Functional network dynamics in progressive multiple sclerosis

Giulia Bommarito¹²³, Anjali Tarun¹², Younes Farouj¹², Maria Giulia Preti¹², Maria Petracca⁴, Amgad Droby⁴, Mohamed Mounir El Mendili⁴, Matilde Inglese³⁴⁵, Dimitri Van De Ville¹²

¹Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Geneva 1202, Switzerland.

²Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Geneva 1206, Switzerland.

³Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

⁴Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

⁵Ospedale Policlinico San Martino, IRCCS, Largo Daneo 3, 16100, Genoa, Italy.

Running title: functional dynamics in progressive MS

Keywords: progressive multiple sclerosis; resting-state functional MRI; innovation-driven co-activation patterns; default mode network; clinical disability.

Abbreviations: PMS= progressive multiple sclerosis; PP= primary progressive; SP= secondary progressive; fMRI= functional MRI; rs-fMRI: resting state functional MRI; DMN = default mode network; rs-FC: resting state functional connectivity; iCAP= innovation driven co-activation pattern; BOLD= blood-oxygenated-level dependent; FU= follow-up; HC= healthy control; EDSS= expanded disability status scale; T25FW= timed 25-foot walking; 9HPT=9-hole peg test; SDMT= symbol digit modalities test; CVLT-II= California verbal learning test second edition; BVMT-R = brief visuospatial memory test revised; WM=white matter; CSF= cerebrospinal fluid; FDPower= framewise displacement according to Power et al.; TA= total activation; MNI= Montreal Neurological Institute; ANCOVA = analysis of covariance; FDR = false discovery rate; PLSC = partial least squares correlation; Hipp: hippocampus; Amy: amygdala; BG: basal ganglia; Aud:
auditory; SM: sensory-motor; ECN: executive control network; AntDMN: anterior default mode network; AntIns: anterior insula; SAL: salience; TempPar: temporo-parietal; LAN: language; SecVis: secondary visual; PostDMN: posterior default mode network; TempPole: temporal pole; OFC: orbito-frontal cortex.
Abstract

Functional reorganization at the progressive stage of multiple sclerosis has received limited attention, despite the fact that functional changes are known to occur. Characterizing large-scale network dynamics at rest has the potential to provide new insights into the complexity of such functional alterations. In this case-control study, we explored the dynamic properties of large-scale functional networks during rest in 25 healthy controls and 32 patients with progressive multiple sclerosis, using the innovation-driven co-activation patterns. Thirty-five subjects also underwent a one-year follow-up examination. Partial least squares correlation analysis was applied to explore the relationship between functional dynamics and clinical disability. We observed a reduced dynamic engagement of the anterior default mode network and its coupling with the executive-control network in patients with progressive multiple sclerosis compared to controls, at baseline and follow-up. The global and motor disabilities were related to functional dynamics of subcortical, sensory-motor and posterior default mode network, while the cognitive disability was associated to the altered dynamics of anterior default mode, visual and temporal networks. These findings reveal that the anterior default mode functional recruitment and its interaction with other networks play a major role in the functional reorganization occurring during the progressive stage of multiple sclerosis. Also, the dynamic properties of large-scale functional networks are steady over one year and unveil the intricate relationship between brain function and clinical disability.
Introduction

Progressive multiple sclerosis (PMS) is characterized by neurodegeneration as prominent pathological feature and by a gradual worsening in clinical disability, occurring from the onset of the disease in the case of the primary progressive (PP) form, or after a phase characterized by relapses in the case of the secondary progressive (SP) multiple sclerosis (MS). Despite the two forms, PP and SP MS, can differ in terms of epidemiological, clinical, radiological features, and therapeutic approaches, their pathophysiological pattern is recognized as similar (Lassmann, 2019) and the two phenotypes are considered different aspects of a unique spectrum (Confavreux and Vukusic, 2006).

Functional magnetic resonance imaging (fMRI) has been widely used in the last two decades to investigate the functional changes in blood-oxygenation-level dependent (BOLD) responses occurring at various stages of MS disease. Resting state fMRI (rs-fMRI) has the advantage of being independent from the ability of a patient to understand and execute instructions to perform a specific task, and, therefore, is suited for exploring brain plasticity occurring in patients with advanced disability (Guerra-Carrillo et al., 2014; Lv et al., 2018). However, there are only few studies that specifically investigated resting state functional activity or connectivity (rs-FC) in patients with PMS, disclosing the presence of abnormalities involving the default mode network (DMN), the executive control and the attentional networks, related to cognitive impairment (Rocca et al., 2010; Petracca et al., 2017). Overall, conventional rs-FC has not been related to motor or global disability in the late stages of the disease.

