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Abstract  

Background 

Developing functional understanding into the causal molecular drivers of immunological 

disease is a critical challenge in genomic medicine. Here we systematically apply Mendelian 

randomization (MR), genetic colocalization, immune cell-type enrichment and phenome-wide 

association methods to investigate the effect of genetically predicted gene expression on 12 

autoimmune and 4 cancer outcomes.  

 

Results 

Using whole blood derived estimates for regulatory variants from the eQTLGen consortium 

(n=31,684) we constructed genetic risk scores (r2<0.1) for 10,104 genes. Applying the inverse-

variance weighted Mendelian randomization method transcriptome-wide whilst accounting for 

linkage disequilibrium structure identified 773 unique genes with evidence of a genetically 

predicted effect on at least one disease outcome (P<4.81 x10
-5

). We next undertook genetic 

colocalization to investigate whether these effects may be confined to specific cell-types using 

gene expression data derived from 18 types of immune cells. This highlighted many cell-type 

dependent effects, such as PRKCQ expression and asthma risk (posterior probability of 

association (PPA)=0.998), which was T-cell specific, as well as TPM3 expression and prostate 

cancer risk (PPA=0.821), which was restricted to monocytes. Phenome-wide analyses on 320 

complex traits allowed us to explore the shared genetic architecture and prioritize key drivers 

of disease risk, such as CASP10 which provided evidence of an effect on 7 cancer-related 

outcomes. Similarly, these evaluations of pervasive pleiotropy may be valuable for evaluations 

of therapeutic targets to help identify potential adverse effects. 

 

Conclusions 

Our atlas of results can be used to characterize known and novel loci in autoimmune disease 

and cancer susceptibility, both in terms of developing insight into cell-type dependent effects as 

well as dissecting shared genetic architecture and disease pathways. As exemplar, we have 

highlighted several key findings in this study, although similar evaluations can be conducted 

interactively at http://mrcieu.mrsoftware.org/immuno_MR/. 
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Background 

Deciphering the genetic architecture of complex traits and disease is a critical challenge for 

genomic medicine. The widespread application of genome-wide association studies (GWAS) has 

had profound success in detecting robust associations between genetic variants and complex 

disease outcomes, including those with a large immunological basis, such as rheumatoid 

arthritis, inflammatory bowel disease and different types of cancer. (1) There is now extensive 

interest in the field of genetic epidemiology in integrating findings from GWAS with regulatory 

molecular datasets. In doing so, studies aim to bring to light the underlying functional and 

biological mechanisms which may help us understand GWAS signals and translate findings for 

disease prevention purposes. 

 

A challenge encountered by these endeavours is obtaining molecular trait datasets derived 

from tissues and cell-types relevant to the disease being studied in sufficient samples. A recent 

review highlights this by comparing the differences between affected and unaffected tissues for 

heritable traits and diseases, (2) demonstrating that molecular traits such as gene expression 

can have exclusive or preferential expression in disease-relevant tissues types. This diminishes 

the utility of whole blood-derived datasets, which to date typically have by far the largest 

sample sizes on molecular traits due to their non-invasive accessibility. Notable exceptions to 

this are disease outcomes with a large immune basis, given that whole blood is responsible for 

carrying innate and adaptive immune cells through the body from the lymphatic system to the 

site of injury or infection. (3) As such, initial analyses of transcriptomic datasets derived from 

whole blood provides optimal statistical power to detect association signals for immune system 

related disease (4, 5), which can then be dissected and characterized in detail using cell-type 

specific data. This is particularly important when investigating autoimmune diseases and 

cancers to develop mechanistic insight into the cell-types which play a role in the causal 

pathway for these outcomes. (6)  

 

Furthermore, autoimmune diseases and types of cancer are both disorders that affect the 

immune system. This emphasises the importance of evaluating the shared genetic architecture 

of these outcomes to highlight the predominating pathways which contribute to risk of multiple 

types of disease. For example, previous work in this area has identified evidence of shared 

architecture between Crohn’s disease and multiple sclerosis, (7) across several paediatric 

autoimmune diseases, (8) and also across cancer outcomes due to immune-related 

mechanisms. (9) Moreover, genetic evidence of horizontal pleiotropy at loci which encode a 

therapeutic target may be informative in terms of flagging potential adverse effects unrelated 

to autoimmune and cancer outcomes, which is particularly attractive given the increasing 

interest in using human genetics to help validate drug targets. (10) 

