological characteristics. The biological characteristics that have been studied are 146

height, weight, body mass index (BMI), age (chronological age), diastolic blood pressure 147

(DBP), systolic blood pressure (SBP), and mean arterial pressure (MAP). Fig 2e show 148

that the difference (between the estimated and measured PWV) correlates with the age 149

the most, r = 0.286. 150
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Case Study 2: Estimate PWV from the Whole 151

Radial Pressure Wave 152

Methods 153

The study population in case study 2 is identical to the study population in case study 154

1, and same error evaluation metrics have been used to assess the PWV estimation. The 155

description of the machine learning approach in case study 2, a RNN, is shown in the 156

following subsection. 157

Recurrent neural network 158

The schematic of the RNN structure used in this case study is shown in Fig 3. The 159

input data was a time-variant radial pressure waveform. As the cardiac cycle of different 160

subjects varied, the time duration of the radial pressure wave also differed from subject 161

to subject. To overcome the length difference in the input data, the waves with short 162

durations were extended to the duration of the longest wave by filling dummy values 163

(maximum floating point number in this case) at the end. Then, a masking layer was 164

applied to exclude the dummy values from being considered when estimating the PWV. 165

Afterwards, a bidirectional RNN with LSTM was used to process the time-variant radial 166

pressure waveform, as it has been proven effective on forecasting time series data [24–26]. 167

Finally, a dense layer with a linear activation function was used to estimate the PWV 168

based on the results from the bidirectional RNN with LSTM. Before carrying out the 169

main simulation, hyperparameter tuning was undertaken and the following parameters 170

were chosen: number of units for LSTM = 16; batch size = 64; epoch number = 1500; 171

optimizer = Adam. The RNN was constructed using open-source neural-network library 172

TensorFlow Core v.2.2.0, including a high-level application programming interface 173

Keras. The training and testing/developing data ratio for the RNN was also 7:3. 174

Fig 3. A schematic illustration of the recurrent neural network structure
used to estimate pulse wave velocity from an entire radial pressure wave.
Pt is the time-variant radial pressure wave data at the discrete time point t, cfPWV is
the carotid-femoral pulse wave velocity.

Results 175

The RNNs with LSTM were trained and tested on the same datasets as the one used in 176

case study 1. Fig 2b&d show the performance of RNN on estimating the PWV from the 177

entire radial pressure wave. The results illustrate that, in comparison with the PWV 178

estimation using Gaussian process regression, the estimation using RNN has a smaller 179

offset on the regression line and a larger correlation (r2). The Bland-Altman plots show 180

that both mean difference and the upper and lower LOA are smaller in comparison to 181

the estimation by Gaussian process regression (Fig 2c&d). The RMSE and percentage 182

error, ε, of PWV estimation using RNN were shown in Table 2, and were similar to 183

other machine learning methods in the same Table. Furthermore, Pearson’s correlation 184

coefficients, r, between biological characteristics and the difference of measured and 185

estimated PWV were calculated for RNN (Fig 2f), which were similar to the ones using 186

Gaussian process regression, with age showing the most correlation, r = 0.297. 187
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Case Study 3: Estimate PWV with Noisy Radial 188

Pressure Wave 189

Methods 190

The structure of the RNN used in case study 3 was the same as in case study 2. The 191

training and testing/developing data ratio in this case study was also set to 7:3. Same 192

error evaluation metrics used in the previous two case studies have been used to assess 193

the PWV estimation in this case study as well. The details of the study population and 194

noise generation used in this cases study are shown in the following two subsections. 195

Study population 196

To systematically investigate the effects of high-frequency noise on the radial pressure 197

wave, a database containing 4,374 virtual subjects representing a sample of ”healthy” 198

adults aged between 25 and 75 years old in ten-year increments was used as the study 199

population. The database can be found in the following depository: https: 200

//github.com/peterhcharlton/pwdb/wiki/Using-the-Pulse-Wave-Database. The 201

data used in this case study were the radial pressure waves and cfPWV. Further details 202

of this database can be found in a previous study [22]. The rational behind choosing a 203

database of virtual subjects was to eliminate the possible effects of measurement errors. 204

Noise generation 205

Different intensities of high-frequency Gaussian white noises were generated and added 206

to the radial pressure waves from the database of virtual subjects to test the noise 207

sensitivity of the PWV estimation by RNN. The intensity of the noise was defined using 208

signal to noise ratio (SNR), similar to the approach in [27], which the SNR was 209

calculated as, 210

SNR =
Psignal

Pnoise
, (3)

where Psignal and Pnoise are the power (averaged amplitude) of the signal and noise, 211

respectively. An example of an original signal and the same signal with SNR of 20, 10, 212

and 5 are shown in Fig 4. In this case study, six different SNRs: 20, 16, 12, 10, 8 and 5 213

were considered. 214

Fig 4. An example of an original signal, and the same signal with signal to
noise ratio (SNR) of 20, 10, and 5, respectively.