Beside conventional rs-FC analysis, new dynamic approaches have recently emerged to explore the time-varying nature of FC (Preti et al., 2017). Using the sliding-window methodology, the dynamics of rs-FC have been investigated in patients with clinically isolated syndrome or with relapsing-remitting MS, emphasizing the complex functional changes occurring in this disorder, in particular in relationship to the cognitive status, and showing the validity of the complementary
information a dynamic approach could offer to understand such changes (Leonardi et al., 2013; Lin et al., 2018; van Geest et al., 2018; Cordani et al., 2019; d’Ambrosio et al., 2019; Eijlers et al., 2019; Rocca et al., 2019). However, sliding-window analysis comes with several limitations, such as the inconsistencies in the choice of the window lengths, which makes results from different studies less comparable (Preti et al., 2017). So far, most of the prevailing dynamic FC approaches have also assumed a temporally segregated nature of the outcoming functional networks. Alternatively, innovation driven co-activation patterns (iCAPs) is a technique that allows to derive whole brain patterns showing regions that co-activate or co-deactivate at the same time, based on the transients or changes in fMRI time courses (Karahanoglu and Van De Ville, 2015). An abnormal dynamic of these brain “states” or networks and their altered co-occurrences (“coupling”) have already been reported as a key measure of the pathophysiological process occurring in neurological and neuropsychiatric disorders, as well as of the functional reorganization related to therapeutic procedures (Zhuang et al., 2018; Zöller et al., 2019; Tuleasca et al., 2020). Concurrently enabling to capture the time-varying activity of large-scale brain networks, and to unravel the interaction between different sub-components of the DMN and other networks, iCAPs seem suited to extricate functional dynamics in a heterogeneous and complex disorder such as MS, where DMN dysfunction has been described all through the disease course (Basile et al., 2014; Rocca et al., 2018).

Nonetheless, the dynamics of functional networks in patients in the progressive stage of the disease remains unexplored, compared to the other clinic-radiological phenotypes. Despite this, the burden of disability associated to this disease phase, the relative lack of disease modifying drugs and the potential efficacy of rehabilitation strategies, summon for a more exhaustive picture of the functional changes characterizing PMS, that could serve as a groundwork to better grasp its pathophysiology and to estimate the amount of residual brain plasticity.

To address this gap, in this study we chose to explore the dynamics of brain activity during rs-fMRI in patients with progressive MS. In particular, we assessed: i) the potential of such neuroimaging
correlates to characterize this neurodegenerative stage of the disease, ii) whether the dynamics of brain functional patterns changed after one year of follow-up (FU), and iii) their role in explaining clinical disability.

Materials and Methods

Participants
Forty-eight patients with either PP or SP MS and 26 healthy controls (HC) were prospectively recruited. Diagnosis of PP or SP MS was made according to the revised McDonald’s criteria 2010 (Polman et al., 2011). Inclusion criteria were the following: i) age between 25 and 65 years, ii) expanded disability status scale (EDSS) score below 6.5 at screening, iii) if treated, patients had to be on a stable treatment for the previous year, iv) no history of relapses in the previous year. Exclusion criteria included: current or past history of major hematological, renal, hepatic, psychiatric or neurological disease (other than MS for the patient group) and contraindications to MRI. From the initial sample of 74 subjects, 4 patients were excluded because of failure in MRI processing (i.e. functional-structural co-registration) and 13 (1 healthy control, 12 patients) were excluded after motion scrubbing because more than 25% of volumes in their scans had a framewise displacement above the threshold of 0.5 mm (Power et al., 2012; Parkes et al., 2018), resulting in a final sample of 57 subjects (25 HC, 18 patients with PP MS and 14 patients with SP MS). All subjects underwent MRI and, on the same day, patients with PMS underwent clinical and neuropsychological evaluation, at the baseline. Thirty-five (16 HC and 19 patients, 11 with PP MS and 9 with SP MS) out of the 57 subjects included at baseline underwent MRI after 1-year of FU ([mean ±SD]= 11±2 months).

The study was approved by the Institutional Review Board of the Icahn School of Medicine at Mount Sinai, and all the subjects gave written informed consent to participate.

Clinical and neuropsychological assessment
Patients with PMS underwent neurological examination at baseline and FU including EDSS, timed 25-foot walking (T25FW) test, 9-hole peg test (9HPT), and neuropsychological assessment including symbol digit modalities test (SDMT), California verbal learning test second edition (CVLT-II) and the brief visuospatial memory test revised (BVMT-R). For the CVLT-II and the BVMT-R the first five or three recall trials were considered, respectively (Langdon et al., 2012). Raw scores were transformed into T-scores according to (Parmenter et al., 2010).

