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Abstract

SARS-CoV-2 transmission continues to evolve in the United States following the
large second wave in the Summer. Understanding how location-specific varia-
tions in non-pharmaceutical epidemic control policies and behaviors contributed
to disease transmission will be key for designing effective strategies to avoid fu-
ture resurgences. We offer a statistical analysis of the relative effectiveness of
the timing of both official stay-at-home orders and population mobility reduc-
tions, offering a distinct (but complementary) dimension of evidence gleaned
from more traditional mechanistic models of epidemic dynamics. Specifically, we
use a Bayesian hierarchical model fit to county-level mortality data from the first
wave of the pandemic from Jan 21 2020 through May 10 2020 to establish how
timing of stay-at-home orders and population mobility changes impacted county-
specific epidemic growth. We find that population mobility reductions generally
preceded stay-at-home orders, and among 356 counties with a pronounced early
local epidemic between January 21 and May 10 (representing 195 million peo-
ple and 32,000 observed deaths), a 10 day delay in population mobility reduction
would have added 16,149 (95% credible interval [CI] 9,517 24,381) deaths by
Apr 20, whereas shifting mobility reductions 10 days earlier would have saved
13,571 (95% CI 8,449 16,930) lives. Analogous estimates attributable to the tim-
ing of explicit stay-at-home policies were less pronounced, suggesting that mobil-
ity changes were the clearer drivers of epidemic dynamics. Our results also sug-
gest that the timing of mobility reductions and policies most impacted epidemic
dynamics in larger, urban counties compared with smaller, rural ones. Overall, our
results suggest that community behavioral changes had greater impact on curve
flattening during the Spring wave compared with stay at home orders. Thus, com-
munity engagement and buy-in with precautionary policies may be more impor-
tant for predicting transmission risk than explicit policies.

1 Introduction

SARS-CoV-2, the causative virus of COVID-19, continues to threaten the world with nearly 9.2M
reported cases and 231,500 deaths as of November 1st, 2020 [John Hopkins University, 2020]. Ret-
rospective understanding of the effectiveness of previous precautionary efforts remains key for guid-
ing policy decisions to avert current and future resurgences. However, there are many population-
specific factors that influence pandemic trajectories including social and demographic characteris-
tics, dynamic behavioral responses, as well as the timing of non-pharmaceutical interventions (NPIs)
and precautionary policies [Khan et al., 2020; Desmet & Wacziarg, 2020].

It is clear that both NPIs and behavioral changes have impacted transmission of the virus (Jinjarak
et al. [2020]; Lin & Meissner [2020]; Kapoor et al. [2020]; Abouk & Heydari [2020]; Pei et al.
[2020]; Du et al. [2020]). However, decoupling the relative impacts of these factors presents impor-
tant challenges as discussed in (Abouk & Heydari [2020]; Courtemanche et al. [2020]), and despite
the existing evidence, there remains no consensus about the relative impact of these measures on
epidemic growth. A key problem particularly in the United States, is that policy changes and behav-
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ior shifts happened rapidly in late March and April in response to growing epidemics and happened
simultaneously across the country, so it has thus far been difficult to disentangle the relative impact
of behavioral responses from NPIs.

In this work, we quantify relative impact of heterogeneous control efforts and responses relative
to local epidemic conditions. Specifically, we developed a Bayesian hierarchical statistical model
of county-level COVID-19 mortality across 440 counties that had a pronounced epidemic between
January 21, 2020 and May 10, 2020 and had either: a) an official stay-at-home order in place or b) a
reduction in population mobility of at least 50% relative to baseline during this time period. Using
the model we evaluate how the timing of stay-at-home orders or population mobility reductions
contributed to epidemic control, and focus particularly on differences across the urban-rural divide
across the country in terms of local pre- and post-intervention trends. A similar framework has
previously been shown to capture important heterogeneous dynamics to reasonably forecast deaths
during the first stages of the US epidemic [Woody et al., 2020].

Our model specification offers refinement over traditional statistical approaches used in this realm
(e.g. difference-in-differences or cross-sectional regression) for its ability to separate modeling of
the natural trajectory of the epidemic curve from changes due to other trends or external forces such
as an intervention. Compared with more mechanistic epidemiological models, our statistical ap-
proach has two key advantages in that it (1) doesn’t necessitate explicit specification or assumptions
about the underlying disease dynamics and (2) is better suited to explicitly account for and quantify
key sources of demographic heterogeneity around the country. Thus, the approach pursued here
can be viewed as a hybrid approach that attempts to capture the advantages of both statistical and
mechanistic models to elucidate the relative impact of behavioral changes and NPIs [Feltham et al.,
2020].

2 Methods

2.1 County-Level COVID Death and Demographic Data

Our analysis relies on three distinct data sources. The first, which is itself a combination of data
sources compiled and reported by Killeen et al. [2020], comprises data on socioeconomic factors
that may affect the spread of epidemiological outbreaks, along with confirmed COVID-19 deaths
at the county level from the COVID-19 Data Repository compiled by the the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University.