 

In this study, we have applied the principles of Mendelian randomization (MR) to evaluate 

genetically predicted effects of gene expression derived from whole blood on 12 autoimmune 

and 4 cancer outcomes. MR is a form instrumental variable analysis which uses genetic variants 

to infer causal relationships between exposures and disease outcomes, which are more robust 

to confounding and reverse causation given that they are inherited at birth. (11, 12) As MR 
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studies of molecular traits have typically been limited to single instrument analyses in the past, 

here we applied a more novel approach using regulatory variants as genetic instruments 

(r
2
<0.1) from the eQTLGen consortium (n=31,684) whilst accounting for their linkage 

disequilibrium (LD) structure in the analysis framework. We then explored whether putative 

genetics effects identified using whole blood may be cell-type specific using expression data 

from 18 different immune-cell regulatory datasets from the BLUEPRINT consortium and DICE 

database using genetic colocalization. (13, 14) Finally, we undertook a phenome-wide 

association study (PheWAS) of genes highlighted by these analyses to assess their shared 

architecture and pathways using data on a total of 320 curated complex traits and outcomes. A 

diagram of this analysis pipeline can be found in Figure 1.  

 

 

 

 
Figure 1 Outline of study workflow. 1. First, a MR approach using weakly correlated instruments was applied to investigate the genetically 
predicted effects of 10,104 genes on 16 outcomes. 2. A genetic colocalization method was performed to investigated whether gene expression in 
specific cell-types at identified loci shares a common causal variant with autoimmune or cancer disease risk using BLUEPRINT and DICE immune 
cell datasets. 3. Finally a similar MR approached was applied to a curated set of 320 health outcomes, to assess shared genetic architecture and 
where identified genes were likely to be involved in multiple biological pathways.  
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Results 

An integrative Mendelian randomization analysis of 16 autoimmune diseases and cancer 

outcomes using multiple cis-regulatory instruments 

 

Using effect estimates derived from whole blood from the eQTLGen consortium (n=31,684), we 

undertook LD clumping to construct genetic scores using weakly independent cis-regulatory 

variants based on r
2
<0.1. LD calculations were based on a reference panel of 10,000 unrelated 

UK Biobank participants of European descent. (15-17) We then applied MR using these gene-

based scores to systematically investigate the genetically predicted effects of each gene in turn 

on risk of 16 disease outcomes (12 autoimmune diseases and 4 cancer-related outcomes) using 

summary data from GWAS (Supplementary Table 1) (18-26). This was undertaken using the 

inverse variance weighted (IVW) MR method which estimates genetically predicted effects 

whilst accounting for LD structure between all genetic instruments used in the score (16, 27). 

After LD clumping, there were 10,104 genes which had at least 2 weakly independent cis-QTLs 

that were eligible for analysis using the IVW method. (Supplementary Table 2) 

 

In total, we identified 827 genes which provided evidence of a genetically predicted effect on at 

least 1 outcome after accounting for multiple testing using the Bonferroni corrected threshold 

for each outcome separately (ranging from P=4.09x10
-6

 to 4.81x10
-5

) (Supplementary Table 3-

4). Of these, 773 were located outside the human leukocyte antigen (HLA) region of the 

genome and were carried forward for subsequent analyses due to the extensive LD structure at 

HLA which can results in false positive findings when using techniques such as genetic 

colocalization. Figure 2 illustrates various exemplar signals identified for 4 outcomes: asthma, 

hypothyroidism, breast cancer and inflammatory bowel disease. Full results for all 16 outcomes 

can be investigated using the interactive web browser available at 

http://mrcieu.mrsoftware.org/immuno_MR/. 