MRI acquisition
All the participants underwent MRI on a 3.0 T scanner (Magnetom Skyra, Erlangen, Siemens, Germany) using a 32-channel head coil and with a protocol including the following sequences: a) T2-weighted sequence: voxel size 0.5x0.5x3 mm, repetition time (TR) 8000 ms, echo time (TE) 95ms; b) 3D T1-weighted sequence: voxel size:0.8x0.8x0.8 mm, TR 3000 ms, TE 2.47 ms, flip angle 7°, inversion time 1000 ms); c) single shot gradient echo planar imaging (EPI) sequence for the resting state: voxel size: 2.1x2.1x2.1 mm, TR 1000 ms, TE 35 ms, multi-band acceleration factor 7, flip angle 60°, 400 volumes. During resting state fMRI subjects were asked to rest with their eyes closed.

Structural MRI analysis
T2 lesions were segmented and lesion volume obtained using a semiautomatic segmentation technique (Jim 7, Xinapse Systems, Northants, UK).

Functional resting state MRI preprocessing
Resting state fMRI data were preprocessed using SPM12 (FIL, UCL, UK). Complementary functions of the Data Processing Assistant for Resting-State fMRI (Chao-Gan and Yu-Feng, 2010) and the Individual Brain Atlases using Statistical Parametric Mapping toolboxes (Aleman-Gomez et al., 2006) were also used. Preprocessing steps included: realignment and discarding of the first 10
volumes, resulting in 390 time-points. Then, the T1-weighted and functional images were co-
registered, and the structural images were segmented into white matter (WM), grey matter and
cerebrospinal fluid (CSF). Regression of the nuisance variables, including the average WM and
CSF signals and the six motion parameters, was then performed using DPARSF toolbox. A spatial
smoothing (Gaussian kernel of a 6 mm full width at half maximum) was finally applied.

Motion

We identified subjects that displayed too much motion characterized by their framewise
displacement values (Power et al., 2012). Those with $\text{FD}_{\text{Power}} > 0.5$ mm in more than 25% of the
volumes (Parkes et al., 2018) were excluded from the analysis. In the final sample, the average FD
did not differ between patients with PMS and HC at the baseline ($t(55) = -1.37, p=0.18$) and at FU
($t(33) = -1.52, p=0.14$, see Table 1). In all other subjects, scrubbing was applied with contaminated
volumes ($\text{FD}_{\text{Power}} > 0.5\text{mm}$) censored and replaced by the spline interpolation of the previous and
following volumes. Motion frames were excluded from the computation of iCAPs temporal
properties.

iCAPs analysis

The analysis was performed using a publicly available implementation
(https://c4science.ch/source/iCAPs/). In brief, a hemodynamic deconvolution was first applied
using total activation (TA) to the single subject’s native space fMRI time-courses at baseline and
FU. The TA method uses prior information about the hemodynamic response function to
deconvolve the fMRI time-series through a spatio-temporal regularization (Karahanoğlu et al.,
2013; Farouj et al., 2017). Thereafter, fMRI frames corresponding to transients, obtained by the
temporal derivative of the deconvolved time-series, were identified. These frames were normalized
to the MNI coordinate space and were concatenated across all subjects. The resulting matrix
“number of voxels x transients” underwent temporal k-means clustering to obtain brain patterns that
are simultaneously transitioning, i.e. iCAPs. Consensus clustering, a resampling based procedure for optimal class discovery (Monti et al., 2003), was then used to determine the optimum number of clusters. As a last step, activity inducing time-courses for each subject were obtained for all iCAPs using spatio-temporal transient-informed regression (Zöller et al., 2019). For further details about the TA procedure and the choice of the consensus clustering parameters, see the Supplementary Information (SI), Figure SI 1 and Figure SI 2.

iCAPs temporal properties

To retrieve the temporal properties, the time-courses were Z-scored within each subject and thresholded at $|z| > 1$ to determine the “active” time-points. We then derived: i) the total duration of overall activation as the percentage of the total non-motion scanning time for each iCAP, ii) the couplings and iii) anti-couplings, which pertain to the number of time-points between pairs of iCAPs with similar signed co-(de)activation and opposite signed co-(de)activation, respectively. This is equivalent to the Jaccard index, i.e. the number of time-points during which the two iCAPs were both active divided by the number of time-points during which at least one of them was active (Figure SI 3).

Analysis at follow-up

The TA analysis was applied to the 35 subjects at follow-up (FU). Then, the iCAPs retrieved from the baseline sample were fitted into the FU sample. This was done by matching each significant innovation frame of subjects at FU to the closest iCAP obtained from baseline using cosine distance, as a metric. After obtaining the cluster index for the innovation frames at FU and their distance to each cluster center, the transient-informed regression step was repeated on FU data to obtain each subject’s iCAP time-courses and their corresponding temporal properties.
Statistical analysis

Demographic and clinical parameters were compared using unpaired and paired t-test between HC and patients with PMS or between values at baseline and FU, respectively.