Also comprised in this dataset are the dates in which six different explicit policy interventions were
put in place in each county: bans of 500+ and 50+ people gatherings; closure mandates of schools,
non-essential businesses and restaurants; and orders to stay at home. Intervention policies were
most-often put in place state wide, but there are cases in which counties adopted such measures
before their respective states. Generally speaking, orders to stay at home came last in a quick
succession of policies that occurred primarily between March 15 and April 1. We consider a single
date of policy intervention for each county corresponding to the date of the orders to stay at home.
Appendix A.1 describes the timing of all six different policy interventions.

As a summary measure of county characteristics known to relate to residents’ contact rates and the
reproduction number (population density, modes of travel, distance to major airports) and other fac-
tors expected to vary across the spectrum of rural and urban areas, we augment this county-level
data set with the National Center for Health Statistics (NCHS) Urban-Rural Classification Scheme
for Counties [Ingram & Franco, 2012], which classifies each US county to be in one of the fol-
lowing six categories: 1) large central metro; 2) large fringe metro; 3) medium metro; 4) small
metro; 5) micropolitan; 6) non-core. In addition, we extract from the US Census American Commu-
nity Survey other county-level covariates that have been reported to have a strong relationship with
COVID-19 death rate and are not captured by the NCHS county classification. The percent of black
residents and percent of hispanic residents are included to account for the apparent disparities be-
tween infection and comorbidity and death rates among these populations relative to other races and
ethnicities. To account for the age-related risk of death, we include the percentage of residents that
are 65 years or older. To capture any particular behaviors specific to students (whose main activity
quickly became completely remote amid the early epidemic stages), we also include the percentage
of residents attending college.
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NCHS
Number of

counties
in US

Number of
counties
in dataset

Population
covered

in dataset

Days between
policy

intervention
and threshold

Days between
mobility

intervention
and threshold

days between
mobility

and policy
intervention

Large central
metro 68 57 93 M 5 (0,8) 0 (-4,5) -4 (-5,-2)

Large fringe
metro 368 120 48 M 0 (-5,6) -5 (-8,0) -4 (-9,-2)

Medium metro 373 121 41 M 0 (-5,4) -5 (-9,-2) -6 (-11,-2)
Small metro 358 67 9 M 0 (-6,5) -5 (-10,-1) -4 (-11,-2)
Micropolitan 641 52 3 M -3 (-7,2) -10 (-12,0) -6 (-10,-1)

None-core 1339 23 0.72 M -5 (-8,0) -11 (-16, -5) -7 (-11,-4)
Total 3147 440 194.72 M 0 (-5,5) -5 (-9,0) -5 (-10,-2)

Table 1: Description of the counties coverage in the analysis grouped by NCHS along with the
median number of days between interventions and death threshold. In parenthesis, values for the
first and quantiles are included (25%tile, 75%tile).

2.2 Human Mobility Data from SafeGraph

The final data source comes from SafeGraph, a company that provides anonymized population mo-
bility datasets representing 45 million smartphone devices. SafeGraph data aggregates visit counts
to numerous points of interest (POIs) classified into categories.

As a proxy measure for overall mobility behavior in each county, we extracted data on the number of
visits per day to POIs; in particular to schools, colleges, restaurants, bars, parks and museums, and
obtained time series of daily total visits for each county. Although Safegraph provides visits data
for several other types of POIs, as well as data on the number of minutes devices remain at home
or at work, we limited our analysis only to those categories that had a comprehensive coverage
across all the range of counties. The average total visits per day between Jan 15, 2020 and Feb 15,
2020 was used to establish county-baseline levels of mobility. We define the date of the mobility-
based intervention to be the date on which the right-aligned ten-day moving average of total visits
decreased 50% relative to baseline.

2.3 Analysis Data Set

County-specific daily counts of COVID19 cases/deaths were extracted from Jan 21, 2020 through
May 10, 2020. During that period, 940 counties (out of a total of 3221 US counties) had reached a
threshold of 3 deaths per 10 million residents and had at least 5 cumulative deaths.

We restrict attention to those counties that instituted a stay at home order or exhibited a popula-
tion mobility reduction of at least 50% relative to baseline, yielding two final analysis data sets:
one containing the 420 counties that put a stay-at-home order in place regardless of their mobility
patterns, and the other with the 356 counties whose mobility data reflect a 50% decrease in total
visits regardless of whether a stay-home order was put in place. In total, these two datasets com-
prised data on 440 distinct counties, with 336 having both policy and mobility interventions, and
84 (20) having only a policy (mobility) intervention. To maintain focus on the short-term impact of
interventions, we limited the observation window for each county to 29 days after a stay-at-home
intervention or mobility reduction. Table 1 summarizes number of counties and population covered
in each NCHS classification category, indicating that this relatively small fraction of US counties
covers approximately 195 million residents.