  

Amongst these results were genetically predicted effects at various well-established loci known 

to confer risk of autoimmune disease, including CARD9 and STAT3 (P= 1.03x10
-15

 and 1.77 x10
-8

 

respectively with inflammatory bowel disease), (28) ORMDL3 associated with asthma (P= 4.82 

x10
-10

), (29) and cytokines such as interleukin-24 (IL24) and interleukin-2 receptor alpha chain 

(IL2RA) which were associated with systemic lupus erythematosus and asthma respectively (P= 

1.28 x10
-6

 and 1.34 x10
-6

). (30, 31) A number of novel or emerging loci were also identified for 

autoimmune disease outcomes, such as RORC, a transcription factor predominantly expressed 

in T helper 17 cells (32) which was most strongly associated with asthma risk (P=4.13 x10
-27

 ), as 

well as CCDC88B (P= 1.07 x10
-6

 and 1.15 x10
-5

 with hypothyroidism/myxoedema and multiple 

sclerosis respectively). These findings were additionally supported by evidence from our leave-

one-out sensitivity analysis to highlight signals which were not dependent on single cis-

instruments. (Supplementary Table 5) 

 

Similarly, there were various signals at known cancer loci, such as CASP10 (P= 1.82 x10
-17

 for 

prostate cancer), (33) and FAM175A (P= 1.56 x10
-16

 for breast cancer), (34) as well as genes that 
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have been identified in relation to a number of cancers including CDKN2A (P= 5.08 x10
-14

 with 

breast cancer), IRF1 (P= 7.40x10
-7

 with breast cancer) and IGF2 (P= 1.67 x10
-6

 with prostate 

cancer). (35) There were also loci highlighted by our analyses on cancer outcomes with limited 

previous evidence of an association with cancer outcomes based on the current literature and 

therefore may be more novel, such as PSMD8 (P= 5.60 x10
-9 

with prostate cancer) and TTC16 

(P= 1.10 x10
-9

 with prostate cancer). PSMD8 is a proteasome subunit has been identified in the 

regulation of the cell growth and differentiation and apoptosis. Targeting the proteasome has 

recently been postulated as a potential cancer therapy. (36, 37)  

 

 

Identifying immune-cell specific effects at autoimmune and cancer associated loci 

 

We performed genetic colocalization at each of the 773 non-HLA loci identified in the previous 

analysis using 15 immune-cell datasets from the DICE database and 3 immune cell-type 

datasets from the BLUEPRINT consortium. This was to evaluate whether gene expression in 

specific cell-types at these loci share a common causal variant with autoimmune or cancer 

disease risk. This was performed using the ‘coloc’ R package, where a posterior probability of 

association (PPA) threshold of >0.8 was used to indicate evidence of colocalization. (38) 

 

In total, 538 genetic effects colocalised across the cancer and autoimmune disease outcomes 

with immune-cell type expression which may provide mechanistic insight into the disease 

pathogenesis at associated loci. For example, we identified strong evidence of colocalization 

between PRKCQ expression in T cells and asthma risk (PPA=0.998), whereas there was very 

weak evidence of colocalization when analysing any of the other immune cell-types (Figure 3a, 

Supplementary Table 7). PRKCQ has been previously implicated in allergic disease risk and is 

Figure 2 Manhattan plots illustrating the association between gene expression and 4 outcomes: asthma, hypothyroidism/myxoedema, breast 
cancer and inflammatory bowel disease. Bonferroni corrected threshold, indicated by the dotted line, was used to identified strong 
associations.  
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involved in T cell activation. (39) There was also evidence of colocalization between KSR1 

expression and Crohn’s disease in classical monocytes (PPA= 0.998) (Figure 3b, Supplementary 

Table 7), which is known to be an important cell-type in relation to Crohn’s disease. (40) 

Amongst cancer loci, there was evidence for colocalization between prostate cancer and 

C2orf43 in non-classic monocytes (PPA=0.887)) (Figure 3c, Supplementary Table 7). C2orf43 

has been found to be expressed in monocytes and the loss of this gene has previously been 

associated with risk of prostate cancer. (41, 42) All other effects with evidence of genetic 

colocalization are shown in Supplementary Table 6 as well as on our web browser where 

effects across all cell-type can be compared visually.  

 

Enrichment of immune-cell types amongst disease-associated loci 

 

We performed enrichment analyses using results from the colocalization analyses to determine 

whether effects in certain immune-cell types were overrepresented amongst each outcome, 

and whether certain cell types were key for each outcome. We did not include the number of 

reported cancers results in the background set as there was no strong evidence of 

colocalization for any gene using this outcome, which may reflect that associated loci are more 

likely to be involved in risk factors for cancer rather than being directly involved in cancer 

pathogenesis themselves.  