ANCOVA was used to compare iCAPs duration between HC and PMS patients, using age, gender and education as covariates and a false discovery rate (FDR) correction according to (Benjamini et al., 1995) was applied. To compare FU and baseline iCAPs temporal properties, a repeated measure ANCOVA analysis was used considering the PMS patients vs HC group x time interaction. Further analyses on coupling/anti-coupling features were computed only for iCAPs whose duration was significantly different between HC and PMS patients.

Partial least squares correlation (PLSC) analysis (Krishnan et al., 2011) was used to investigate patterns of correlation between clinical parameters and temporal properties of iCAPs. Age, gender and education were step-wise regressed from each variable, except for the already normalized T scores of cognitive tests. According to the PLSC procedure, the [subjects x temporal properties] matrix X for brain variables (iCAPs temporal properties) and the [subjects x behavioral variables] matrix Y for clinical ones were built, concatenating HC and PMS patients. Their relationship was assessed by means of singular value decomposition of the correlation matrix between X and Y, which resulted in latent components that indicate multivariate patterns of brain-behavior correlation. The significance and stability of the components was assessed by permutation (1000 permutations) and bootstrap (800 bootstrap samples) testing, respectively. The toolbox used to run PLSC analysis is publicly available (https://miplab.epfl.ch/index.php/software/PLS).

We performed different combinations of PLSC analyses using the total iCAPs duration or coupling/anti-coupling with respect to the following behavioral scores in patients with PMS: i) the EDSS, ii) the upper and lower limb motor score tests; i.e., 9HPT and T25FW tests, and iii) the cognitive tests T scores (BVMT-R, CVLT-II and SDMT). Guided by the results of the correlation analyses with iCAPs duration (see Results section), we performed two complementary PLSC
analyses of the anti-couplings between iCAP_{2Aud/SM} or iCAP_{5AntDMN} and the other iCAPs and motor or cognitive test scores, respectively.

Data availability

Data supporting the findings of this study will be shared upon request.

Results

Demographic and clinical data

Demographic data for the two groups and clinical data for the patients with PMS are reported in Table 1. No significant differences were observed for age, gender and education between HC and PMS patients at the baseline and FU. Demographic and clinical data at baseline of the 35 subjects who underwent FU analysis are reported in the Table SI 1. PMS patients did not differ in terms of any clinical parameter of disability between baseline and FU.

Spatial properties of iCAPs

Baseline. Eleven iCAPs with different spatial distribution were obtained and considered for subsequent analysis. The large-scale networks represented in each iCAPs are shown in Figure 1 and named based on the observed spatial pattern and its overlap with well-known functional networks. These are the hippocampus/amygdala/basal ganglia (iCAP_{1Hipp/Amy/BG}), Auditory/Sensory-Motor (iCAP_{2Aud/SM}), primary visual (iCAP_{3PrimVis}), executive control network (iCAP_{4ECN}), anterior DMN (iCAP_{5AntDMN}), anterior Insula/Salience (iCAP_{6AntIns/SAL}), temporo-parietal/language (iCAP_{7TempPar/LAN}), secondary visual (iCAP_{8SecVis}), posterior DMN (iCAP_{9PostDMN}), amygdala/temporal pole (iCAP_{10Amy/TempP}) and orbitofrontal cortex (iCAP_{11OFC}). The overlap between the spatial pattern of each iCAPs and the Yeo 17 networks parcellation (Schaefer *et al.*,...
2018) or the ICA-defined intrinsic connectivity networks by Shirer et al. (Shirer et al., 2012) is reported in Table SI 2.

Temporal properties of iCAPs: inter-group differences

Healthy controls vs PMS patients at baseline. The overall durations of the iCAP5\textsubscript{AntDMN} and iCAP6\textsubscript{AntIns/SAL} were significantly reduced in patients with PMS compared to HC (F(1,52)=10.99, p=0.002 and F(1,52)=6.98, p=0.011, respectively), with the former surviving FDR correction (Figure 2A). This difference was further manifested in terms of the couplings of iCAP5\textsubscript{AntDMN} vs other iCAPs, showing specifically that the anti-coupling between iCAP5\textsubscript{AntDMN} and iCAP4\textsubscript{ECN} was significantly higher in HC compared to patients with PMS (F(1,52)=7.2, p=0.010, Figure 2B).

