
1 
 

Genetic associations and architecture of asthma-chronic obstructive pulmonary disease overlap 

C. John1*, A.L. Guyatt1*, N. Shrine1, R. Packer1, T.A. Olafsdottir2, J. Liu3, L.P. Hayden3, S.H. Chu3, J.T. 

Koskela4, J. Luan5, X. Li6, N. Terzikhan7, H. Xu8, T.M. Bartz9, H. Petersen10, S. Leng11, S.A. Belinsky10, A. 

Cepelis12, A.I. Hernández Cordero13, M. Obeidat13, G. Thorleifsson2,14, D.A. Meyers6, E.R. Bleecker6, 

L.C. Sakoda15, C. Iribarren15, Y. Tesfaigzi16, S.A. Gharib17, J. Dupuis8, G. Brusselle7,18, L. Lahousse7,19, 

V.E. Ortega20,  I. Jonsdottir2,13, D. D. Sin13, Y. Bossé21, M. van den Berge22, D. Nickle23,24, J.K. Quint25, I. 

Sayers26,27, I.P. Hall26, C. Langenberg6, S. Ripatti4,28, T. Laitinen29,30, A.C. Wu31, J. Lasky-Su3, P. Bakke32, 

A. Gulsvik32, C.P. Hersh3, C. Hayward33, A. Langhammer12, B. Brumpton34,35, K. Stefansson2,13, M.H. 

Cho3, L.V. Wain1,36, M.D. Tobin1,36 

1 Department of Health Sciences, University of Leicester, Leicester, UK. 

2 deCODE genetics/Amgen, Reykjavik, Iceland. 

3 Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical 

School, Boston, USA. 

4 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. 

5 MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK. 

6 Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of 

Arizona, Tucson, USA. 

7 Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands. 

8 Department of Biostatistics, Boston University School of Public Health, Boston, USA. 

9 Cardiovascular Health Research Unit, Department of Medicine & Department of Biostatistics, 

University of Washington, Seattle, USA. 

10 Lovelace Respiratory Research Institute, Albuquerque, USA. 

11 Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal 

Medicine, University of New Mexico, Albuquerque, USA 

12 Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian 

University of Science and Technology (NTNU), Levanger, Norway. 

13 Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, 

Canada  

14 Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland. 

15 Division of Research, Kaiser Permanente of Northern California, Oakland, USA. 

16 Brigham and Women's Hospital and Harvard Medical School, Boston, USA. 

17 Computational Medicine Core, Center for Lung Biology & UW Medicine Sleep Center, Medicine, 

University of Washington, Seattle, USA. 

18 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium. 

19 Department of Bioanalysis, Ghent University, Ghent, Belgium. 

20 Department of Medicine, Wake Forest School of Medicine, Winston-Salem, USA 

21 Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular 

Medicine, Laval University, Québec, Canada 

22 University of Groningen, University Medical Center Groningen, Department of Pulmonology, 

GRIAC Research Institute, Groningen, The Netherlands 

23 Global Health, University of Washington, Seattle, USA 

24 Gossamer Bio, San Diego, USA 

25 National Heart and Lung Institute, Imperial College London, London, UK 

26 Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of 

Nottingham, Nottingham, UK 

27 Biodiscovery Institute, University of Nottingham, Nottingham, UK 

28 Broad Institute of MIT and Harvard, Cambridge, USA 



2 
 

29 Division of Medicine, Department of Pulmonary Diseases, Turku University Hospital, Turku, 

Finland. 

30 Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland. 

31 Center for Healthcare Research in Pediatrics (CHeRP) and PRecisiOn Medicine Translational 

Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care 

Institute and Harvard Medical School, Boston, USA. 

32 Department of Clinical Science, University of Bergen, Bergen, Norway 

33 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of 

Edinburgh, Edinburgh, UK 

34 K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, 

Norwegian University of Science and Technology (NTNU), Trondheim, Norway 

35 Clinic of Thoracic and Occupational Medicine, St. Olav’s Hospital, Trondheim University Hospital, 

Trondheim, Norway 

36 Leicester NIHR Biomedical Research Centre, Leicester, UK 

* These authors contributed equally. 

Corresponding Author: mt47@leicester.ac.uk, Martin D Tobin

mailto:mt47@leicester.ac.uk


3 
 

Abstract 

Some individuals have characteristics of both asthma and COPD (asthma-COPD overlap, ACO), and 

evidence suggests they experience worse outcomes than those with either condition alone. 

Improved knowledge of the genetic architecture would contribute to understanding whether 

determinants of risk in this group differ from those in COPD or asthma. 

We conducted a genome-wide association study in 8,068 cases and 40,360 controls of European 

ancestry from UK Biobank (stage 1).  After excluding variants only associated with asthma or COPD 

we selected 31 variants for further investigation in 12 additional cohorts (stage 2), and discovered 

eight novel signals for ACO in a meta-analysis of stage 1 and 2 studies. 

Our signals include an intergenic signal on chromosome 5 not previously associated with asthma, 

COPD or lung function, and suggest a spectrum of shared and distinct genetic influences in asthma, 

COPD and ACO. A number of signals may represent loci that predispose to serious long-term 

consequences in people with asthma. 

Introduction 

Chronic respiratory diseases are a common and important cause of morbidity and mortality 

worldwide, affecting over 500 million people and causing 7% of deaths globally.1 Chronic obstructive 

pulmonary disease (COPD) accounts for 55% of chronic respiratory disease prevalence and over 80% 

of deaths, whilst asthma is the next most common condition, and is particularly prevalent amongst 

children.1  Prevalence is highest in high-income countries (including the USA and Western Europe), 

though deaths are higher elsewhere, notably in Asia and Oceania.1 Globally, chronic respiratory 

disease is the third leading cause of death.1 

Asthma and COPD are heterogeneous conditions2-4 that share some common features, including 

airflow obstruction with differing degrees of reversibility. Inflammatory processes are important in 

the pathogenesis of both conditions, and cytokine profiles, for example, identify both distinct and 

overlapping groups of patients.5 Individuals with characteristics of both conditions have until 

recently been referred to as having “asthma-COPD overlap” (ACO),4 and a number of studies have 

suggested that patients who meet criteria for both asthma and COPD have significantly worse 

outcomes than those with either condition alone.6-13 More recent guidelines emphasize that asthma 

and COPD are different conditions, but recognise that they may coexist in the same patient.14 Such 

individuals with features of both diseases risk being excluded from research studies that might 

provide evidence about the most effective treatment strategies for this group.3 

Environmental risk factors – notably tobacco smoke in the case of COPD – are central, but genetics 

also plays an important role in both asthma and COPD.15-17 Genome-wide association studies (GWAS) 

examine variants across the genome agnostically, with the purpose of identifying variant-trait 

associations that inform understanding of disease biology, and by extension, potential treatment 

strategies. GWAS have identified a considerable number of loci associated with risk of asthma or 

COPD in European populations.18-61 The genetic correlation (rg) between asthma and COPD is 0.38 

(p=6.2×10−5), suggesting a shared genetic aetiology.51 Some GWAS have specifically studied ACO, 

including a GWAS of ACO compared to COPD alone,8 and a meta-analysis of an asthma and COPD 

GWAS.62 At least twenty loci outside of the HLA (human leucocyte antigen) region have been 

identified as associated with both asthma and lung function or COPD at a threshold of p<5x10-8, but 

have not been specifically described as ACO loci: these include signals in/near IL1RL1 on 

chromosome 2,33, 63 STAT6 on chromosome 12,34, 41 and GSDMB/THRA on chromosome 17.38, 56 There 

are also a number of overlapping loci in the HLA region, including the first shared signal to be 
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identified, HLA-DQB1/HLA-DQA2.30 A previous GWAS did not identify any variants associated with 

ACO at the conventional p<5x10-8
 threshold, but this study was of a modest sample size (n=3570) 

and thus likely underpowered.8  

Improved knowledge of genetic variants associated with co-existing asthma and COPD would 

contribute to understanding of the underlying molecular pathways, clarifying whether the genetic 

determinants of illness in this patient group are distinct from those in COPD or asthma alone. This 

knowledge could also help to determine specific management strategies for those with co-existing 

asthma and COPD. Notwithstanding the controversies of changing terminology for individuals 

affected with both asthma and COPD, for brevity in this paper, we refer to this case status as “ACO”. 