 

As illustrated in Figure 4, we identified evidence of enrichment for various cell-types amongst 

rheumatoid arthritis loci and in particular for activated naïve CD8 T cells (P= 1.79 x10
-4

). 

Increased levels of these cells have been previously observed in the peripheral blood of patients 

with rheumatoid arthritis. (43) Monocytes were enriched amongst multiple sclerosis loci (P= 

6.34 x10
-4

) which have previously been implicated in the pathology of this disease. (44) 

Figure 3 Locuszoom plot illustrating colocalization between A) Asthma and PRKCQ expression in T cells, B) Crohn's disease and KSR1 
expression in classical monocytes and C) Prostate cancer and C2orf43 expression in non-classical monocytes.  
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Regulatory memory T cells were enriched for breast cancer loci (P= 0.018); which have 

previously been identified as markers of poor prognosis of breast cancer. (45) (Supplementary 

Tables 8-9) 

 

 

Conducting phenome-wide association studies to explore shared genetic architecture and 

elucidate pleiotropic loci 

 

For the 773 non-HLA genes identified in our primary analysis using whole blood, we repeated 

analyses using the IVW MR analysis accounting for LD structure but on a set of 320 curated 

traits and outcomes. These included the initial 16 autoimmune and cancer outcomes as well as 

304 traits related to broad range of outcomes from across the complex disease spectrum 

(Supplementary Table 10). This phenome-wide analysis allowed us to highlight loci where there 

is evidence of shared genetic architecture amongst various autoimmune and cancer outcomes. 

For instance, IL24, which encodes an interleukin cytokine involved in promoting the 

development and differentiation of T, B, and hematopoietic cells, and plays an essential role in 

Figure 4 Enrichment plot illustrating for which immune-cell types were effects were overrepresented amongst each outcome. 
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both innate and adaptive immunity, (46) provided evidence of an effect on multiple 

autoimmune outcomes (Figure 5a). Similarly, analyses of CASP10, which encodes caspase 10 

and is a known cancer susceptibility locus, identified genetically predicted effects on 7 different 

cancer disease outcomes. (33) (Figure 5b) There was also evidence of shared architecture at 

emerging immune disease loci, such as CCDC88B, which has recently been implicated in the 

pathogenesis of inflammatory bowel disease. (47)  

 

Along with evaluations of loci with shared architecture for immune-related outcomes, our atlas 

of phenome-wide results may be valuable in highlighting genes with more specific effects on 

disease outcomes. For example, PRKCQ was highlighted by our cell-type analysis as having a T-

cell specific mediated effect on asthma risk (PPA=0.998), and only provided robust evidence of 

an effect on allergic disease (P=3.41x10
-7

) along with asthma as discovered in our initial analysis 

based on the number of tests undertaken (P<1.56x10
-4

=0.05/320 tests) (Figure 5c). Similar 

evaluations of pleiotropy may have translatable benefit for drug target prioritization efforts. For 

instance, TPM3 has recently been postulated as a potential therapeutic target for cancer 

therapy. (48) Although our cell-type analysis detected evidence of a monocyte-specific role of 

TPM3 in prostate cancer risk (PPA=0.821), phenome-wide results indicated that it may 

influence risk of outcomes such as hypertension (P=1.49x10
-7

) and angina (P=2.81x10
-9

) with 

the opposite direction of effect. These results therefore suggest that loci which exhibit 

horizontal pleiotropic effects such as TPM3 should be deprioritised as therapeutic targets due 

to putative adverse effects. Results depicted in Figure 5 can also be found in Supplementary 

Table 11-14. Interactive phenome-wide results can be visualised using our web browser.  
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Figure 5 Phenome-wide association study (PheWAS) plots illustrating genetically predicted effects between expression of A) 
IL24, B) CASP10 and C) PRKCQ, and 320 health outcomes. 
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Discussion 

 
In this study, we have performed a transcriptome-wide Mendelian randomization study to 

investigate the genetically predicted effects of gene expression on risk of 12 autoimmune 

diseases and 4 cancer outcomes. The results of this investigation provide a comprehensive atlas 

of genetic effects which highlight both known and novel susceptibility loci for these outcomes. 