Healthy controls vs PMS patients at FU. No significant group x time interaction was found for the eleven iCAPs durations or for the couplings involving iCAP5\textsubscript{AntDMN}. A group effect was confirmed for iCAP5\textsubscript{AntDMN} and iCAP6\textsubscript{AntIns/SAL} durations (F(1,30)=14.5, p=0.001 and F(1,30)=5.6, p=0.024, respectively) and the anti-coupling between iCAP5\textsubscript{AntDMN} and iCAP4\textsubscript{ECN} (F(1,30)=12.0, p=0.002). Meanwhile, a group effect emerged for iCAP2\textsubscript{Aud/SM} (F(1,30)=13.3, p=0.001) and the anti-coupling between iCAP2\textsubscript{Aud/SM} and iCAP5\textsubscript{AntDMN} (F(1,30)=4.2, p=0.049). The bar plots representing the iCAPs’ durations and couplings for iCAP5\textsubscript{AntDMN} at baseline and FU for HC and PMS patients are reported in Figure SI 4.

iCAPs temporal properties and clinical parameters at baseline

The three PLSC analyses disclosed significant latent components that revealed different patterns of iCAPs duration associated to the EDSS, motor or cognitive clinical scores (Figure 3, Figure SI 5). Specifically, the EDSS was associated to increased duration of iCAP1\textsubscript{Hipp/Amy/BG} and to decreased duration of the iCAP2\textsubscript{Aud/SM} and iCAP9\textsubscript{PostDMN} (p=0.048), (Figure 3A, Figure SI 5A). Both T25FW and 9HPT positively correlated to iCAP1\textsubscript{Hipp/Amy/BG} duration and inversely with iCAP2\textsubscript{Aud/SM}, iCAP7\textsubscript{TempPar/LAN}, and iCAP9\textsubscript{PostDMN} durations (p=0.032), (Figure 3B, Figure SI 5B). Cognitive...
scores were associated to the iCAP3PrimVis, iCAP8SecVis, iCAP5AntDMN and iCAP10Amy/TempP durations (p=0.037). Specifically, the SDMT and BVMT-R were inversely associated to the iCAP5AntDMN and the SDMT positively with iCAP3PrimVis duration. Instead, CVLT-II was inversely associated to the duration of iCAP8SecVis and iCAP10Amy/TempP (Figure 3C, Figure SI 5C).

The PLSC analyses involving the anti-couplings between iCAP2Aud/SM and the other iCAPs and motor test scores, respectively, did not reach the significance (p=0.063, Figure SI 6).

A significant latent component for anti-couplings of iCAP5AntDMN and BVMT, CVLT and SDMT T scores was found (p=0.005, Figure 4, Figure SI 5D). In particular, the anti-coupling between iCAP5AntDMN iCAP2Aud/SM positively correlated with the CVLT and negatively with the SDMT. Moreover, CVLT positively correlated to the anti-coupling between iCAP5AntDMN and iCAP6AntIns/SAL but negatively to anti-coupling between iCAP5AntDMN and iCAP10Amy/TempP.

Discussion

In this work we characterized, for the first time, the changes in the brain dynamic functional patterns occurring in PMS patients. In MS, modifications of the brain functional organization parallel the focal and diffuse structural damage. While the distribution and evolution of the latter have been better documented integrating multiple imaging techniques (Filippi et al., 2019), the brain functional reorganization at rest in MS has been more difficult to frame and track through the subsequent stages of the disease. However, tackling the reshaping of functional patterns is of utmost importance especially in the progressive stages of the disease since few options are available to prevent further structural damage. Against this background, exploring the brain functional dynamic, or changes of resting state functional activity over time, compared to a static, or averaged, characterization, could provide a more comprehensive representation of the changes occurring after neural injury (Zalesky et al., 2014; Lurie et al., 2020).

The first contribution of this study was the application of a recent methodology introduced in the dynamic rs-fMRI field to a neurodegenerative disease. The iCAPs method allows to describe
resting-state fluctuations in terms of temporally-overlapping networks, and thus provide a more accurate network-level representation of brain function and between-network interactions. Specifically, our study showed that patients with PMS present changes in the temporal properties of functional networks, mainly involving the anterior DMN, compared to HC. This first finding, observed both at baseline and FU, reveals the key role of the anterior DMN functional dysfunction in progressive MS. The medial prefrontal cortex and the anterior cingulate cortex are involved in a large range of cognitive, emotional and motor processes (Gusnard et al., 2001; Margulies et al., 2007; De La Vega et al., 2016; Wang et al., 2020), and different studies have highlighted their functional heterogeneity. Among the regions whose activity decreases most during goal-oriented tasks in healthy adults (Gusnard and Raichle, 2001; Buckner et al., 2008), the anterior DMN presents a reduced activity during rest with aging (Damoiseaux et al., 2006) and an increased activation during cognitive tasks in aging (Sambataro et al., 2010) and in patients with neurodegenerative disorders (Saykin et al., 1999a), interpreted as a failure in deactivation or as a compensatory phenomenon. In patients with PMS, the anterior DMN showed reduced conventional functional activity and has been related to cognitive disability and to depression (Rocca et al., 2010; Bonavita et al., 2011). Our results revealed a reduced engagement of these regions in PMS patients along with an altered synchronization between anterior DMN and ECN and a decreased dynamic of the anterior insula/salience network. The triple-network model has been well documented in literature, with the salience network mediating the switch between the DMN and ECN (Sridharan et al., 2008; Goulden et al., 2014). Tentatively, we can hypothesize a dysfunction in the interaction among these three networks and an impaired functional dynamic among networks regulating the integration and balance between internally and externally oriented processes occurring in the progressive stage of MS. Such altered dynamics have a patent relationship with cognitive disability, as revealed by the negative and positive correlation with the iCAP5\textsubscript{AntDMN} duration and the anti-coupling between iCAP5\textsubscript{AntDMN} and iCAP6\textsubscript{AntIns/SAL}, respectively. Within this framework, a potential interpretation of the lower functional dynamic of the anterior DMN as an attempt to adapt to
cognitive tasks demand. This hypothesis warrants further investigations in studies of the functional
dynamic during both rest and task paradigms.