2.4 Statistical Methods

To model county-specific death trajectories, we use a Bayesian hierarchical model for the time series
of each county’s 7-day centered rolling average of daily deaths. The model consists of a log-linear
model for the expected number of deaths in each county using a negative binomial distribution and a
quadratic function of “epidemic time,” defined as the number of days elapsed since reaching a deaths
threshold of 3 per 10 million residents (signalling local arrival of the epidemic). Latent heterogeneity
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in time trends across counties is captured by county-specific random effects for each degree of the
quadratic time function. A related quadratic trend model was shown to be useful in forecasting the
early transmission of the disease in US metropolitan areas [Woody et al., 2020].

Full details of the model specification appear in Appendix B, but we note here its salient features.
Quadratic time polynomials were used to parsimoniously capture nonlinearity of daily death trajec-
tories that take different forms depending on multiple county-specific features. Specifically, each
county’s trajectory is modeled to vary according to (i.e., interact with) the county’s NCHS county
classification and the percent of resident college attendees, residents over age 65, black residents, and
Hispanic residents. The county-specific random effects permit additional heterogeneity in county-
level death trajectories not captured by these features.

To capture the impact of interventions (either stay-at-home or mobility reductions), the model is
specified to entail a change in the quadratic time function after the introduction of a stay-at-home
order or mobility reduction, where the change in trajectory occurs at a lag of 12 days after the
intervention date1. The extent of post-intervention change in the death trajectory is specified to
depend on: 1) the number of days between the stay-at-home order or mobility reduction and the
introduction of the epidemic in the county (i.e., the intervention timing) and 2) the county’s NCHS
county classification. The county time series used for model fitting ran from the date of the first
death in the county through a maximum 29 day period post-intervention (representing the 12 day
intervention lag plus 17 day post-intervention trend).

The analysis consists of three distinct variations of model:

1. Stay-at-home model: Here, the “intervention” and relative timing is defined according to
the date at which a county instituted a stay-at-home order. This model is fit to the 420
counties in the analysis data set that had stay-at-home orders.

2. Mobility model: Here, the “intervention” and relative timing is defined according to the date
at which a county reached a 50% reduction from baseline mobility patterns. This model is
fit to the 356 counties in the analysis data set that reached such a reduction during the study
time period.

3. Double intervention model: This model, fit to the 336 counties exhibiting both mobility
reductions and stay-at-home orders, specifies two analogous “post-intervention” changes
in death trajectories: one corresponding to the date of the stay-at-home order, and another
corresponding to the date of the mobility reduction.

We fit all models using the R language (3.6.3) with the package rstanarm (2.19.3) [Goodrich
et al., 2018]. Inferences are based on posterior simulations from the models, including simulations
from the posterior-predictive distribution of deaths for each county under different hypothesized tim-
ing of stay-at-home orders or mobility reductions. Differences in cumulative deaths across counties
were calculated by aggregating posterior-predicted daily deaths for all counties in a given NCHS
county category on a given date under a given timing scenario then accumulating resulting values
across days through April 20 and comparing the resulting predictions under the observed vs. early
intervention scenario and the observed vs. late intervention scenario. Full details appear in Appendix
B.

3 Results

3.1 Epidemic Timing of Stay-at-Home Orders and Mobility Reductions

Among the 440 counties in the present analysis, death thresholds of 3 per 10 million residents,
representing our characterization of local arrival of the epidemic, were reached at different calendar
times across the period of March 1 to April 15, with clear differences across levels of NCHS county
classification. According to the average date of reaching this deaths threshold, the epidemic arrived

1A delay consistent with the first quartile of the distribution of time between infection and death. [Lauer
et al., 2020] estimate the first quartile of time between infection to symptoms to be 3.8 days, while [Yang
et al., 2020] estimate the first quartile of days between symptoms to death at 10. By adding both we obtain an
approximation of the left tail of the distribution of time lag of deaths. A similar calculation is done by [Wilson
et al., 2020] using IQR values.
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Figure 1: The introduction of COVID-19 varied across NCHS classification. y-axis represents the
cumulative percentage of counties in each category that had reached the threshold of 3 deaths per
10million residents by the corresponding calendar date.
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Figure 2: Epidemic timing of mobility reduction and stay-at-home orders across NCHS groups.
Days since threshold (y-axis) of 0 represents the day that the threshold of 3 deaths per 10M residents
was reached, negative numbers represent days before the threshold.

earliest in large central metro areas (average date March 21), followed by large fringe, medium,
and small metro areas (average dates March 27, March 28, and March 29, respectively), with the
latest epidemic arrival in micropolitan and non-core counties (average dates April 2 and April 4,
respectively). The full distribution of dates of epidemic arrival across county categories appears in
Figure 1.