Results 215

The radial pressure waves from the database of virtual subjects incorporated with 216

different levels of random Gaussian white noises were used to test the noise sensitivity 217

of the PWV estimation from the entire radial pressure wave using RNN. The measured 218

PWV plot against estimated PWV and Bland-Altman plots of the estimations from the 219

baseline radial pressure wave and waveforms with SNR of 20, 10 and 5 are shown in Fig 220

5. The coefficient of determination, r2 were ≥ 0.98 for all cases considered. The mean 221

difference did not increase, but the upper and lower LOA increased from 0.14 m/s & 222

-0.24 m/s to 0.5 m/s & -0.56 m/s when adding 20% noise to the original radial pressure 223

wave (SNR = 5). The error evaluation is shown in Table 3. The RMSE increased from 224

0.10 m/s to 0.24 m/s, and the percentage error, ε, increased from 1.2% to 2.8%, when 225
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adding 20% noise to the original radial pressure wave. Besides, the errors of the PWV 226

estimation using the baseline waveforms (i.e. without any noise) from the database of 227

virtual subjects improved by more than 10 times in comparison with the errors of the 228

PWV estimation using the data from the Twins UK cohort. 229

Fig 5. Comparison of the measured and estimated pulse wave velocity
(PWV) and Bland-Altman plots using radial pressure wave with different
intensities of noises on a hold-out test set containing 1312 virtual subjects.
SNR stands for signal to noise ratio.

Table 3. The root mean square error (RMSE) and percentage error (ε) on the
estimated pulse wave velocity (PWV) from radial pressure wave with different intensity
of noises using recurrent neural network (RNN).

RMSE (m/s) ε (%)

Baseline 0.10 1.2
SNR = 20 0.15 1.8
SNR = 16 0.16 1.9
SNR = 12 0.16 1.9
SNR = 10 0.20 2.4
SNR = 8 0.21 2.5
SNR = 5 0.24 2.8

Discussion 230

In this study, two machine learning pipelines were proposed to estimate PWV from the 231

radial pressure wave: i) using Gaussian process regression from extracted features of the 232

waveform and ii) using RNN from the entire waveform. The results show that the PWV 233

can be estimated from both pipelines, with the second pipeline presenting a higher 234

accuracy and a lower bias in the estimated PWV. However, the improvement in 235

accuracy for PWV estimation from the second pipeline was limited, which indicated 236

that the features extracted from the radial pressure wave using the pulse wave analyser 237

developed by Charlton et al. [22] were sufficient to represent the entire radial pressure 238

wave. Some of the key features identified by LASSO regression and applied to the PWV 239

estimation using Gaussian process regression can be applied to calculate pulse wave 240

indices that are closely related to vascular ageing [28–30]. For instance, reflection index 241

can be calculated from dia; augmentation index and augmentation pressure can be 242

calculated from p1in and p2pk; and modified ageing index is related to a, b, and c from 243

the 2nd derivative of the waveform. Besides, Gaussian process regression was able to 244

provide a 95% confidence interval for each estimation that covers at least 98% of the 245

measured PWV, and required less time to train (less than a minute using the data from 246

the Twins UK cohort). On the other hand, in order to use the pulse wave analyser to 247

extract features from the wave, the wave needs to be preprocessed to eliminate high and 248

low frequency noises, which can result in losses of information. Using the RNN to 249

analyse the entire pulse wave signal does not require the waves to be preprocessed, 250

which can avoid the losses of information due to pulse wave signal processing. The 251

results in Table 3 suggested that the PWV estimation using RNN could provide 252

accurate results even with noisy pressure waves. 253

Comparing to other non-invasive devices (e.g. Pulse Pen [31]) and measurement 254

methods (e.g. oscillometric method [32]) requiring two arterial measurement sites, the 255
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mean differences between the estimated and measured PWV were similar or smaller (≤ 256

0.214 m/s for Pulse Pen, 0.4 m/s for oscillometric method, vs ≤ 0.2 m/s in this study), 257

whereas the upper and lower LOA were larger in this study (≤ 1.346 m/s & ≥ -0.918 258

m/s for Pulse Pen, ≤2.9 m/s & ≥ -2.0 m/s for oscillometric method, vs ≤ 3.75 m/s & 259

≥-3.34 m/s in this study). On the other hand, comparing to the non-invasive device 260

that only requires single site measurement (e.g. Arteriograph [33]), the mean difference 261

was the same for the estimation using Gaussian process regression (= 0.2 m/s), and the 262

upper and lower LOA was smaller in this study (≤ 4.5 m/s & ≥ -4.01 m/s vs ≤ 3.75 263

m/s & ≥ -3.34 m/s). Furthermore, the root mean square error (RMSE) in the 264

estimation was larger in comparison to the machine learning study performed by 265

Tavallali et al. [18] (RMSE = 1.1244 m/s). However, this could due to the fact that the 266

average PWV in Tavallali et al.’s study was smaller than in this study, also less patient 267

information (e.g. chronological age) and neither the information from central arteries 268

(e.g. carotid artery) were used in this study. 269

The errors in the PWV estimation using the machine learning pipelines proposed in 270

this study can be due to the following causes. Firstly, the errors in the PWV 271

estimations could come from the inaccurate PWV measurements. Previous 272

studies [34,35] have pointed out that the accuracy of the PWV measurement can be 273

largely affected by the distance measured between the carotid and femoral arteries, 274

which is measured on the patients’ body surface by tape when using the SphygmoCor 275