A second relevant finding of our study was the stability of the functional dynamic dysfunction over
time in patients with PMS. The longitudinal variation of brain functional activity in patients with
PMS has been poorly investigated and, to our knowledge, only a longitudinal study focusing on the
sensory-motor network and the relationship between FC and brain gamma-aminobutyric acid levels,
has been performed (Droby et al., 2020). Although the data only covers a short time lapse (one
year), our results did not show any significant change in dynamics of functional patterns in PMS
patients, which paralleled a steadiness in clinical disability in the PMS patients’ group. However,
further longitudinal studies with longer follow-up or with a larger sample size will help in
addressing whether more subtle brain functional modifications occur in MS patients in the
progressive phase over a longer time frame.

Finally, we established several relationships between iCAPs’ durations and combined scores of
clinical disabilities. The global disability, as expressed by the EDSS, was related to the
iCAP1Hipp/Amy/BG, the iCAP2Aud/SM and the iCAP9PostDMN duration. The DMN and the sensory-motor
networks are frequently reported to show altered rs-FC properties in patients with MS since the
early stage of the disease and through the relapsing remitting phase (Roosendaal et al., 2010; Rocca
et al., 2012). A direct relation between static FC and EDSS in PMS has not been previously
reported, with the exception of a post-hoc analysis on a subsample of patients with SP MS, showing
no correlations between the rs-FC of the premotor cortex and EDSS (Dogonowski et al., 2013).
Nonetheless, two large studies conducted on large and phenotypically mixed sample described an
inverse relationship between EDSS and rs-FC in the sensory-motor network and DMN (Rocca et
al., 2018; Pinter et al., 2019).

It is noteworthy that, in the current work, we observe that the correlation between dynamic brain
functional patterns and motor tests scores (both T25FW and 9HPT) mirrors the relationship
between dynamic brain functional patterns and EDSS, involving the same iCAPs, with the
exception of the iCAP7TempPar/LAN. For intermediate to high scores, the EDSS mainly reflects the impairment in walking and upper limbs, bulbar or every-day life functioning, respectively (Uitdehaag, 2014). Thus, in our sample of patients with a median EDSS of 5.75, the relationship between functional dynamic and EDSS could be mainly driven by the motor test scores.

The positive correlation between iCAP1Hipp/Amy/BG and motor scores or EDSS could imply a maladaptive role for the basal ganglia and the thalamus dynamic functional activity in the motor and global disability in patients with PMS. Ambulation has been related to pallidum and caudate atrophy (Motl et al., 2015), but functional studies on the subcortical structures have shown a direct relation between basal ganglia rs-FC and fatigue in MS patients (Finke et al., 2015). Moreover, thalamic static FC has been shown to predict EDSS in patients with a clinically isolated syndrome (Hidalgo de la Cruz et al., 2020). Another possible interpretation of this finding is the negative effect of an abnormal engagement in the temporal regions of iCAP1Hipp/Amy/BG would have on motor performance. In line with previous studies (Rocca et al., 2018; Pinter et al., 2019), the duration of iCAP2Aud/SM and iCAP9PostDMN inversely correlated with EDSS. However, our study, for the first time, revealed this association in a sample of progressive MS patients and found a correlation between other parameters of motor disability and the same networks. Lastly, although the temporo-parietal regions have not been associated to motor disability in patients with MS, they are associated to gait control (Takakusaki, 2017) and are involved in upper limbs tasks, attention and self-perception (Igelström and Graziano, 2017). To better interpret this result, it is noteworthy to point out that, although not statistically significant, the motor scores inversely correlated with the anti-couplings between iCAP2Aud/SM and either iCAP7TempPar/LAN or iCAP9PostDMN. Further investigation would confirm whether the motor disability, in patients with PMS, is related to the dynamic interplay among the sensory-motor, temporo-parietal regions, and posterior DMN.