Among the 420 counties that instituted stay-at-home orders, the average date of the order was March
28. In terms of “epidemic timing,” the median number of days between a county reaching the
deaths threshold of 3/10 million and institution of the stay-at-home order was 0 across all counties,
corresponding to a stay at home order on the date the threshold was reached. Since the calendar
dates of stay-at-home orders were relatively homogeneous, variability in the epidemic timing of
the stay-at-home orders was largely dictated by the timing of the epidemic arrival. This led the
epidemic timing of stay-at-home orders across categories of NCHS urban-rural classification to
exhibit the opposite temporal ordering of epidemic arrival: stay-at-home orders occurred earliest in
epidemic time in non-core and micropolitan counties (median 5 and 3 days before deaths threshold,
respectively), followed by small and medium metro areas (median day between days between stay-
at-home order and threshold of 0, indicating orders on threshold date), with large fringe and large
central metro areas having stay-at-home orders latest in epidemic time (median days between deaths
threshold 0 and 5 days after threshold). See Table 1 and Figure 2 for more detail on the epidemic
timing of stay-at-home orders across NCHS categories.

Among the 356 counties exhibiting at least a 50% reduction in mobility relative to baseline, the av-
erage date at which this reduction was reached was March 22, with a median day between mobility
and reduction and reaching the deaths threshold of 3/10 million of 5 days before the threshold. The
relative epidemic timing at which counties across different NCHS categories reached this mobility
reduction showed the same ordering as the dates of stay-at-home orders, but were generally shifted
earlier, with median days between deaths threshold and mobility reductions of 11, 10, 5, 5, 5 days
before reaching the death thresholds for non-core, micropolitan, small metro, medium metro, and
large fringe metro areas, respectively, and 0 for large central metro areas indicating mobility re-
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ductions on the date the death threshold was reached. See Table 1 and Figure 2 for more detail on
the epidemic timing of mobility reductions. Note in particular that, for the 336 counties with both
mobility reductions and stay-at-home orders, the mobility reductions occurred earlier, with mobility
reductions tending to precede stay-at-home orders by a median of 5 days across all NCHS cate-
gories. Appendix A.2 provides additional descriptives of mobility changes, indicating in particular
that, among the counties with both stay at home orders and at least a 50% reduction in mobility: a)
most exhibited steady drops in mobility in the 10 days preceding the date at which the 50% reduc-
tion threshold was met; b) by the date of the stay at home order, mobility reductions had reached,
on average, approximately 70%; and c) decreased mobility held relatively constant in the 29 days
following implementation of the stay-at-home order. Knowledge that mobility was substantially de-
creased by the time stay-at-home orders took place and subsequently held fairly constant during the
study time frame are important features when interpreting modeled results.

3.2 Modeling Results and Effectiveness of Intervention Timing

Results from fitting the models in Section 2.4 indicate that county-specific death trajectories signif-
icantly differed according to counties’ NCHS category, percent of college student residents, percent
of Hispanic residents, and percent of Black residents, as indicated by significant interactions be-
tween these terms and quadratic time parameters. Appendix B.3 provides further details, along with
a table summarizing the estimates of all model parameters.

To evaluate the impact of the timing of stay-at-home and mobility reductions, we use the posterior
distribution of parameters from the model in Section 2.4 to compare the modeled trajectory of daily
deaths in each county and a model-based prediction of what the daily death trajectory would have
been under different intervention timing. Specifically, we offer posterior predictions for each county
under the hypothetical scenarios where the stay-at-home order or 50% mobility reduction threshold
occurred 10 days before or 10 days after the observed date, tabulating estimated deaths under these
scenarios through April 20 at least or 30 days since threshold. Appendix B.5 presents estimated
curves associated with three specific counties to illustrate the model’s flexibility for characteriz-
ing epidemic trajectories for different county characteristics and intervention timing configurations.
Figure 3 shows the average fitted curves of daily deaths (per capita) under the observed intervention
scenarios and hypothetical intervention timings, separated by NCHS category.

Figure 3(a) depicts modeled daily death trajectories for different timing of stay-at-home orders using
posterior predictions from the Stay-at-home model. While average trajectories are largely overlap-
ping between the observed and late intervention timing, there is evidence that intervening 10 days
earlier would have significantly impacted the trajectory of daily deaths, particularly for the more
urban counties classified as large central, large fringe, or medium metro areas. Table 2a provides
estimates of cumulative deaths differences and differences in deaths per 100,000 residents under
earlier and later introduction of stay-at-home orders. Overall, the model predicts that implementing
stay-at-home orders 10 days earlier would have led to 9,903 (95% CI: 4,307 13,990) fewer deaths
through April 20 across the 420 counties in the Stay-at-home model, with effects concentrated in the
large central, large fringe, and medium metro counties. This corresponds to a reduction of 5.2 (95%
CI: 2.3, 7.4) deaths per 100,000 residents. The evidence that delayed action would have led to extra
deaths is weaker; adopting stay-at-home orders 10 days later would have led to an additional 3,995
(95% CI: -244 8,402) deaths and 2.1 (95% CI: -0.1, 4.4) deaths per 100,000 residents, although
note that these the uncertainty intervals around these estimates (and those for each individual NCHS
category) cannot rule out the possibility of no impact of delayed stay-at-home orders. Appendix B.4
provides results in terms of the average days between epidemic initiation and the daily death peak
and the height of the daily death peak.