We conducted in-depth analyses of these loci using genetic colocalization and phenome-wide 

MR to further characterize their role in disease, both in terms of developing mechanistic insight 

into cell-type dependent effects as well as elucidating shared biological pathways. As exemplar, 

we have highlighted several key findings in this manuscript, however all our results can be 

investigated interactively at http://mrcieu.mrsoftware.org/immuno_MR/. We envisage this 

atlas of results will benefit future research endeavours concerned with dissecting the molecular 

drivers of autoimmune disease and cancer outcomes, as well as help guide functional studies to 

validate and strengthen evidence for loci highlight in our study. 
 
Integrating molecular regulatory signatures derived from whole blood with findings from GWAS 

has been considered a limitation for the majority of complex disease outcomes studied to date. 

(49) However, it presents a viable strategy for immune system-related diseases given that 

whole blood is responsible for carrying innate and adaptive immune cells through the body 

from the lymphatic system to the site of injury or infection (3). This has allowed us to harness 

the unparalleled sample size of transcriptome-wide data made available by the eQTLGen 

consortium. As a consequence, we were able to instrument genes using multiple regulatory 

variants and address another conventional limitation of previous studies in the paradigm which 

have typically been confined to single-SNP MR analyses. (50) Overall, 773 genes passed our 

Bonferroni corrected threshold excluding those in the HLA region of the genome. 

 

Amongst these findings are many previously reported autoimmune disease and cancer genes. 

For example, CARD9, identified here in relation to Crohn’s disease and ulcerative colitis, has 

previously been reported to confer risk of both these forms of inflammatory bowel disease, (51) 

and is known to be involved in innate immunity and inflammation, as well as being specifically 

expressed in myeloid cells. (52) Likewise, STAT3 has been identified in relation to inflammatory 

bowel diseases and type 1 diabetes and is thought to be involved in autoimmunity both due to 

its role as a mediator on the IL-6 signalling pathway and as a transcription factor in the 

differentiation of Th1 cells. (53, 54) Amongst established cancer loci was CTBP1 which we 

identified evidence as having a genetically predicted effect on breast and prostate cancer risk. 

CTBP1 is an oncogenic transcriptional co-regulator which has been shown to be overexpressed 

in a number of cancers. It functions by regulating the expression of tumour suppressers and 

oncogenic factors, which has led to its identification as a potential therapeutic target. (55)  

 

There were also less well-established loci identified in the MR analysis. RORC was identified in 

relation to inflammatory bowel diseases, osteoarthritis, eczema and asthma. It is a transcription 

factor of IL-17 expression and Th17 cells, which are key in the immune system and has been 

suggested as a potential target for autoimmune diseases. (56) IL-17 is a pro inflammatory 

cytokine which recruits immune cells to the site of inflammation and it’s overproduction has 
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been reported to lead to inflammation leading to autoimmune conditions. (57, 58) CCDC88B 

was identified in relation to hypothyroidism/myxoedema and multiple sclerosis, and has 

previously been shown to be highly expression in immune cells. It has been identified as an 

important regulator of T cell function and previously implicated to play a role in inflammation 

pathways. (59)  

 
Applying genetic colocalization revealed many cell-type dependent effects in our study, which 

may help develop understanding into the pathways and mechanisms behind these disease 

outcomes. For example, there was strong evidence of colocalization between CARD9 expression 

and inflammatory bowel diseases in monocytes (PPA= 0.986) and neutrophils (PPA= 0.986). The 

effect of KSR1 expression on risk of Crohn’s disease colocalized with data from monocytes 

(PPA= 0.998). KSR1, which encodes a kinase suppressor of Ras 1, has previously been identified 

in relation to Crohn’s disease, (28) and there has been evidence using mouse models that KSR1 

kinase activity becomes active at the onset of inflammatory bowel disease. (60) Blood 

monocytes have been found to be important in innate immunity and inflammatory processes, 

and changes to the composition of monocytes in the blood have been associated with Crohn’s 

disease. (40) PRKCQ, which provided evidence of a genetically predicted effect on asthma risk, 

is a member for the protein kinase C family and encodes the enzyme protein kinase C theta 

which has an important role in the regulation of signalling pathways and the activation of T 

cells. Moreover, PRKCQ has been identified as having a crucial role in autoimmunity through T 

cell activation. (61, 62) Findings in this study provided evidence of genetic colocalization for this 

gene with asthma in T cells but none of the other immune cell types assessed, suggesting that 