As per the relationship between FC and cognition, the DMN plays a pivotal role in the cognitive disability in patients with MS (Rocca et al., 2010; Basile et al., 2014). While a direct relationship between rs-FC and cognitive status was observed in patients at the progressive stages of the disease...
(Rocca et al., 2010), more studies have pointed out an inverse relationship, with an increased rs-FC of the DMN and salience network underlying the cognitive disability or the cognitive reserve (Hawellek et al., 2011; Basile et al., 2014; Bizzo et al., 2020). Our results indicated that an increased engagement of the anterior DMN together with a reduced anti-coupling with areas of the salience network (iCAP6AntIns/SAL) were associated to a worse cognitive performance in patients with PMS. However, we found a decreased duration of the iCAP5AntDMN in PMS patients compared to HC. In addition, data from literature suggests an influence for functional dynamic during rest on the subsequent performance during tasks (Gonzalez-Castillo and Bandettini, 2018), hence a possible interpretation of the reduced anterior DMN dynamic as compensatory. A reduced anti-coupling between iCAP5AntDMN and iCAP2Aud/SM correlated with a worse performance at CVLT-II but better for SDMT. While the former would indicate that the segregation between anterior DMN and auditory regions influences CVLT-II performance, the latter again suggests a compensatory role for the iCAP5AntDMN, in this case involving its synchronicity with sensory-motor regions, probably the supplementary motor area functionally involved during SDMT (Silva et al., 2018). We also confirmed an association between reduced dynamic of the visual network and cognitive impairment, previously observed in a study on a large sample of patients with relapsing-remitting, PP and SP MS (Eijlers et al., 2019). Lastly, both the medial temporal and the prefrontal regions have been shown to activate during verbal processing (Saykin et al., 1999b). Complementary, our results showed that the increased anti-coupling between iCAP5AntDMN and iCAP10Amy/TempP was associated with a worse performance at CVLT-II. Our findings highlight the complexity and diversity of the relationship between cognitive performance and functional brain patterns in PMS and suggest how a dynamic approach would better tackle it and disentangle its components.

This study has several limitations, including the small sample size at FU and the lack of motor and cognitive test scores on the HC group. The latter urges caution in the interpretation of the correlation analyses and future studies are needed to assess how the relationship between brain and behavioral data differ in patients with PMS, compared to HC. Moreover, further longitudinal
studies in the progressive stage, covering larger time intervals, are needed to better characterize the occurring functional reorganization.

In conclusion, functional brain dynamics in patients with progressive MS reveal significant changes at the level of the anterior DMN and disclose their potential role in better understanding the functional modifications underlying clinical disability. These alterations seem to closely reflect the clinical status, being both stable after a year follow-up.

Disclosures: Giulia Bommarito, Anjali Tarun, Younes Farouj, Maria Giulia Preti, Maria Petracca, Amgad Droby, Mohamed Mounir El Mendili, and Dimitri Van De Ville have nothing to disclose. Matilde Inglese is currently receiving a grant from Teva Neuroscience.

Funding: G. Bommarito was supported by a research fellowship FISM-Fondazione Italiana Sclerosi Multipla, Cod.: 2017/B/2 and financed or co-financed with the ‘5 per mille’ public funding. A. Tarun and Y. Farouj were supported by the Swiss National Science Foundation under the Project Grant 205321-163376.

Figure 1.
Spatial patterns of the 11 iCAPs retrieved from the analysis on HC and patients with PMS. Under each iCAP the average consensus and the number of innovation frames assigned to it. Coordinates refer to the Montreal Neurological Institute space. Hipp: hippocampus; Amy: amygdala; BG: basal ganglia; ECN: executive control network; DMN: default mode network; LAN: language; TempPole: temporal pole; OFC: orbito-frontal cortex.

Figure 2.
A. Bar plots of the duration of the 11 iCAPs in the HC and patients with PMS patients. B. Anti-coupling between iCAP4_{ECN} and iCAP5_{AntDMN} resulted significantly different between the HC and PMS patients. Hipp: hippocampus; Amy: amygdala; BG: basal ganglia; Aud: auditory; SM: sensory-motor; ECN: executive control network; AntDMN: anterior default mode network; AntIns: anterior insula; SAL: salience; TempPar: temporo-parietal; LAN: language; SecVis: secondary visual; PostDMN: posterior default mode network; TempPole: temporal pole; OFC: orbito-frontal cortex. *p<0.05, ** surviving FDR correction.

Figure 3.
Partial least squares correlation analyses performed to assess the relationship between iCAPs durations and (A) EDSS (p=0.048), (B) Motor test scores (p=0.032) or (C) Cognitive test T scores (p=0.037). In yellow the robust weights after bootstrapping, the error bars represent bootstrap intervals. Hipp: hippocampus; Amy: amygdala; BG: basal ganglia; Aud: auditory; SM: sensory-motor; ECN: executive control network; AntDMN: anterior default mode network; AntIns: anterior insula; SAL: salience; TempPar: temporo-parietal; LAN: language; SecVis: secondary visual; PostDMN: posterior default mode network; TempPole: temporal pole; OFC: orbito-frontal cortex; EDSS: expanded disability status scale; T25FW: timed 25-foot walking test; 9HPT: 9-hole peg test; BVMT-R: brief visual memory test revised; CVLT-II: California verbal learning test (second edition); SDMT: symbol digit modalities test.