CvMS device. The RMSE and percentage error for the PWV estimation on the 276

database of virtual subjects with noise-free data using RNN was smaller (0.10 m/s vs 277

1.59 m/s and 1.2% vs 16.9%), which also suggested that the large error in the estimation 278

using the Twins UK cohort could be originated from the measurement errors. However, 279

further investigations on the accuracy of the PWV measurement would be needed to 280

test this hypothesis. Secondly, the errors of the PWV estimation increased with the 281

increasing PWV values, which could due to the low number of high PWV samples in 282

the dataset. It is known that the accuracy of machine learning algorithms decreases 283

when the sample size decreases [36]. This issue can be potentially solved by obtaining 284

more data to make a light-tailed-distributed population with more subjects for 285

developing the machine learning algorithm. Lastly, the errors in the PWV estimation 286

could also be a result of the confounding biological characteristics of the patients, as the 287

radial pressure wave was the only input used in the estimation. The Pearson’s 288

correlation coefficient, r, between those biological characteristics and the difference of 289

the estimated and measured PWV suggested that adding age as a predictor could 290

potentially improve the estimation. However, as chronological age does not necessarily 291

correspond to the biological age [37], which means adding age as a predictor can also 292

bias the estimation results. Nevertheless, Pearson’s correlation coefficients in both 293

machine learning approaches were smaller than 0.3. According to the guideline [38], the 294

correlation is negligible if r ≤ 0.3. Thus, the analysis suggested that the errors in the 295

estimations would not be largely depend on the biological characteristics. 296

This study is also subject to a few limitations and requires future work. Firstly, the 297

majority of participants in the Twins UK cohort are female, which means the trained 298

model in this study is less likely to fit well when given unseen data from a wider 299

population. However, this should not affect the accuracy of the estimation within the 300

analysis performed in this study and the conclusions. Secondly, the pulse wave data in 301

this study only contain a single cardiac cycle. Further study will be needed to 302

investigate the effectiveness of the RNN on estimating cardiovascular indices using a 303

pulse wave containing multiple cardiac cycles. Lastly, the peripheral pulse wave used in 304

this study was the radial pressure wave measured using applanation tonometry. Further 305

studies using peripheral pulse waves, such as the PPG signal measured at the digital 306

artery using fingertip probe or smart phone camera, or PPG signal measured around 307
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the wrist using Apple Watch or Fitbit would need to further test the pipelines proposed 308

in this study. 309

The clinical significance of this study aligns with assessing the risk factors for CVD 310

from more accessible measurements. Firstly, the radial pressure wave used to estimate 311

PWV is a peripheral pulse wave, which can be easily measured via non-invasive devices. 312

Secondly, the machine learning pipelines proposed in this study can also take other 313

peripheral pulse waves, such as PPGs, even signal lead ECGs with more than one 314

cardiac cycle as input to estimate CVD risks. Thirdly, the machine learning pipelines 315

proposed in this study can be easily extended to take multiple peripheral pulse waves as 316

input to further improve the accuracy of estimation for CVD risks. 317

Conclusion 318

In this work, three case studies have been carried out to investigate the possibility of 319

estimating PWV (a well-established biomarker) from the radial pressure wave (a 320

peripheral pulse wave) using machine learning methods. Results have shown that PWV 321

can be estimated either from the features extracted from the pulse wave or the entire 322

waveform with a mean difference up to 0.2 m/s and the upper and lower LOA up to 323

3.75 m/s and -3.34 m/s using the clinical database (Twins UK cohort). Furthermore, 324

they suggested that the estimation of the PWV from the entire radial pressure wave 325

using RNN can still be achieved with adding up to 20% noise to the wave signal using 326

the database of virtual subjects. The outcome of this study can help deliver vascular 327

ageing assessment to a wider population and enable repetitive measurements that can 328

improve the accuracy of the assessment. Further application of the machine learning 329

pipelines proposed in this study can help with remote patient monitoring and connected 330

health. Additionally, the scripts for the machine learning pipelines proposed in this 331

study are also available on the following online depository: https://github.com/ 332

WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal. 333

Supporting information 334

S1 Fig. Estimation of pulse wave velocity (PWV) using Gaussian process 335

regression with different kernel functions and their sum combinations. RBF: 336

radial basis function; Matérn: Matérn kernel; RQ: rational quadratic kernel. 337

S2 Fig. Estimation of pulse wave velocity (PWV) with a 95% confidence 338

interval using Gaussian process regression on a hold-out test set containing 339

924 subjects. (a) and (b) show the measured and estimated PWV plot on top of each 340

other; (c) and (d) show the first ten samples in (a) and (b), respectively. 341

S3 Fig. Comparison of measured and estimated pulse wave velocity 342

(PWV) and Bland-Altman plots using support vector regression, random 343

forest regression and gradient boosting regression on a hold-out test set 344

containing 924 subjects. 345
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