Understanding the extent of the shared genetic background between asthma and COPD may inform 

future discussion about the terminology used to describe people meeting criteria for both asthma 

and COPD diagnosis. 

Accordingly, using spirometry, self-report and electronic healthcare record (EHR) data to define 

cases with both asthma and COPD (ACO) and suitable controls, we undertook the largest GWAS of 

coexisting asthma and COPD to date, including up to 12,369 cases and 88,969 controls, in a two-

stage design incorporating 13 studies 

Results 

For stage 1 analyses, 8068 individuals were selected from UK Biobank as ACO cases (defined by self-

reported asthma and spirometry demonstrating obstruction) and 40,360 as healthy controls free of 

either asthma or COPD. We undertook two further analyses to determine whether signals were 

driven by COPD or asthma alone, for prioritisation of signals. For these, another 16,762 individuals 

were selected as controls with COPD alone (without asthma), and 26,815 as controls with asthma 

alone (without COPD). The age, sex, smoking status and lung function of the cases and controls for 

both the primary and sensitivity analyses are shown in Table 1. ACO cases were slightly older, on 

average, than healthy controls, and included a higher proportion of males and ever-smokers. Age, 

sex and smoking status were included as covariates in the association analysis, in addition to 

principal components for ancestry.
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Table 1 Descriptive characteristics of cases and controls included in stage 1 (UK Biobank primary and signal prioritisation analyses) 

 ACO cases (n=8068) Healthy controls 
(n=40360) 

Controls with COPD but 
no asthma 
(n=16762) 

Controls with asthma but 
no COPD (n=26815) 

Age at recruitment (median, IQR) 60 (53-65) 57 (49-63) 62 (56-65) 55 (48-61) 

Sex     

Male 4179 (51.8%) 17598 (43.6%) 9147 (54.6%) 9703 (36.2%) 

Female 3889 (48.2%) 22762 (56.4%) 7615 (45.4%) 17112 (63.8%) 

Smoking status     

Ever smoked 4367 (54.1%) 17316 (42.9%) 11752 (70.1%) 11231 (41.9%) 

Never smoked 3701 (45.9%) 23044 (57.1%) 5010 (29.9%) 15584 (58.1%) 

Lung function (median, IQR)     

FEV1/FVC 0.63 (0.58-0.67) 0.78 (0.75-0.81) 0.65 (0.61-0.68) 0.77 (0.74-0.80) 

% predicted FEV1 66.1% (56.5%-73.3%) 97.3% (89.9%-105.6%) 68.7% (60.0%-74.8%) 90.8% (81.6%-100.0%) 
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After filtering based on minor allele frequency (MAF) greater than 0.01 and imputation quality 

(INFO) greater than 0.5, a total of 7,693,381 variants were retained for downstream analyses. The 

LDSC (linkage disequilibrium score) regression intercept was 1.018, indicating that our results were 

not strongly affected by inflation due to population structure.64 This value was used to compute 

corrected standard errors of the discovery results (Supplementary Figure 1). 

ACO shares genetic architecture with other traits 

Using LD score regression, we computed genetic correlations between ACO, asthma, moderate-

severe asthma, COPD, FEV1/FVC and blood eosinophil counts, using results from the current study 

and from published GWAS in UK Biobank and other studies (Figure 1, Supplementary Table 4). We 

observed genetic correlations (rg) of broadly similar magnitude between ACO and COPD (rg=0.828, 

p=3.19×10-299), ACO and asthma (rg =0.743, p=6.18×10−44), and ACO and FEV1/FVC (rg=-0.692, 

p=7.48×10−33). The genetic correlation (rg) between asthma and FEV1/FVC was -0.333 (p=8.71×10−7), 

(i.e. increased risk of asthma was correlated with a lower FEV1/FVC).  Blood eosinophil count showed 

a moderate genetic correlation with ACO (rg=0.292, p=4.87×10−11) that was similar in magnitude to 

the correlation of eosinophils with asthma (rg=0.371, p=3.15×10−7), whereas the genetic correlations 

of eosinophils with FEV1/FVC (rg =-0.070, p=0.002) and COPD (rg=0.130, p=4.83×10-6) were smaller. 

We additionally computed genetic correlations between ACO and 16 traits related to autoimmune 

disease, as well as the genetic correlation between ACO and smoking behaviour (Supplementary 

Table 4). After asthma, the next strongest genetic correlation was with eczema (rg=0.255, p=0.004), 

followed by multiple sclerosis (rg=0.323, p=0.011). 
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Figure 1 Genetic correlations between ACO and asthma, moderate-severe asthma, COPD, 

FEV1/FVC, and blood eosinophil counts 

 

Genetic correlations were computed using LD score regression. The annotation in each tile represents 

the magnitude of the genetic correlation estimate (rG), and intensity is proportional to the 

magnitude of effect. Note that for FEV1/FVC, a negative correlation shows that the other trait is 

associated with reduced FEV1/FVC (reduced FEV1/FVC implies worse lung function). Datasets used: 

ACO=current discovery results from UK Biobank; Asthma=GWAS results from Demenais et al., 2018;34 

Asthma (moderate-severe)=GWAS of asthma by Shrine et al, 2019;55 COPD=GWAS of COPD by 

Sakornsakolpat et al, 2019;56 FEV1/FVC=GWAS of FEV1/FVC (UK Biobank and SpiroMeta) by Shrine et 

al, 2019;63 Eosinophils=blood eosinophil counts published by Astle et al., 2016.65 



8 
 

ACO association signals  

In stage 1, there were 83 distinct signals at P<5x10-6 (see Figure 2, Supplementary Note and 

Supplementary Figure 2 for the signal selection process, and Supplementary Table 5 for results). Of 

these, 31 signals retained significance (P<0.01) in further analyses comparing ACO cases separately 

with either COPD cases or asthma cases to determine whether signals were being driven by asthma 

or COPD alone (passes_prioritisation=TRUE in Supplementary Table 5). These were followed up in 

independent cohorts (stage 2). In stage 2, comprising 12 independent cohorts with an additional 

4301 cases and 48609 controls (Supplementary Table 1 and Supplementary Table 2) of European 

ancestry, 26/31 signals had a direction of effect concordant with the stage 1 discovery analysis 

(Supplementary Table 6). Whilst the sample size of individuals of African-American ancestry was 

small (297 cases, 1335 controls from the COPDGene study) and the confidence intervals around 

point estimates broad, 22/31 signals had a consistent direction of effect (Supplementary Table 6). 

Results for a stage 2 sensitivity analysis including up to 9638 cases and 128273 controls of European 

ancestry from 15 studies, where COPD was defined either by available spirometry or, alternatively, 

by diagnoses from electronic health records (see Supplementary Note), are in Supplementary Table 

7). 

Subgroup analyses 

We repeated association testing in European ancestry individuals in stage 1 (UK Biobank) at the 

sentinel SNPs for the 31 signals entering stage 2 analysis after dividing the ACO cases into those with 

child- and adult-onset asthma (Supplementary Table 8, Supplementary Figure 3). Effect sizes 

amongst cases with childhood-onset asthma were highly correlated (and similar in magnitude) with 

those amongst individuals with onset in adulthood (R = 0.883). We also repeated association testing 

at these 31 sentinel SNPs after stratifying the sample by ever- and never-smoking status 

(Supplementary Table 8 and Supplementary Figure 4). Again, effect sizes in ever- and never- 

smokers were closely correlated (R = 0.911), and similar in magnitude. 