Figure 4.
PLSC analysis results between Cognitive tests T scores (BVMT-R, CVLT-II and SDMT) and the anti-couplings between iCAP5_{AntDMN}, and all the other iCAPs. In yellow the robust weights after bootstrapping, the error bars represent bootstrap intervals. Hipp: hippocampus; Amy: amygdala; BG: basal ganglia; Aud: auditory; SM: sensory-motor; ECN: executive control network; AntDMN:
anterior default mode network; AntIns: anterior insula; SAL: salience; TempPar: temporo-parietal; LAN: language; SecVis: secondary visual; PostDMN: posterior default mode network; Amy: amygdala; TempPole: temporal pole; OFC: orbito-frontal cortex; BVMT-R: brief visual memory test revised; CVLT-II: California verbal learning test (second edition); SDMT: symbol digit modalities test.

References

Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB toolbox for ‘pipeline’ data analysis of resting-

Karahanoglu FI, Van De Ville D. Transient brain activity disentangles fMRI resting-state dynamics

Table 1. Demographic and clinical data at baseline and follow-up.

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n=57)</th>
<th></th>
<th>p-value†</th>
<th>Follow-up (n=35)</th>
<th></th>
<th>p-value‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HS (n=25)</td>
<td>MS patients (n=32)</td>
<td></td>
<td>HS (n=16)</td>
<td>MS patients (n=19)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>47.3±8.7</td>
<td>50.8±9.9</td>
<td>0.17</td>
<td>48.9±7.2</td>
<td>52.7±9.4</td>
<td>0.20</td>
</tr>
<tr>
<td>Gender (females,</td>
<td>10; 15</td>
<td>20; 12</td>
<td>0.09</td>
<td>7; 9</td>
<td>13; 6</td>
<td>0.14</td>
</tr>
<tr>
<td>males)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>17.2±3.5</td>
<td>16.6±2.4</td>
<td>0.46</td>
<td>17.7±3.9</td>
<td>16.8±2.2</td>
<td>0.43</td>
</tr>
<tr>
<td>Disease duration</td>
<td>-</td>
<td>15.4±12.0</td>
<td></td>
<td></td>
<td>15.2±12.3</td>
<td></td>
</tr>
<tr>
<td>EDSS (median; range)</td>
<td>-</td>
<td>5.75; 1.0-6.5</td>
<td></td>
<td>-</td>
<td>5; 2.5-6.5</td>
<td></td>
</tr>
<tr>
<td>SDMT raw score</td>
<td>-</td>
<td>46.3±15.5</td>
<td></td>
<td></td>
<td>51.3±13.3</td>
<td></td>
</tr>
<tr>
<td>SDMT T-score</td>
<td>-</td>
<td>35.9±14.6</td>
<td></td>
<td></td>
<td>42.6±15.0</td>
<td></td>
</tr>
<tr>
<td>BVMT-R raw score</td>
<td>-</td>
<td>16.6±2.4</td>
<td></td>
<td></td>
<td>19.8±8.9</td>
<td></td>
</tr>
<tr>
<td>BVMT-R T-score</td>
<td>-</td>
<td>31.0±12.6</td>
<td></td>
<td></td>
<td>41.6±16.1</td>
<td></td>
</tr>
<tr>
<td>CVLT-II raw score</td>
<td>-</td>
<td>54.8±13.2</td>
<td></td>
<td></td>
<td>58.7±13.3</td>
<td></td>
</tr>
<tr>
<td>CVLT-II T-score</td>
<td>-</td>
<td>51.9±13.5</td>
<td></td>
<td></td>
<td>57.3±13.6</td>
<td></td>
</tr>
<tr>
<td>T25FW</td>
<td>-</td>
<td>8.8±4.4</td>
<td>0.18</td>
<td>0.16±0.04</td>
<td>0.19±0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>9HPT</td>
<td>-</td>
<td>32.1±10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2 LV</td>
<td>-</td>
<td>8.5±10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motion (FD_{Power})</td>
<td>0.17±0.05</td>
<td>0.19±0.08</td>
<td></td>
<td>0.16±0.04</td>
<td>0.19±0.07</td>
<td></td>
</tr>
</tbody>
</table>

All variables are expressed as mean ± standard deviation if not otherwise specified.

† unpaired t-test between HS (n=25) and MS patients (n=32) at baseline.
‡ unpaired t-test between HS (n=16) and MS patients (n=19) at FU.