Figure 3(b) depicts estimated daily death curves for different timing of mobility reduction timing
using posterior predictions from the Mobility model. While the general shape of trajectories is sim-
ilar to those for the stay-at-home interventions, important differences emerge. For large central,
large fringe, and medium metro areas, there is more pronounced evidence that earlier mobility in-
tervention impacted the daily death trajectories; intervening earlier is predicted to have reduced the
time until peak death rate and the height of peak death rate. In addition, and unlike in the stay-at-
home model, having intervened later than observed is estimated to impact the daily death trajectories
among these counties, with longer times to peak and higher peak death rates. As in the analysis of
stay-at-home timing, there is evidence of similar patterns in the small metro and micropolitan coun-
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Cumulative Deaths on Apr 20

NCHS
Category

Observed
Deaths

Deaths Averted
by Earlier Action

(2.5%,97.5%)

Deaths Added
by Later Action
(2.5%,97.5%)

Deaths Averted per
100,000 residents

(2.5%,97.5%)

Deaths Added per
100,000 residents

(2.5%,97.5%)
Large central

metro 20,553 8,003 (3,255 11,431) 3,725 (-84 7,791) 8.7 (3.5 12.4) 4.1 (-0.1 8.5)

Large fringe
metro 7,345 1,213 (-1,035 2,730) 249 (-847 1,496) 2.5 (-2.2 5.7) 0.5 (-1.8 3.1)

Medium metro 2,900 825 (19 1,316) 129 (-428 706) 2.1 (0.0 3.4) 0.3 (-1.1 1.8)
Small metro 662 -21 (-356 215) -141 (-277 14) -0.2 (-4.3 2.6) -1.7 (-3.4 0.2)
Micropolitan 325 48 (-164 188) -39 (-137 102) 1.6 (-5.3 6.1) -1.3 (-4.4 3.3)

None-core 75 -64 (-248 25) -15 (-55 27) -10.5 (-40.7 4.1) -2.5 (-9.0 4.4)
total 31,860 9,903 (4,370 13,990) 3,995 (-244 8,402) 5.2 (2.3 7.4) 2.1 (-0.1 4.4)

(a) For 420 counties in the Stay-at-home model

Cumulative Deaths on Apr 20

NCHS
Category

Observed
Deaths

Deaths Averted
by Earlier Action

(2.5%,97.5%)

Deaths Added
by Later Action
(2.5%,97.5%)

Deaths Averted per
100,000 residents

(2.5%,97.5%)

Deaths Added per
100,000 residents

(2.5%,97.5%)
Large central

metro 20,577 8,465 (4,364 11,665) 9,709 (4,221 16,164) 9.1 (4.7 12.6) 10.5 (4.6 17.4)

Large fringe
metro 7,323 3,985 (2,514 5,007) 5,101 (2,480 9,093) 9.4 (6.0 11.9) 12.1 (5.9 21.5)

Medim metro 2,975 1,508 (877 1,982) 1,480 (433 2,962) 4.1 (2.4 5.4) 4.0 (1.2 8.1)
Small metro 663 -118 (-847 229) -153 (-336 113) -1.7 (-12.0 3.2) -2.2 (-4.8 1.6)
Micropoitan 311 97 (-94 204) -56 (-164 92) 4.1 (-4.0 8.7) -2.4 (-7.0 3.9)
None-core 63 -194 (-2,412 7) -47 (-75 11) -49.2 (-611.7 1.9) -11.9 (-18.9 2.9)

Total 31,912 13,571 (8,449 16,930) 16,149 (9,517 24,381) 7.5 (4.7 9.3) 8.9 (5.2 13.4)

(b) For 356 counties in the Mobility decrease model

Table 2: Estimated (median and 95% credible intervals) COVID-19 deaths averted (added) by 10
day earlier (later) stay-at-home order or mobility reduction, through April 20, 2020.
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(a) Stay-at-home order model
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(b) 50% mobility decrease model