Eight top signals from joint analysis   

After meta-analysis combining stage 1 (UK Biobank) and stage 2 (12 independent cohorts) results in 

European ancestry individuals for each of the 31 sentinel SNPs followed up, 13 were genome-wide 

significant (p<5x10-8) (Supplementary Table 5; Supplementary Figure 2 for flow diagram). Of these, 

eight either had a lower p-value in the joint analysis than in stage 1 (UK Biobank) alone, or had 

p<0.05 in the follow-up studies alone (Table 2, region plots in Supplementary Figure 5). None of 

these eight signals had been previously reported as being associated specifically with ACO.8 There 

are no reports of association with asthma, COPD or lung function for the intergenic signal on 

chromosome 5 (rs80101740, nearest gene LOC100289230, Table 2). Two signals, rs9273410 at the 

HLA-DQB1 locus, and rs3749833 at the C5orf56 locus, have been separately reported as associated 

with both asthma and lung function (and COPD in the case of rs9273410).30, 33, 47, 52 Intronic variant 

rs6787279 in IL17RD was previously reported to be associated with COPD and lung function but not 

with asthma.53, 56, 63 Four signals were previously reported to be associated with asthma but not with 

COPD – these were intronic variant rs35570272 in GLB1,33 exonic rs16903574 in FAM105A,33 

intergenic rs2584662 at the PHB locus,33 and intergenic rs1837253 at the TSLP locus.24, 26, 30  

For each of the eight top signals, we performed fine-mapping to identify the most likely causal 

variants (the credible set), and sought associations with expression levels (eQTLs) and chromatin 

interactions. For the novel intergenic signal for ACO on chromosome 5 (rs80101740, EAF=0.015, OR 
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1.42, P=3.72x10-8) (see Supplementary Table 6), which has not been previously identified as 

associated with asthma, lung function or COPD, the sentinel SNP, rs80101740, had the largest 

posterior probability in the credible set (0.77), i.e. it had the largest probability of being the true 

causal variant, assuming the causal variant was genotyped or imputed. There was no evidence of 

colocalisation with eQTL signals at the rs80101740 locus (Supplementary Table 11), and no 

chromatin interactions were identified. 

Four of our novel signals for ACO were previously reported for asthma but not COPD or lung 

function.24, 30, 33 rs35570272 in GLB1 was associated with ACO with an odds ratio of 1.10 (EAF 0.398, 

P=2.44x10-9). There were 11 SNPs in the credible set, of which the intronic sentinel SNP had the 

highest posterior probability (0.655), i.e. was most likely to be the source of the association signal. 

There were significant chromatin interactions nearby in GLB1 in fetal lung fibroblasts. GLB1 encodes 

the beta-galactosidase enzyme involved in lysosomal function, and via alternative splicing also 

encodes an elastin-binding protein involved in the formation of extracellular elastic fibres. GLB1 has 

been implicated in mucopolysaccharidosis type IV and GM1 gangliosidosis.66 Two SNPs (both with a 

posterior probability around 0.13) in the 99% credible set for this signal, rs7646283 and rs34064757 

were eQTLs for cartilage associated protein (CRTAP) in lung (Supplementary Table 12), involved in 

bone development and implicated in osteogenesis imperfecta (type 7). 

Another signal (previously reported for asthma) was rs16903574 (EAF=0.077, OR=1.20, P=3.8x10-10), 

a missense variant in FAM105A, which was identified as deleterious according to its CADD score 

(22.6), and predicted to result in an amino acid change from phenylalanine to leucine.67 FAM105A 

encodes a pseudoenzyme of unclear function, but possibly involved in protein-protein interactions.68 

This sentinel SNP also had a posterior probability of 0.99, suggesting it is highly likely to be the true 

causal variant, assuming the causal variant was genotyped or imputed. A previous study in asthma 

also suggested FAM105A was the predicted target based on chromatin interactions and correlation 

between enhancer epigenetic marks and gene expression levels, though we did not identify any 

eQTL evidence in lung or whole blood.33 We also identified a highly significant chromatin interaction 

in fetal lung fibroblasts overlapping FAM105A and another nearby gene (TRIO), but not in adult lung. 

An intergenic signal we identified between PHB and ZNF652 (rs2584662; EAF=0.42, OR=0.92, 

P=2.21x10-8) has previously been associated with asthma and reported as a strong eQTL for GNGT2 

(implicated in NF-κB activation) in blood,33, 34 though we did not identify this in our lung and whole 

blood eQTL analysis. In our analysis there were eight SNPs in the credible set, none of which had a 

posterior probability over 0.2. Hi-C data suggested a significant chromatin interaction in ZNF652, 

with another less significant peak close to GNGT2.  Nearby loci in ZNF652 have previously been 

associated with asthma/allergic disease and moderate-to-severe asthma.33 

We also identified rs1837253, an intergenic signal near TSLP (EAF 0.739, OR 1.16, P=1.53x10-18), with 

a posterior probability of 1, i.e. it was the only variant in the credible set. No eQTL evidence was 

identified, but there were highly significant chromatin interactions in fetal lung fibroblasts in 

SLC25A46 and between TSLP and SLC25A46. The latter gene has been implicated in HMSN/Charcot-

Marie-Tooth type 6, whilst the cytokine   TSLP was implicated in asthma and allergic disease prior to 

the GWAS era,69 and an anti-TSLP antibody has been trialled in allergic asthma.70  

Another signal, rs6787279 in IL17RD, has previously been associated with lung function and COPD 

(EAF 0.169, OR 0.89, P=7.87x10-9).53, 56 There were 55 variants in the corresponding 99% credible set, 

and the highest posterior probability of any variant was 0.12, meaning it is not yet possible to fine-

map this signal with high confidence. One SNP in the credible set (rs17057718) was exonic and 
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predicted to result in a possibly damaging amino acid change from valine to methionine, but the 

posterior probability was only 0.012. Three other SNPs were in the UTR3, but were not deleterious 

according to their CADD score (0). Multiple SNPs at this locus were eQTLs for IL17RD in lung, with the 

ACO risk increasing allele corresponding to decreased IL17RD expression. IL17RD is a component of 

the IL17 receptor complex; IL17 signalling has been implicated in the pathogenesis of COPD,71, 72   

potentially by mediating the effects of cigarette smoke, as well as in asthma.73   

Two ACO signals have previously been reported separately for both asthma and lung function or 

COPD: rs9273410 in HLA-DQB1 (ACO OR 1.20, EAF 0.445, P=9.19x10-28) and rs3749833 in C5orf56 

(ACO OR 1.12, EAF 0.263, P=9.37x10-12). HLA-DQB1 encodes a major histocompatibility complex 

(MHC) type II molecule involved in antigen presentation. Certain HLA-DQB1 alleles have been 

associated with a range of inflammatory and autoimmune diseases, including type I diabetes and 

coeliac disease. In our analysis, the sentinel was the only SNP in the credible set. This was a UTR3 

variant, but not deleterious according to its CADD score (0). For lung function, a specific amino acid 

change (from non-alanine to alanine) in the gene product HLA-DQβ1 has been identified as the main 

driver of signals in the MHC region.63 Analyses in asthma have identified HLA-DQA1 as the likely 

driver gene.33 

C5orf56 is located on an important cytokine gene cluster on chromosome 5, which includes IL3, IL4 

and IL5. A number of the interleukins encoded in this region have been considered as possible 

therapeutic targets in asthma. IL5 in particular is now an important drug target in severe eosinophilic 

asthma, in which the anti-IL5 monoclonal antibodies mepolizumab and reslizumab have been shown 

to reduce exacerbation rates and improve quality of life in patients with severe eosinophilic 

asthma.74-76 SNPs in the credible set at this locus were eQTLs for SLC22A5 in lung and blood, 

AC116366.6 in blood, RAD50 in lung and a non-coding Y RNA in lung and blood. SLC22A4 has 

previously been identified as the most likely candidate gene for the association with lung function.63 

The gene products of both SLC22A4 and SLC22A5 are membrane transport proteins involved in 

bronchial uptake of bronchodilators (SLC22A5) and anti-cholinergic drugs used in asthma and COPD 

(SLC22A4/SLC22A5).77 An analysis in asthma predicted C5orf56 (which encodes the interferon 

regulatory factor 1 (IRF1) antisense RNA) as the causal gene, based on enhancer-promoter 

chromatin interactions and a significant correlation between enhancer epigenetic marks and gene 

expression levels.33  

We used PhenoScanner to undertake a phenome-wide scan for other associations with SNPs in each 

credible set, at FDR<0.01 (Supplementary Table 12). All of the ACO loci previously associated with 

asthma showed association with blood cell counts, particularly eosinophils and neutrophils, and 

atopic traits. The locus in the HLA region was associated, as expected, with a wide range of 

autoimmune and inflammatory traits. Another locus (rs2584662, near PHB and ZNF652), was 

associated with height, anthropometric traits, hypertension, mitral valve disease, coronary artery 

disease and traits indicating chronic disease and multimorbidity, whilst rs3749833 (near C5orf56), 

was associated with height and other anthropometric traits, and inflammatory bowel disease. SNPs 

in the credible set for the intergenic chromosome 5 signal (sentinel rs80101740), were associated 

with death from peripheral vascular disease and aortic stenosis, cervical cancer, postprocedural 

disorders of eye and adnexa, vaginal/uterine prolapse and phenoxymethylpenicillin treatment. 
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Figure 2 Manhattan plot of association results for ACO in stage 1 (UK Biobank).