PRKCQ’s role in conferring autoimmune disease risk may be confined to T cells. (39) C2orf43 

was identified in relation to prostate cancer and provided evidence of colocalization for 

prostate cancer in monocytes and T cells. It has previously been shown that loss of C2orf43 may 

be associated with risk of prostate cancer, and is a gene found to be expressed in lysates of 

human monocytes and monocyte-derived macrophages. (42)  

 

We found that the 538 effects which provided evidence of genetic colocalization using cell-type 

specific gene expression were enriched for certain disease outcomes. In particular, various cells 

types were enriched amongst rheumatoid arthritis loci and in particular for activated naïve CD8 

T cells. Increased levels of these cells have been previously observed in the peripheral blood of 

patients with rheumatoid arthritis. (43) It has also been suggested that CD8
+
 T cells have a role 

in the initiation and maintenance of rheumatoid arthritis. (63) Monocytes were enriched 

amongst multiple sclerosis loci, which have previously been implicated in the pathology of this 

disease by increasing levels of cytokines leading to increased cellular activation and 

proliferation, tissue damage and altered blood brain barrier. (44) Regulatory memory T cells 

were enriched for breast cancer which have been identified as markers of poor prognosis of 

breast cancer by accumulating the tumour tissue and peripheral blood leading to suppression 

of the immune system. (45)  

 

Our PheWAS analysis highlighted genes which are involved in conferring risk of multiple 

autoimmune disease outcomes, such as well-established autoimmune locus IL24. This gene is in 

the interleukin family of cytokines which are involved in signalling in the immune system and 
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regulating immune cells,(30) IL24 has been identified as a key mediator for both pro-

inflammatory diseases and allergic disorders. (64) Similarly, CASP10 was identified in relation to 

various cancer outcomes in this analysis supporting previous findings. (33) CASP10 encodes for 

enzyme caspase-10 which is a member of the caspase family which have a role in cell apoptosis, 

(65) and have been considered as potential therapeutic targets for cancer. (66)  

 

There were also loci that had specific genetic effects on certain outcomes across the disease 

spectrum. For example, PRKCQ provided robust evidence of an effect on asthma and allergy 

outcomes, and as previously mentioned this gene has been shown as important in asthma 

pathology. We also note that our PheWAS results may help flag pleiotropic loci which should be 

valuable for therapeutic validation endeavours. As an example, we demonstrate that previously 

postulated target TPM3 for cancer therapy had genetically predicted effects on various disease 

endpoints, some of which had the opposite direction of effect to lower cancer risk. Evidence of 

horizontal pleiotropy may be useful in terms of deprioritising drug targets, whereas those which 

appear to be more specifically associated with disease, such as PRKCQ, may be worthwhile 

prioritising and pursuing further. However, results from our genetic analysis are but one line of 

evidence to be used in conjunction with findings from other studies such as functional wet lab 

work.  

 
Although there various strengths to our study there are also limitations. Firstly, the immune-cell 

specific gene expression datasets are modest in scale compared to GWAS and thus do not 

explain a large proportion of heritability. (67) Therefore, the genetic effects that are not 

supported with colocalization evidence may be due limited by low power for our immune-cell 

datasets. Future datasets generated at scale once technologies become more feasible should 

facilitate more comprehensive evaluations of cell-type specific regulatory mechanisms. 

Moreover, larger sample sizes from cell-type specific datasets would allow a higher degree of 

confidence that signals identified using whole blood are not subject to molecular pleiotropy (i.e. 

neighbouring genes being co-expression making pinpoint the causal gene at a locus 

challenging). Another limitation is horizontal pleiotropy which may play a role in these results 

despite the use of colocalization, where a causal variant influencing immune-cell expression 

and disease trait acts via two separate biological pathways. Finally, gene expression was not 

derived from disease related datasets and were mostly from “healthy” individuals. As such 

future work using genetic effects on gene expression derived from individuals diagnosed with 

autoimmune disease or cancer may be potentially capture signatures not detected by our 

anaylses. 