Figure 3: Estimated death trajectories for observed timing, 10-day earlier timing, and 10-day delayed
timing of stay-at-home orders and mobility reductions. Solid lines are posterior median estimates
of deaths per 1 million residents at t days after epidemic arrival. Shaded areas are point wise 90%
posterior intervals.
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ties, but the associated uncertainty renders the evidence inconclusive. The level of uncertainty for
the non-core counties makes it difficult to glean anything. In fact, as evident from Figure 2, mobility
interventions in these least urban counties occurred before the arrival of the epidemic (median value
of 11 days before, c.f. Table 1), so it is expected that a 10 day earlier or later intervention would
have little or no effect because the epidemic conditions in such counties were practically the same
as when the observed mobility change occurred. Table 2b shows estimates of the differences in
cumulative deaths by April 20 for earlier or later mobility reductions in the 356 counties used for
the Mobility model. Overall, shifting mobility reductions 10 days earlier in these counties would
have averted an estimated 13,571 (95%CI: 8,449 16,930) deaths, while delaying mobility reductions
by 10 days would have led to an additional 16,149 (95%CI: 9,517 24,381) deaths over what was
observed. These estimates correspond, respectively, to 7.5 (95% CI 4.7, 9.3) and 8.9 (95% CI 5.2,
13.4) deaths per 100,000 residents, with most pronounced impacts accruing in the large central, large
fringe, and medium metro areas. Thus, unlike in the analysis of stay-at-home orders, both earlier
and later mobility reductions are estimated to significantly impact deaths, and these impacts are gen-
erally more pronounced (in terms of deaths per 100,000 residents) for the mobility reductions than
for the stay-at-home orders. Overall across all NCHS categories and within the large central, large
fringe, and medium metro areas, the estimates of deaths per 100,000 residents are uniformly higher
for the impact of earlier or delayed timing of mobility reductions2. Additional numeric summaries
in terms of peak characteristics appear in Table 4.

In total, the results from the Mobility model relative to the Stay-at-home model match expectations,
since stay-at-home orders typically happened after a significant decrease in mobility had already
taken place (c.f. Table 1), with mobility drops persisting beyond the first date reaching a 50% reduc-
tion from baseline. This result is corroborated in the Double intervention model that simultaneously
considers bends in death trajectories based on both the stay-at-home order date and the mobility
reduction date. In this model, we see that after accounting for changes in deaths attributable to
the timing of the mobility reductions, the impact of stay-at-home orders was negligible, with trend-
altering parameters not significantly different from zero. Note that interpretation of the Double
intervention model is complicated by the possible interplay between mobility patterns and adoption
of stay-at-home orders, a point to which we return in Section 4.

4 Discussion

We have offered a rigorous statistical evaluation of the relative effectiveness of the timing of both
stay-at-home orders and population mobility reductions. The statistical analyses here expresses
county-specific curves of daily COVID-19 deaths in terms of a pre- and a post intervention tra-
jectories, dictated by both county-level features and the epidemic timing of policy and behavioral
efforts for epidemic control. This formulation permitted inferences regarding relative effectiveness,
in terms of deaths avoided, of different epidemic timings of both an explicit policy intervention and
one measure of population mobility reductions.

The descriptive analysis of the timing of stay-at-home orders and total visits to points of interest
clarified both the heterogeneity in intervention timing relative to local epidemic conditions and that
mobility reductions often occurred prior to stay-home-orders. By-and-large, more urban counties
classified as large central, large fringe, or medium metro areas tended to have the epidemic arrive
earlier in calendar time, with mobility and policy interventions in these areas tending to be later in
epidemic time relative to less urban counties. Also, counties in our data set reveal that the total visits
to POI did not reduce much more after stay-home orders were adopted across all the rural-urban
spectrum, as the total visits during the study time period had often reached close to its minimum
observed level at the time a stay-at-home order was instituted.

With model specifications specifically tailored to various dimensions of county-level heterogeneity,
the suite of statistical models fit indicated that the timing of mobility reductions was more important
for dictating changes in the daily deaths trajectories than the timing of official stay-at-home orders
for more urban counties, while the uncertainty of the results for rural counties are rendered inconclu-
sive. The analysis of mobility interventions indicated that hypothetically shifting mobility decreases

