Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Explainable Machine Learning models for Rapid Risk Stratification in the Emergency Department: A multi-center study

William P.T.M. van Doorn, Floris Helmich, Paul M.E.L. van Dam, Leo H.J. Jacobs, View ORCID ProfilePatricia M. Stassen, Otto Bekers, Steven J.R. Meex
doi: https://doi.org/10.1101/2020.11.25.20238386
William P.T.M. van Doorn
1Central Diagnostic Laboratory, Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands
2CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Floris Helmich
3Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Heerlen, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul M.E.L. van Dam
4Department of Internal Medicine, Division of General Internal Medicine, Section Acute Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leo H.J. Jacobs
5Laboratory of Clinical Chemistry, Meander Medical Center, Amersfoort, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia M. Stassen
4Department of Internal Medicine, Division of General Internal Medicine, Section Acute Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
6CAPHRI School for Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patricia M. Stassen
Otto Bekers
1Central Diagnostic Laboratory, Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands
2CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven J.R. Meex
1Central Diagnostic Laboratory, Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands
2CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: steven.meex{at}mumc.nl
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: November 2020 to May 2025

AbstractFullPdf
Nov 2020238158
Dec 2020548369
Jan 2021224245
Feb 20214921079
Mar 20211302653
Apr 2021992616
May 2021911014
Jun 2021751619
Jul 202144719
Aug 2021483115
Sep 202148836
Oct 202139821
Nov 2021481228
Dec 20213266
Jan 2022321014
Feb 20222986
Mar 202230410
Apr 20222678
May 202237818
Jun 2022226130
Jul 20223412126
Aug 202251673
Sep 202246245
Oct 202249533
Nov 202239211
Dec 20224149
Jan 202354129
Feb 20233643
Mar 20235429
Apr 20234545
May 202350410
Jun 20233046
Jul 20233111
Aug 202356128
Sep 20233865
Oct 20234604
Nov 202354272
Dec 2023651451
Jan 202447927
Feb 202435108
Mar 2024481016
Apr 2024341314
May 2024511110
Jun 2024431211
Jul 202440815
Aug 202429710
Sep 202436510
Oct 202444168
Nov 20244387
Dec 202439612
Jan 2025401314
Feb 2025335519
Mar 2025556218
Apr 2025322116
May 2025261411
Back to top
PreviousNext
Posted February 04, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Explainable Machine Learning models for Rapid Risk Stratification in the Emergency Department: A multi-center study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Explainable Machine Learning models for Rapid Risk Stratification in the Emergency Department: A multi-center study
William P.T.M. van Doorn, Floris Helmich, Paul M.E.L. van Dam, Leo H.J. Jacobs, Patricia M. Stassen, Otto Bekers, Steven J.R. Meex
medRxiv 2020.11.25.20238386; doi: https://doi.org/10.1101/2020.11.25.20238386
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Explainable Machine Learning models for Rapid Risk Stratification in the Emergency Department: A multi-center study
William P.T.M. van Doorn, Floris Helmich, Paul M.E.L. van Dam, Leo H.J. Jacobs, Patricia M. Stassen, Otto Bekers, Steven J.R. Meex
medRxiv 2020.11.25.20238386; doi: https://doi.org/10.1101/2020.11.25.20238386

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Emergency Medicine
Subject Areas
All Articles
  • Addiction Medicine (430)
  • Allergy and Immunology (756)
  • Anesthesia (221)
  • Cardiovascular Medicine (3294)
  • Dentistry and Oral Medicine (364)
  • Dermatology (279)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1171)
  • Epidemiology (13375)
  • Forensic Medicine (19)
  • Gastroenterology (899)
  • Genetic and Genomic Medicine (5153)
  • Geriatric Medicine (482)
  • Health Economics (783)
  • Health Informatics (3268)
  • Health Policy (1140)
  • Health Systems and Quality Improvement (1190)
  • Hematology (431)
  • HIV/AIDS (1017)
  • Infectious Diseases (except HIV/AIDS) (14627)
  • Intensive Care and Critical Care Medicine (913)
  • Medical Education (477)
  • Medical Ethics (127)
  • Nephrology (523)
  • Neurology (4925)
  • Nursing (262)
  • Nutrition (730)
  • Obstetrics and Gynecology (883)
  • Occupational and Environmental Health (795)
  • Oncology (2524)
  • Ophthalmology (724)
  • Orthopedics (281)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (543)
  • Pediatrics (1302)
  • Pharmacology and Therapeutics (550)
  • Primary Care Research (557)
  • Psychiatry and Clinical Psychology (4212)
  • Public and Global Health (7504)
  • Radiology and Imaging (1705)
  • Rehabilitation Medicine and Physical Therapy (1013)
  • Respiratory Medicine (980)
  • Rheumatology (480)
  • Sexual and Reproductive Health (497)
  • Sports Medicine (424)
  • Surgery (548)
  • Toxicology (72)
  • Transplantation (236)
  • Urology (205)