 

The x-axis shows genomic location by chromosome, the y-axis shows the –log10 P-value, corrected for the intercept of LD score regression (1.018). Eight top 

signals (from joint analysis) are highlighted in red, and labelled with rsIDs. The black line indicates p=5x10-8 (commonly known as genome-wide 

significance), and the dotted line corresponds to p=5x10-6 (genome-wide suggestive threshold). A quantile-quantile plot in shown in Supplementary Figure 

2. For further details on the eight SNPs shown here, see also Table 2.
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Table 2 Eight genome-wide signals for asthma-COPD overlap 

rsid chr:pos 
(effect/non-effect 
allele) 

Nearest 
gene 

Location EAF Stage 1 (UK Biobank, 
cases=8068, 
controls=40360) 

Stage 2 (12 independent 
studies, cases=4301, 
controls =48609) 

Joint analysis of stage 1 
and stage 2 

OR 
(95% CI) 

P OR 
(95% CI) 

P OR (95% CI) P 

rs35570272 3:33047662 (T/G) GLB1 intronic 0.398 1.11 
(1.07, 1.15) 

1.06E-07 1.08 
(1.02, 1.14) 

4.67E-03 1.10 
(1.06, 1.13) 

2.44E-09 

rs6787279 3:57163751 (C/T) IL17RD intronic 0.169 0.88 
(0.84, 0.92) 

2.69E-07 0.91 
(0.85, 0.97) 

6.51E-03 0.89 
(0.86, 0.93) 

7.87E-09 

rs16903574 5:14610309 (G/C) FAM105A exonic 0.077 1.23 
(1.15, 1.32) 

4.47E-09 1.13 
(1.03, 1.25) 

9.96E-03 1.20 
(1.13, 1.27) 

3.8E-10 

rs80101740 5:98471135 (C/A) LOC1002892
30 

intergenic 0.015 1.44 
(1.24, 
1.68)* 

1.87E-06* 1.37  
(1.10, 1.71) 

5.49E-03 1.42 
(1.25, 1.61) 

3.72E-08 

rs1837253 5:110401872 (C/T) TSLP intergenic 0.739 1.22 
(1.17, 1.27) 

4.22E-21 1.06 
(1.00, 1.12) 

4.44E-02 1.16 
(1.12, 1.20)  

1.53E-18 

rs3749833 5:131799626 (C/T) C5orf56  ncRNA_intronic 0.263 1.16 
(1.11, 1.21) 

3.10E-12 1.06 
(1.00, 1.12) 

4.21E-02 1.12 
(1.09, 1.16)  

9.37E-12 

rs9273410 6:32627250 (A/C) HLA-DQB1 UTR3 0.445 1.24 
(1.19, 1.29) 

4.37E-27 1.11 
(1.05, 1.18) 

6.42E-04 1.20 
(1.16, 1.24) 

9.19E-28 

rs2584662 17:47470487 (C/A) PHB intergenic 0.42 0.90 
(0.86, 0.94) 

3.20E-08 0.95 
(0.90, 1.00) 

5.89E-02 0.92 
(0.89, 0.95) 

2.21E-08 

Variants were annotated with nearest gene and type of region using ANNOVAR software (and genome build hg19).78 OR, 95% CI and P-value all calculated 

using score test. Firth test for rs80101740 gave OR 1.40 (95% CI 1.22, 1.60) and P=1.56E-06. 
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Discussion 

We conducted the largest GWAS of ACO to date, and identified 83 distinct signals associated with 

ACO at P<5x10-6 in stage 1.  After excluding variants associated with asthma only or COPD only, we 

studied 31 variants in another 12 studies and discovered eight distinct signals for ACO that showed 

genome-wide significance in a meta-analysis of stage 1 and stage 2 studies. 

Our study contributes to understanding of the genetic architecture of ACO. As measured by genome-

wide genetic correlation, we showed strong genetic overlap between ACO and COPD, ACO and 

severe asthma, and ACO and asthma. Furthermore, we found genetic correlation between ACO and 

blood eosinophil counts.  Increased eosinophil levels have been associated with exacerbations in 

asthma and COPD,79-81 and with decline in lung function in asthmatic and non-asthmatic subjects.82 

We also noted that eosinophil counts, atopy and asthma traits were prominent when we ran 

phenome-wide scans of our top eight signals. These findings are consistent with an important role 

for type 2 inflammation in ACO.83, 84 

We identified an intergenic signal on chromosome 5, rs80101740, which had not previously been 

associated with asthma, COPD or lung function. Whilst this signal is near to a putative signal for lung 

function without replication support  (rs377731, r2=0.02 with rs80101740),63 the lead ACO sentinel 

persisted after conditioning on the lung function signal. Evidence from eQTL studies suggests that 

the nearby lung function signal is associated with expression of RGMB and LINC02062. 

Four of the eight signals we identify as novel for ACO (GLB1, FAM105A, PHB, TSLP) are known signals 

for asthma or allergic disease but not COPD. Our results suggest that these loci also have a role in 

fixed airflow obstruction. All four of these signals have been associated with both child- and adult-

onset asthma, and therefore could represent an opportunity to intervene in early life to prevent 

serious long-term sequelae.38 One ACO signal (IL17RD) is a known locus for lung function and COPD, 

and our findings demonstrate the relevance of this locus in reversible airflow obstruction. Taken 

together, these loci could represent targets for intervention, potentially to prevent development of 

fixed airflow obstruction.  

Two signals had previously been reported as associated with asthma and either COPD or lung 

function, including the HLA-DQB1 locus, the first to be identified as being associated with both 

asthma and COPD, and a signal at C5orf56, encoding interferon regulatory factor I (IRF1) antisense 

RNA, located on chromosome 5 near a cytokine gene cluster.  

We undertook subgroup analyses to examine whether smoking status or age of asthma onset 

influenced effect size estimates at 31 association signals from stage 1. Across these variants, there 

was a strong positive correlation between the effect sizes for ACO in ever- and never-smokers, 

showing that overall, being an ever-smoker was not driving the associations identified.  This suggests 

that ACO is not due solely to smoking in people with asthma, although it is known that childhood 

asthma in smokers increases risk of COPD in later life compared with non-asthmatics, possibly due to 

reduced lung growth in early life.35 Similarly, when cases were stratified by whether the asthma-

component of ACO was diagnosed in childhood or adulthood, there was a strong correlation 

between effect sizes in both groups. 

There are a number of potential limitations to our study.  The follow-up sample size (4301 cases) 

was substantial, although relatively underpowered compared to the discovery (8068 cases). 

Misclassification of asthma and COPD diagnoses is possible: for example, the presentation of asthma 

in older patients may mimic COPD, and clinicians are less likely to suspect COPD in patients who do 

not smoke. To mitigate this, we utilised GOLD 2-4 spirometric criteria (FEV1/FVC<0.7 and FEV1 <80% 
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predicted) to define COPD wherever possible. Self-reported asthma has previously been validated in 

populations at risk of COPD.35  Any remaining misclassification would have attenuated effect 

estimates towards the null, that is, reduced the power to detect true genetic associations with ACO. 