2An alternative analysis evaluating impacts of action at different numbers of days earlier or later (not shown)
produced conceptually similar results; the earlier the action, the more reduction in cumulative deaths in urban
counties, with more pronounced impacts from the Mobility model than from the Stay-at-home model.
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ten days earlier would have reduced deaths, with hypothetically later mobility intervention resulting
in more deaths. In contrast, the analysis of stay-at-home orders showed less pronounced impact of
intervention timing, indicating some benefit of early action but more limited impact of delayed ac-
tion relative to the observed timing of the stay-at-home order. These results were corroborated by the
Double intervention model that estimated little or no impact of stay-at-home timing after accounting
for the timing of mobility decrease. Taken together, these results point towards stay-home orders
having little benefit above-and-beyond that induced by the persistent drop in mobility. However,
interpretation of the relative effectiveness of mobility versus policy interventions generally relies
on an interplay between these two types of “interventions” that is not fully resolved in the present
work. The relative timing of mobility decreases relative to timing of stay-at-home orders makes clear
that there were other drivers of behavior change. We point out that since our mobility measure is
determined by visits to all points of interest, other polices such as school and restaurant closures in-
evitably impacted this measure to some degree that is separate from the stay-at-home order. Parsing
mobility decreases attributable to specific policies other than stay-at-home order is important future
work. Additional influence of non-policy drivers of behavior change such as awareness-driven vol-
untary actions on visits and other mobility metrics is likely to have also played a role in a manner
not captured by the present analysis. This is not to say that the stay-at-home orders had no effect,
even though total visits had often decreased more than 60% and close to its minimum in advance
of official stay-at-home orders, these orders likely served to maintain low mobility after its initial
decrease. Using the Double intervention model to attribute the entirety of impact on deaths to the
timing mobility reductions over that of stay-at-home orders would rely on the tenuous assumptions
that mobility reductions did not impact the timing of stay-at-home orders and that stay-at-home or-
ders played no role in the apparent maintenance of reduced mobility beyond the date of reaching a
50% reduction. For example, work in [Abouk & Heydari, 2020] describes how, at the state level,
stay-home orders increased the actual presence at home, a metric of mobility that did not seem as
sound for use at the county level with the data sources contained herein. What’s more, the timing
of official policy interventions may well have been influenced by observed mobility if, for example,
policy makers were prompted to adopt an official order to continue behavior changes that were al-
ready occurring. An analysis that fully resolves the potential confounding and mediating effects that
may result from the influence of mobility reductions on the timing of stay-at-home orders (or vice
versa) is beyond the scope of this analysis.

An important feature of the analysis is that its focus on the relative effectiveness of intervention
timing does not characterize the relative effectiveness of implementing vs. not implementing the
policies or behavior changes. The method pursued here intentionally focuses posterior predictions
that perturb the observed trajectory around only a relatively short window spanning the observed in-
tervention dates, specifically avoiding the type of extrapolation that would be required, for example,
to learn what might have happened absent a policy or during time frames that expand substantially
outside the range of intervention dates. Furthermore, the analysis is unable to explicitly account
for differences in the execution of the official orders. In truth, execution of policies or implications
of mobility changes may well vary across the US, with the present analysis unable to capture such
variation beyond that which may be captured by NCHS urban-rural classification. Finally, the infer-
ences here are valid insofar as the statistical model with quadratic time trends represents a reasonable
approximation to the shape of the death trajectories after the initial introduction of cases and for a
limited time frame afterward. Reproducing the full epidemiological cycle is not the intention of the
model; we only attempt to quantify intervention impacts in the time frame surrounding observed
stay-at-home and mobility reduction dates and during the early epidemic stages.

Intentionally exchanging explicit epidemic dynamics for a statistical model focusing on a relatively
reduced time frame is an important feature of the analysis. While mechanistic approaches are specif-
ically tailored to echo detailed nuances of epidemic growth, we intentionally simplify this nuance
with a quadratic time function in exchange for the ability to use the mechanics of hierarchical re-
gression modeling to ingest county-level features and links to county-specific external factors, all
while continuing to borrow information across all counties. The statistical evidence generated from
a model such as this is designed to complement that obtained from more traditional mechanistic
epidemic models and, in fact, our estimates of averted deaths align with the evidence from the meta-
population SEIR model used in Pei et al. [2020] in that both analyses estimate approximately 50%
fewer deaths from shifting epidemic control policies earlier by 7-10 days.
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Our work was specifically designed to surmount the challenges of disentangling the intertwined local
characteristics and events that unfolded around the time of the first wave of COVID-19 interventions.
The limitations of this analysis notwithstanding, we move a step closer into parsing these events by
providing evidence for the timing of mobility-related behavior changes as an important determinant
of local daily COVID-19 deaths. These results point towards the need to investigate how official
reopening policies and other policies that varied across counties interplay with changes in mobility
beyond the time frame considered here and into the later phases of the US COVID-19 epidemic.
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A Additional Details on Timing of Policies and Mobility Reductions

A.1 Other Policy Interventions

Amid the initial spread of COVID-19, an array of non-pharmaceutical interventions including bans
on gatherings, closures of schools and restaurants, and stay-at-home orders were implemented from
mid-March to early April across the US. In most cases, these interventions applied to entire states,
which limited the variability in calendar timing across policies across metro, micropolitan and non-
core counties.
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Figure 4: Adoption timeline of an array of both policy and mobility interventions. On the top, counts
of dates for six different NPIs, such as stay-home orders, school closures and other more lenient
measures, are stacked. On the bottom, counts of days when total visits reached a 50% decrease are
included. To illustrate the components that make up total visits, the days “education” and “leisure”
visits decreased 50% are also shown; with the education classification covering schools and colleges,
and leisure covering restaurants, bars, parks and museums.

Figure 4 shows the number of counties that adopted each of the six policy interventions on a given
day. Most bans and closures occurred in the same small window of time and were preceded by
stay-at-home orders, which lagged other policies by 8 days in average. No statewide official orders
to shelter-in-place were issued in North Dakota, Nebraska and Arkansas.