 

The results of this study provide a map of genetically predicted regulatory mechanisms that 

influence disease outcomes with an immune basis. These findings should prove valuable for 

future studies to further characterize susceptibility loci and translate genetic evidence for 

disease prevention and treatment purposes. 
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Methods and materials 

Data resources  

GWAS summary statistics were obtained from the MRC IEU analyses of UK Biobank data and 

consortia who have made their results publicly available (a full list can be found in 

Supplementary Table 1). We obtained eQTL data derived 31,684 blood and peripheral blood 

mononuclear cell samples from 37 datasets made available by the eQTLGen consortium 

(http://www.eqtlgen.org), which was accessed on 18/10/2018. (68) The majority of the samples 

came from individuals with a European ancestry and results were meta-analyzed using a 

weighted Z-score method. Immune cell-specific eQTL data was obtained from the BLUEPRINT 

and DICE project, (13, 14) 3 cell types from BLUEPRINT and 15 from DICE (a full tables of cell 

types can be found in Supplementary Table 15). 

 

Statistical analysis  

 

We performed two-sample MR using the inverse-variance weighted (IVW) MR method 

transcriptome-wide whilst accounting for linkage disequilibrium structure to investigate the 

relationship between gene expression, using weakly correlated genetic cis-instruments (16) , 

and 16 disease outcomes. The IVW MR method follows three assumptions; that the genetic 

instruments are associated with the exposure, that the instrument is not pleiotropic and 

doesn’t have an effect on the outcome through a pathway other than via the exposure, and 

that the instruments are no associated with confounders. (69) A Bonferroni corrected threshold 

was used to identified gene expression with strong evidence for a relationship with an 

outcome, this threshold was calculated using the number of genes included in the MR analysis 

for each outcome (Bonferroni corrected threshold=0.05/number of genes). 

 

We then performed a leave-one-out MR analysis for effects which survived Bonferroni 

correction, which involved reapplying the IVW method after removing each SNP in turn with 

replacement, to determine whether any individual SNPs were driving genetically predicted 

effects. If the number of SNPs was 2 or less the Wald ratio MR method was applied instead.  

Genetic colocalization was undertaken using the ‘coloc’ R package using default parameters. 

This was to investigate whether the causal variant at a locus responsible for conferring disease 

risk was also driving variation in gene expression derived from cell-type specific datasets. In 

total, we applied the coloc method at each locus identified by MR analyses systematically using 

gene expression data derived from 18 types of immune cells from the BLUEPRINT and DICE 

consortia. A threshold for PPA scores of ≥80% was used to indicate evidence of a shared a 

common causal variant between disease outcome and cell-type specific gene expression. 

 

For all effects which provided evidence of genetic colocalization in the previous analyses, we 

used a hypergeometric test to assess the enrichment of cell-type specific gene expression for 

each disease outcome. The “phyper” R package was used to perform enrichment analysis.  
Background comparisons were based on the other loci identified by our MR analyses which did 

not provide evidence of colocalization with gene expression from the same cell-type. For 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.27.20235663doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.27.20235663
http://creativecommons.org/licenses/by/4.0/


 

 

autoimmune disease outcomes, we used loci for the other autoimmune disease outcomes in 

the background set, whereas for cancer outcomes we used loci for the other cancer outcomes. 

(70) Lastly, we performed a phenome-wide association study (PheWAS) using two-sample MR 

analysis with the same analysis pipeline applied in the initial MR analysis which accounted for 

local LD structure. However, this analysis assessed the relationship between the genes that 

were detected in the initial MR analysis and 320 health outcomes which were curated from a 

previous set of 700 outcomes to ease multiple testing burdens. (71) A list of the 320 outcomes 

can been found in Supplementary Table 10.  

 

All analyses were undertaken using R version 3.6.1 and 3.6.2. MR analyses were conducted 

using the ‘TwoSampleMR’ and ‘MendelianRandomization’ R packages. (27, 72)  Plots illustrating 

Manhattan and PheWAS plots were generated using ggplot2, (73) locus zoom plots gassocplot 

(https://github.com/jrs95/gassocplot) and enrichment plots using pheatmap (https://cran.r-

project.org/web/packages/pheatmap/index.html). The web application to disseminate findings 

was constructed using the ‘shiny’ R package. 
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