Our main analysis was undertaken in European ancestry populations only; although for many loci 

there was good concordance in a small sample of African-American ancestry from the COPDGene 

study, it is essential to study this trait further in diverse populations. 

In the largest genome-wide association study of asthma-COPD overlap to date, we identified eight 

signals associated with ACO. Our findings suggest a spectrum of shared genetic influences from 

variants which predominantly influence asthma, to those which predominantly influence fixed 

airflow obstruction. We focus here on variants that tend towards an intermediate phenotype with 

features of both asthma and fixed airflow obstruction, with pathways implicating innate and 

adaptive immunity and potentially bone development, as well as signals for which the biology is as 

yet unclear. Further understanding of the biology of these signals is likely to be important for 

therapeutics to prevent the development of fixed airflow obstruction among people with asthma. 

Methods 

Stage 1 

Data source and study population 

The data source for this study was UK Biobank (http://www.ukbiobank.ac.uk). 

Individuals were eligible for inclusion in this study if they met the following criteria: (i) had data on 

age, sex and height; (ii) had spirometry that met quality control requirements (acceptability, 

reproducibility and blow curve metrics); (iii) had genome-wide imputed genetic data that met quality 

control requirements; and (iv) were of European ancestry based on k-means clustering after 

principal components analysis. Quality control processes have been described previously.63 

Genotyping was undertaken using the Affymetrix Axiom® UK BiLEVE array and the Affymetrix 

Axiom® UK Biobank array,47 with imputation to the Haplotype Reference Consortium panel.85  

321,057 individuals were eligible for inclusion in this analysis and 37 million SNPs were available for 

analysis. 

Case and control selection 

Individuals were selected as cases of ACO if they had evidence of asthma from either the 

touchscreen questionnaire (UK Biobank data field 6152) or verbal interview (field 20002) AND 

FEV1/FVC <0.7 with classification of airflow limitation GOLD 2+ (FEV1 <80% of predicted) at any study 

visit. Individuals were excluded from the cases if they reported a diagnosis of alpha-1-antitrypsin 

deficiency in the verbal interview (field 20002) at any study visit. Where there were related pairs 

within the cases (second degree or closer), the individual with the lower genotype call rate was 

excluded. 

Controls were free of both asthma and COPD, based on no reported bronchitis, emphysema or 

asthma on the touchscreen questionnaire, and no reported asthma, COPD, emphysema/chronic 

bronchitis, bronchitis, emphysema, alpha-1-antitrypsin deficiency on the verbal interview. Controls 

had FEV1 ≥80% predicted and FEV1/FVC >0.7. Individuals related to cases were excluded, and where 

pairs of controls were related, the individual with the lower genotype call rate was excluded (as for 

cases). Controls were randomly selected in a ratio of five to each case. 

http://www.ukbiobank.ac.uk/
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Two additional control sets were defined for the purpose of signal prioritisation: individuals with 

evidence of asthma but without COPD, and individuals with evidence of COPD but without asthma. 

For these analyses, asthma and COPD were defined as described above. Related individuals were 

excluded from these control sets as described above. 

Genome-wide analysis  

Association testing was undertaken using the ‘score’ option implemented in SNPTEST 

(https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html, version 2.5.2), under an 

additive model of genotype dosage. Age, sex, smoking status (ever/never smoking), genotyping array 

and the first 10 principal components were included as covariates.  Variants were filtered based on a 

minor allele frequency (MAF) greater than 0.01 and imputation quality (info) greater than 0.5.  

The genomic inflation factor (λ) was calculated as the intercept from LD score regression (LDSC, 

https://github.com/bulik/ldsc), which should be robust to inflation by polygenicity. P-values and 

standard errors were recalculated from χ2 statistics adjusted for λ. 

Sentinel variants and regions of association were identified by taking the variant with the lowest P-

value and extracting this sentinel variant and the surrounding region ±1Mb. Then, the variant with 

the next lowest P-value outside this region was identified, proceeding iteratively until there were no 

further variants with a P-value less than 5x10-6. All coordinates are given according to GRCh37.  

To identify distinct signals, and additional signals within the regions described above, conditional 

analyses were undertaken using GCTA-COJO (http://cnsgenomics.com/software/gcta/#COJO). For 

non-HLA sentinel variants, GCTA-COJO was used to implement a joint, stepwise selection procedure 

for each of the sentinels and its corresponding 2Mb surrounding region. For the HLA region, one 

conditional analysis was performed for the region of chr6:26,000,000-34,000,000.  

After the set of distinct signals were identified, two further analyses were undertaken in order to 

ascertain the extent to which signals were associated with COPD and/or asthma, for signal 

prioritisation. These analyses included the same cases as the primary analysis, plus the two control 

sets described above: i) controls with COPD but no asthma and ii) controls with asthma but no COPD. 

Analyses for conditional-only signals (e.g. signals where P<5x10-6 in conditional analyses only) were 

run in SNPTEST, by conditioning on the sentinel variant. 

Variants were selected for follow-up in stage 2 if they were identified as distinct signals in the main 

stage 1 analysis (P<5x10-6 for association with ACO), and were also associated with ACO at P<0.01 in 

both signal prioritisation analyses. 

Genetic correlation analysis 

Using LD score regression,64 we computed genetic correlations between ACO, asthma, and FEV1/FVC. 

We used ACO GWAS results from the current analysis (stage 1), results from a recent GWAS of 

asthma (child- and adult-onset),34 an additional GWAS of moderate-severe asthma,55 a GWAS of 

COPD,56 and FEV1/FVC GWAS results from our genome-wide meta-analysis of UK Biobank and the 

SpiroMeta consortium.63 We used LD-Hub to compute genetic correlations between ACO and other 

atopic, auto-immune, and smoking behaviour traits (http://ldsc.broadinstitute.org/).86 

Stage 2  

Studies and meta-analysis 

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
https://github.com/bulik/ldsc
http://cnsgenomics.com/software/gcta/#COJO
http://ldsc.broadinstitute.org/
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SNPs identified in stage 1 were tested for association in twelve independent studies of European 

ancestry populations (up to a total of 4,301 cases and 48,609 controls, in CHS, COPDGene, deCODE, 

ECLIPSE, EPIC-Norfolk, FHS, Generation Scotland, HUNT, LOVELACE, Mass General Brigham Biobank, 

Rotterdam Study, SPIROMICS) and one African-American ancestry cohort from the COPDGene study 

(297 cases, 1335 controls). See the Supplementary Note for study descriptions, Supplementary 

Table 1 for phenotype information on each study, and Supplementary Table 2 for information on 

the genotyping and imputation. 

Cases were required to have both asthma and COPD. Asthma was defined as any self-report of 

asthma in the individual’s lifetime (most studies specified self-report of doctor-diagnosed asthma), 

or an asthma diagnosis in the healthcare record (including billing codes). We required cases to have 

spirometry indicating COPD with GOLD2+ airflow obstruction (FEV1/FVC<0.7, and FEV1<80% 

predicted).  Controls had normal spirometry (FEV1/FVC>0.7, and FEV1≥80% predicted) and no asthma 

diagnosis.  Where possible, studies excluded individuals with alpha-1-antitrypsin deficiency on the 

basis of clinical or genetic data. 

Studies undertook logistic regression with ACO as the outcome, using an additive genetic model, and 

adjusting for age, sex and, where available, smoking status. An appropriate number of ancestry 

principal components were also included, or a mixed linear model used to account for fine-scale 

population structure or familial relatedness. Proxies (r2>0.3) were provided if SNPs were missing, or 

if a SNP was poorly imputed (info <0.5) in a study (see Supplementary Table 3).  Results were 

combined across stage 2 studies using fixed-effect meta-analysis, using the ‘meta’ package of R. 

Heterogeneity was assessed using the I2 statistic.  We then combined these results with those from 

UK Biobank (stage 1).  

We additionally performed a sensitivity analysis incorporating all cohorts included in the main 

analysis, but expanding the definition of COPD to include a diagnosis in the healthcare record 

(including billing codes) in three cohorts where this information was available (deCODE, HUNT, 

Rotterdam) and three additional cohorts (FinnCAD, GenKOLS, GERA).  COPD controls were defined 

based on normal spirometry, and/or absence of a diagnosis in the healthcare record (see 

Supplementary Note). 

To focus bioinformatic analyses on signals with the strongest evidence of association with ACO, we 

first focused on to those that were genome-wide significant (p<5x10-8) in the joint analysis of stage 

1 and stage 2. We then restricted this group of signals to those that had a lower p-value in the joint 

analysis than in UK Biobank (stage 1) alone, or had p<0.05 in stage 2. 

Subgroup analyses 

To assess whether the associations at our signals identified in stage 1 changed according to the age 

at which cases were diagnosed with asthma, we divided cases into those reporting an asthma 

diagnosis in childhood (<12 years), and those reporting an asthma diagnosis in adulthood (>25 

years), and repeated the association tests in UK Biobank.38 The age thresholds were chosen in order 

to minimise the risk of misclassification, following an approach taken in other GWAS of childhood 

and adult-onset asthma.  In addition, we repeated association testing at the same stage 1 signals 

after stratifying our sample by ever- and never-smoking status. 

Bioinformatic analyses on top signals 

Signal fine-mapping and functional annotation 
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For each of the top signals (defined as described above), we identified the set of SNPs that was 99% 

likely to contain the causal variant (assuming that the causal variant was included in the dataset), as 

described previously.63, 87 

We used wANNOVAR (http://wannovar.wglab.org/) to annotate variants in the credible sets. We 

then used SIFT,88  FATHMM [implemented using https://www.ensembl.org/vep and 

http://fathmm.biocompute.org.uk/],89 and PolyPhen-2 [implemented using the HumDiv model via 

http://genetics.bwh.harvard.edu/pph2/]67 to annotate exonic variants, and CADD to additionally 

annotate UTR variants.63, 90 

Association of ACO signals with gene expression (eQTL) and chromatin interactions 

We queried the 99% credible sets for the top signals against expression quantitative trait locus 

(eQTL) resources in lung tissue (n=1,038),47, 91-93 and the GTEx online portal (v8) [lung N=515, whole 

blood N=670],94 in order to determine whether the locus was significantly associated with gene 

expression, i.e. whether it was an eQTL. 

Functional information about nearby genes, or those implicated through eQTL analysis, was 

retrieved from the National Institute of Health Genetics Home Reference. 

For one signal which has not previously been associated with asthma, lung function or COPD, we 

additionally performed formal testing for Bayesian colocalisation with cis-eQTL signals (gene 

genomic position ± 0.5 Mb) using the R package COLOC.95 The method has been described 

previously,96 briefly tests whether GWAS signal and eQTL signal for this region are consistent with 

shared causal variant(s). A large posterior probability is supporting evidence of a single shared causal 

variant for the two traits. 

We additionally entered the sentinel SNP for each signal into the Hi-C Unifying Genomic Interrogator 

(HUGIn) and looked for long-range chromatin interactions with other genomic regions (in adult lung 

and fetal lung fibroblasts) where the false discovery rate (FDR) was less than 5%.97-99  

Association of ACO signals with other phenotypes 

To assess the associations of SNPs in the credible sets with other traits, we undertook a phenome-

wide scan using PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/).100 We calculated 

FDRs using the Benjamini-Hochberg method and used a threshold of FDR less than 1%. Evidence of 

association with rare diseases was also sought in OMIM and Orphanet for the nearest gene to any 

SNP in the credible set, as well as genes implicated by eQTL evidence.

http://wannovar.wglab.org/
https://www.ensembl.org/vep
http://www.phenoscanner.medschl.cam.ac.uk/


18 
 

Acknowledgements. 

The research was conducted using the UK Biobank resource (http://www.ukbiobank.ac.uk), under 

application 648.  

This work is supported by BREATHE, the Health Data Research Hub for Respiratory Health 

[MC_PC_19004] in partnership with SAIL Databank. BREATHE is funded through the UK Research and 

Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK.   

Please see the supplementary materials for additional study acknowledgements and funding 

statements. 

Author Contributions 

C.J., A.L.G., L.V.W., M.D.T. contributed to the conception and design of the study. C.J., A.L.G., N.S., 

T.A.O., J. Liu, L.P.H., S.H.C., J.K., J. Luan, X.L., N.T., H.X., T.M.B., H.P., S.L., A.C., A.I.H.C., M.O. 

undertook data analysis. C.J., A.L.G., N.S., R.P., S.A.B. M.O., G.T., D.A.M., E.R.B., L.C.S., C.I., Y.T., 

S.A.G., J.D., L.L., V.E.O., I.J., J.K.Q., D.D.S., Y.B., M.v.d.B, D.C.N., I.S., I.P.H., C.L., S.R., T.L., A.C.W., J. 

Lasky-Su, P.B., A.G., C.P.H., C.H., A.L., B.B., K.S., M.H.C., L.V.W., M.D.T. contributed to data 

acquisition and/or interpretation. C.J., A.L.G., L.V.W., M.D.T. drafted the manuscript. All authors 

critically reviewed the manuscript before submission.  

Conflicts of Interest 

T.A.O., G.T., I.J. and K.S. are employees of deCODE genetics/Amgen Inc. E.R.B. has undertaken 

clinical trials through his employer, Wake Forest School of Medicine and University of Arizona, for 

AstraZeneca, MedImmune, Boehringer Ingelheim,  Genentech, Novartis, Regeneron, and Sanofi 

Genzyme. E.R.B. has also served as a paid consultant for ALK-Abello, AztraZeneca, Glaxo Smith Kline, 

MedImmune, Novartis, Regeneron, Sanofi Genzyme, and TEVA. M.v.d.B. reports grants paid to the 

University from Astra Zeneca, TEVA, GSK and Chiesi outside the submitted work. D.C.N. has been a 

Merck & Co. employee during this study and is now an employee at Biogen Inc. I.S. has received 

support from GSK and Boehringer Ingelheim. I.P.H. has funded research collaborations with GSK, 

Boehringer Ingelheim and Orion. M.H.C. has received grant support from GSK and Bayer, and 

consulting and speaking fees from Genentech, Illumina and Astrazeneca. L.V.W. receives funding 

from GSK for a collaborative research project outside of the submitted work. M.D.T. receives funding 

from GSK and Orion for collaborative research projects outside of the submitted work.  

Funding 

C.J. holds a Medical Research Council Clinical Research Training Fellowship (MR/P00167X/1). A.L.G. 

was funded by internal fellowships at the University of Leicester from the Wellcome Trust 

Institutional Strategic Support Fund (204801/Z/16/Z) and the BHF Accelerator Award 

(AA/18/3/34220). L.P.H. is funded by NIH/NHLBI (5K23HL136851). S.H.C. is funded by NIH/NHLBI 

(1K01HL153941-01). A.I.H.C. is supported by MITACS accelerate. M.H.C. is supported by R01 

HL137927, R01 HL089856, and R01 HL147148.  L.V.W. holds a GSK/British Lung Foundation Chair in 

Respiratory Research. M.D.T. is supported by a Wellcome Trust Investigator Award 

(WT202849/Z/16/Z). M.D.T. and L.V.W. have been supported by the MRC (MR/N011317/1). M.D.T. 

and I.P.H. hold NIHR Senior Investigator Awards.  

The research was partially supported by the NIHR Leicester Biomedical Research Centre and the 

NIHR Nottingham Biomedical Research Centre; the views expressed are those of the author(s) and 

not necessarily those of the NHS, the NIHR or the Department of Health. The funders had no role in 

http://www.ukbiobank.ac.uk/


19 
 

the design of the analyses. C.J. and M.D.T. were involved in all stages of study development and 

delivery, and M.D.T. had full access to all data in the study and final responsibility for the decision to 

submit for publication. Please see the supplementary materials for additional study 

acknowledgements and funding statements.



20 
 

References 

1. GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden 
of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of 
Disease Study 2017. Lancet Respir. Med. 8, 585-596 (2020). 

2. Bateman ED, Reddel HK, van Zyl-Smit RN, Agusti A. The asthma-COPD overlap syndrome: 
towards a revised taxonomy of chronic airways diseases? Lancet Respir. Med. 3, 719-728 
(2015). 

3. Postma DS, Rabe KF. The Asthma-COPD Overlap Syndrome. N. Engl. J. Med. 373, 1241-1249 
(2015). 

4. GINA, GOLD. Diagnosis of Diseases of Chronic Airflow Limitation: Asthma, COPD and Asthma-
COPD Overlap Syndrome (ACOS). GINA (2014). 

5. Ghebre MA, et al. Biological clustering supports both “Dutch” and “British” hypotheses of 
asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 135, 63-72.e10 
(2015). 

6. de Marco R, et al. Asthma, COPD and overlap syndrome: a longitudinal study in young 
European adults. Eur. Respir. J. 46, 671-679 (2015). 

7. Miravitlles M, et al. Characterisation of the overlap COPD-asthma phenotype. Focus on 
physical activity and health status. Respir. Med. 107, 1053-1060 (2013). 

8. Hardin M, et al. The clinical and genetic features of COPD-asthma overlap syndrome. Eur. 
Respir. J. 44, 341-350 (2014). 

9. Menezes AMB, et al. Increased risk of exacerbation and hospitalization in subjects with an 
overlap phenotype: COPD-asthma. Chest 145, 297-304 (2014). 

10. Lange P, Colak Y, Ingebrigtsen TS, Vestbo J, Marott JL. Long-term prognosis of asthma, 
chronic obstructive pulmonary disease, and asthma-chronic obstructive pulmonary disease 
overlap in the Copenhagen City Heart study: a prospective population-based analysis. Lancet 
Respir. Med. 4, 454-462 (2016). 

11. Kauppi P, et al. Overlap syndrome of asthma and COPD predicts low quality of life. J. Asthma 
48, 279-285 (2011). 

12. Diaz-Guzman E, Khosravi M, Mannino DM. Asthma, chronic obstructive pulmonary disease, 
and mortality in the U.S. population. COPD 8, 400-407 (2011). 

13. Henriksen AH, Langhammer A, Steinshamn S, Mai XM, Brumpton BM. The Prevalence and 
Symptom Profile of Asthma-COPD Overlap: The HUNT Study. COPD 15, 27-35 (2018). 

14. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, 
Management and Prevention of Chronic Obstructive Pulmonary Disease.  (2020). 

15. Zhou JJ, Cho MH, Castaldi PJ, Hersh CP, Silverman EK, Laird NM. Heritability of Chronic 
Obstructive Pulmonary Disease and Related Phenotypes in Smokers. Am. J. Respir. Crit. Care 
Med. 188, 941-947 (2013). 

16. Los H, Koppelman GH, Postma DS. The importance of genetic influences in asthma. Eur. 
Respir. J. 14, 1210-1227 (1999). 

17. Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of Asthma and Hay 
Fever in Australian Twins. Am. Rev. Respir. Dis. 142, 1351-1358 (1990). 

18. Moffatt MF, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of 
childhood asthma. Nature 448, 470-473 (2007). 

19. Himes BE, et al. Genome-wide association analysis identifies PDE4D as an asthma-
susceptibility gene. Am. J. Hum. Genet. 84, 581-593 (2009). 

20. Gudbjartsson DF, et al. Sequence variants affecting eosinophil numbers associate with 
asthma and myocardial infarction. Nat. Genet. 41, 342-347 (2009). 

21. Moffatt MF, et al. A Large-Scale, Consortium-Based Genomewide Association Study of 
Asthma. N. Engl. J. Med. 363, 1211-1221 (2010). 

22. Sleiman PM, et al. Variants of DENND1B associated with asthma in children. N. Engl. J. Med. 
362, 36-44 (2010). 



21 
 

23. Ferreira MAR, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. 
The Lancet 378, 1006-1014 (2011). 

24. Hirota T, et al. Genome-wide association study identifies three new susceptibility loci for 
adult asthma in the Japanese population. Nat. Genet. 43, 893-896 (2011). 

25. Noguchi E, et al. Genome-wide association study identifies HLA-DP as a susceptibility gene 
for pediatric asthma in Asian populations. PLoS Genet. 7, e1002170 (2011). 

26. Torgerson DG, et al. Meta-analysis of genome-wide association studies of asthma in 
ethnically diverse North American populations. Nat. Genet. 43, 887-892 (2011). 

27. Ramasamy A, et al. Genome-wide association studies of asthma in population-based cohorts 
confirm known and suggested loci and identify an additional association near HLA. PLoS One 
7, e44008 (2012). 

28. Wan YI, et al. Genome-wide association study to identify genetic determinants of severe 
asthma. Thorax 67, 762-768 (2012). 

29. Bonnelykke K, et al. A genome-wide association study identifies CDHR3 as a susceptibility 
locus for early childhood asthma with severe exacerbations. Nat. Genet. 46, 51-55 (2014). 

30. Ferreira MAR, et al. Genome-wide association analysis identifies 11 risk variants associated 
with the asthma with hay fever phenotype. J. Allergy Clin. Immunol. 133, 1564-1571 (2014). 

31. Almoguera B, et al. Identification of Four Novel Loci in Asthma in European and African 
American Populations. Am. J. Respir. Crit. Care Med.,  (2016). 

32. Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of 
shared genetic influences on 42 human traits. Nat. Genet. 48, 709-717 (2016). 

33. Ferreira MA, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic 
disease biology. Nat. Genet. 49, 1752-1757 (2017). 

34. Demenais F, et al. Multiancestry association study identifies new asthma risk loci that 
colocalize with immune-cell enhancer marks. Nat. Genet. 50, 42-53 (2018). 

35. Hayden LP, Cho MH, Raby BA, Beaty TH, Silverman EK, Hersh CP. Childhood asthma is 
associated with COPD and known asthma variants in COPDGene: a genome-wide association 
study. Respir. Res. 19, 209 (2018). 

36. Zhu Z, et al. A genome-wide cross-trait analysis from UK Biobank highlights the shared 
genetic architecture of asthma and allergic diseases. Nat. Genet. 50, 857-864 (2018). 

37. Dahlin A, et al. Large-scale, multiethnic genome-wide association study identifies novel loci 
contributing to asthma susceptibility in adults. J. Allergy Clin. Immunol. 143, 1633-1635 
(2019). 

38. Pividori M, Schoettler N, Nicolae DL, Ober C, Im HK. Shared and distinct genetic risk factors 
for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. 
Lancet Respir. Med. 7, 509-522 (2019). 

39. Hancock DB, et al. Meta-analyses of genome-wide association studies identify multiple loci 
associated with pulmonary function. Nat. Genet. 42, 45-52 (2010). 

40. Repapi E, et al. Genome-wide association study identifies five loci associated with lung 
function. Nat. Genet. 42, 36-44 (2010). 

41. Soler Artigas M, et al. Genome-wide association and large-scale follow up identifies 16 new 
loci influencing lung function. Nat. Genet. 43, 1082-1090 (2011). 

42. Castaldi PJ, et al. The association of genome-wide significant spirometric loci with chronic 
obstructive pulmonary disease susceptibility. Am. J. Respir. Cell Mol. Biol. 45, 1147-1153 
(2011). 

43. Soler Artigas M, et al. Effect of five genetic variants associated with lung function on the risk 
of chronic obstructive lung disease, and their joint effects on lung function. Am. J. Respir. 
Crit. Care Med. 184, 786-795 (2011). 

44. Wilk JB, et al. Genome-wide association studies identify CHRNA5/3 and HTR4 in the 
development of airflow obstruction. Am. J. Respir. Crit. Care Med. 186, 622-632 (2012). 



22 
 

45. Loth DW, et al. Genome-wide association analysis identifies six new loci associated with 
forced vital capacity. Nat. Genet. 46, 669-677 (2014). 

46. Cho MH, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide 
association study and meta-analysis. Lancet Respir. Med. 2, 214-225 (2014). 

47. Wain LV, et al. Novel insights into the genetics of smoking behaviour, lung function, and 
chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK 
Biobank. Lancet Respir. Med. 3, 769-781 (2015). 

48. Lutz SM, et al. A genome-wide association study identifies risk loci for spirometric measures 
among smokers of European and African ancestry. BMC Genet. 16, 138 (2015). 

49. Soler Artigas M, et al. Sixteen new lung function signals identified through 1000 Genomes 
Project reference panel imputation. Nat. Commun. 6, 8658 (2015). 

50. Hobbs BD, et al. Exome Array Analysis Identifies a Common Variant in IL27 Associated with 
Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 194, 48-57 (2016). 

51. Hobbs BD, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap 
with loci for lung function and pulmonary fibrosis. Nat. Genet. 49, 426-432 (2017). 

52. Wain LV, et al. Genome-wide association analyses for lung function and chronic obstructive 
pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 49, 416-
425 (2017). 

53. Wyss AB, et al. Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci 
for pulmonary function. Nat. Commun. 9, 2976 (2018). 

54. Jackson VE, et al. Meta-analysis of exome array data identifies six novel genetic loci for lung 
function. Wellcome Open Res. 3, 4 (2018). 

55. Shrine N, et al. Moderate-to-severe asthma in individuals of European ancestry: a genome-
wide association study. Lancet Respir. Med. 7, 20-34 (2019). 

56. Sakornsakolpat P, et al. Genetic landscape of chronic obstructive pulmonary disease 
identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 51, 494-505 
(2019). 

57. Johansson A, Rask-Andersen M, Karlsson T, Ek WE. Genome-wide association analysis of 350 
000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. 
Hum. Mol. Genet. 28, 4022-4041 (2019). 

58. Olafsdottir TA, et al. Eighty-eight variants highlight the role of T cell regulation and airway 
remodeling in asthma pathogenesis. Nat. Commun. 11, 393 (2020). 

59. Zhu Z, et al. Shared genetics of asthma and mental health disorders: a large-scale genome-
wide cross-trait analysis. Eur. Respir. J. 54,  (2019). 

60. Han Y, et al. Genome-wide analysis highlights contribution of immune system pathways to 
the genetic architecture of asthma. Nat. Commun. 11, 1776 (2020). 

61. Ferreira MAR, et al. Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly 
Distinct. Am. J. Hum. Genet. 104, 665-684 (2019). 

62. Smolonska J, et al. Common genes underlying asthma and COPD? Genome-wide analysis on 
the Dutch hypothesis. Eur. Respir. J. 44, 860-872 (2014). 

63. Shrine N, et al. New genetic signals for lung function highlight pathways and chronic 
obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51, 481-
493 (2019). 

64. Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat. 
Genet. 47, 1236-1241 (2015). 

65. Astle WJ, et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to 
Common Complex Disease. Cell 167, 1415-1429.e1419 (2016). 

66. National Library of Medicine (US). MedlinePlus Genetics. Available from: 
https://medlineplus.gov/genetics/gene/. [Accessed on:  30/10/2020]. 

67. Adzhubei IA, et al. A method and server for predicting damaging missense mutations. Nat. 
Methods 7, 248-249 (2010). 

https://medlineplus.gov/genetics/gene/


23 
 

68. Ceccarelli DF, et al. FAM105A/OTULINL Is a Pseudodeubiquitinase of the OTU-Class that 
Localizes to the ER Membrane. Structure 27, 1000-1012.e1006 (2019). 

69. Vicente CT, Revez JA, Ferreira MAR. Lessons from ten years of genome-wide association 
studies of asthma. Clin Transl Immunology 6, e165 (2017). 

70. Gauvreau GM, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic 
responses. N. Engl. J. Med. 370, 2102-2110 (2014). 

71. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug 
Discov. 11, 763-776 (2012). 

72. Mellett M, et al. Orphan receptor IL-17RD tunes IL-17A signalling and is required for 
neutrophilia. Nat. Commun. 3, 1119 (2012). 

73. Hynes GM, Hinks TSC. The role of interleukin-17 in asthma: a protective response? ERJ Open 
Res. 6,  (2020). 

74. Ortega HG, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. 
Engl. J. Med. 371, 1198-1207 (2014). 

75. Chupp GL, et al. Efficacy of mepolizumab add-on therapy on health-related quality of life and 
markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-
blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir. Med. 5, 
390-400 (2017). 

76. Castro M, et al. Reslizumab for inadequately controlled asthma with elevated blood 
eosinophil counts: results from two multicentre, parallel, double-blind, randomised, 
placebo-controlled, phase 3 trials. Lancet Respir. Med. 3, 355-366 (2015). 

77. Mukherjee M, Cingolani E, Pritchard DI, Bosquillon C. Enhanced expression of Organic Cation 
Transporters in bronchial epithelial cell layers following insults associated with asthma - 
Impact on salbutamol transport. Eur. J. Pharm. Sci. 106, 62-70 (2017). 

78. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from 
next-generation sequencing data. Nucleic Acids Res. 38, e164 (2010). 

79. Zeiger RS, et al. High blood eosinophil count is a risk factor for future asthma exacerbations 
in adult persistent asthma. J Allergy Clin Immunol Pract 2, 741-750 (2014). 

80. Price D, et al. Predicting frequent asthma exacerbations using blood eosinophil count and 
other patient data routinely available in clinical practice. J Asthma Allergy 9, 1-12 (2016). 

81. Siva R, et al. Eosinophilic airway inflammation and exacerbations of COPD: a randomised 
controlled trial. Eur. Respir. J. 29, 906-913 (2007). 

82. Hancox RJ, Pavord ID, Sears MR. Associations between blood eosinophils and decline in lung 
function among adults with and without asthma. Eur. Respir. J. 51, 1702536 (2018). 

83. Miravitlles M. Diagnosis of asthma–COPD overlap: the five commandments. Eur. Respir. J. 
49, 1700506 (2017). 

84. Christenson SA, et al. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 
2 inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 191, 
758-766 (2015). 

85. Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 
562, 203-209 (2018). 

86. Zheng J, et al. LD Hub: a centralized database and web interface to perform LD score 
regression that maximizes the potential of summary level GWAS data for SNP heritability 
and genetic correlation analysis. Bioinformatics 33, 272-279 (2016). 

87. Wakefield J. Reporting and interpretation in genome-wide association studies. Int. J. 
Epidemiol. 37, 641-653 (2008). 

88. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on 
protein function using the SIFT algorithm. Nat. Protoc. 4, 1073-1081 (2009). 

89. Shihab HA, et al. Predicting the functional, molecular, and phenotypic consequences of 
amino acid substitutions using hidden Markov models. Hum. Mutat. 34, 57-65 (2013). 



24 
 

90. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the 
deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886-
d894 (2019). 

91. Hao K, et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet. 
8, e1003029 (2012). 

92. Lamontagne M, et al. Refining susceptibility loci of chronic obstructive pulmonary disease 
with lung eqtls. PLoS One 8, e70220 (2013). 

93. Obeidat M, et al. GSTCD and INTS12 regulation and expression in the human lung. PLoS One 
8, e74630 (2013). 

94. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580-585 
(2013). 

95. Giambartolomei C, et al. Bayesian Test for Colocalisation between Pairs of Genetic 
Association Studies Using Summary Statistics. PLoS Genet. 10, e1004383 (2014). 

96. Lamontagne M, et al. Leveraging lung tissue transcriptome to uncover candidate causal 
genes in COPD genetic associations. Hum. Mol. Genet. 27, 1819-1829 (2018). 

97. Martin JS, et al. HUGIn: Hi-C Unifying Genomic Interrogator. Bioinformatics 33, 3793-3795 
(2017). 

98. Schmitt AD, et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active 
Regions in the Human Genome. Cell Rep. 17, 2042-2059 (2016). 

99. Ay F, Bailey TL, Noble WS. Statistical confidence estimation for Hi-C data reveals regulatory 
chromatin contacts. Genome Res. 24, 999-1011 (2014). 

100. Staley JR, et al. PhenoScanner: a database of human genotype-phenotype associations. 
Bioinformatics 32, 3207-3209 (2016). 

 