A.2 Additional Mobility Details

Most of the 356 counties with mobility interventions exhibited a steady decrease in mobility within
a window of ten days, with March 22 being the average date at which counties reached the 50%
decrease from baseline visits to all POIs, corresponding to the definition of a mobility-based inter-
vention. Figure 4, shows the distribution of dates on which counties mobility-intervention, depicted
alongside the dates that counties achieved a 50% decrease in visits to two sub-categories of POIs:
1) schools and colleges and 2) leisure destinations such as restaurants, bars, parks and museums.

To further illustrate how the timing of mobility interventions compared to that of policy interventions
among the 336 counties with both, Figure 5 depicts the decrease in mobility (relative to baseline)
that was observed on the day a stay-at-home order took effect. All counties had already shown a
marked reduction, with micropolitan and non-core counties showing a reduction of 66% on the day
of the policy, and other more urban counties having even more reduced mobility, with an average
reduction of 70% mobility when the a stay-at-home order took effect. Thus, all counties indicate
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Figure 5: Left: Shows the relative decrease in mobility with respect to the baseline on the day the
stay-at-home order was enacted. Right top: Shows the additional decrease in mobility since stay-
home up to each county’s minimum mobility level. Right bottom: Contains the distribution of the
mobility increase beginning at each county’s minimum levet up to May 1st.

the potential for behavior and mobility changes to have impacted epidemic dynamics in advance of
official stay-home.

Along with this, reductions in mobility were close to a level of saturation when stay-home went
into effect with total visits to POI not reducing much more. The distribution on the right panel in
Figure 5 shows that for 80% of the counties in our dataset, the mobility levels observed the day stay-
home stay-home orders were adopted, were at most 5% above their absolute minimum levels. After
the minimum levels were reached, mobility slowly started to move upwards with 80% of counties
lingering no more than 20% above those levels on May 1st.

B Details of the Statistical Modeling Approach

B.1 Bayesian Hierarchical Negative Binomial Model Specification

The statistical models for county-specific death trajectories rely on two important features. First,
we define local “epidemic time” in terms of the number of days elapsed since local arrival of the
epidemic, defined as the date at which a county reached a deaths threshold of 3 deaths per 10 million
residents. Second, because reports of daily deaths often exhibit erratic day-to-day variation across
counties (e.g., one county may report most cases on Monday while another county on Wednesday),
we fit the statistical models described below to the 7-day centered rolling average of daily deaths,
effectively removing day-of-week reporting effects which are not important for the purpose of this
analysis.

More precisely, let yit be the 7-day moving average of daily deaths observed in county i at time t,
where t represents the number of days since the deaths threshold was reached. First, we assume

yit ∼ NegBin(λit, r), (1)

where the parameterization is such that E[yit] = λit and V[yit] = λit(1 + λit/r); the unknown
parameter r indicates over-dispersion: the smaller it is, the higher the variance. For λit we use a log
link and a per capita normalization. Let Ni be the population of county i, then

log

(
λit
Ni

)
= f(xi, di, t) + ri(t)

where t is the number of days since the threshold date, xi are the county-level features, and di
represents intervention timing as the number of days between the threshold date and the date the
intervention was enacted. ri is a county-specific residual time function that captures the portion of
the curve not explainable by the county-level features and intervention contained in f .
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To specify the form of f we use a quadratic polynomial in t that changes shape after introduction of
the intervention and across different levels of county-level features. Specifically,

f(xi, di, t) :=
2∑

k=0

[
αk + x>i,preβk

]
tk

+
2∑

k=1

[
ηIk + diη

d
k + x>i,postη

c
k

]
1(t ≥ di)(t− di + 1)k.

(2)

The first summation in (2) specifies the polynomial time trend during the pre-intervention period:
(α0, α1, α2) can be thought of as “baseline” intercept, linear, and quadratic polynomial parameters,
which are each shifted by (β0, β1, β2) according to county-level features in xi,pre. That is, each
county’s pre-intervention deaths trajectory is dictated in part by the features of that county, where the
features contained in xi,pre are: NCHS classification, the percent of college attendees, the percent
aged 65 and older, the percent of black, and the percent hispanic of the county.

The second summation in (2) specifies the bend in the quadratic death trajectory after the introduc-
tion of the intervention. Here, di represents the date that an intervention occurred in county i plus a
lag of 12 days. The term 1(t ≥ di) represents the indicator equal to 1 when epidemic time surpasses
the time after the intervention lag, and (t − di + 1) is the days elapsed since the intervention lag.
The parameters ηIk for k = 1, 2 can be thought of (respectively) as the “baseline” shift in the linear,
quadratic terms of the polynomial after the introduction of the intervention. Analogously ηdk can
be thought as shifts in the linear and quadratic terms according to the timing of the intervention,
implying different post-intervention trajectory shapes for counties that intervened at different points
in their local epidemic time. Similarly, ηck dictate shifts in the linear and quadratic terms according
to the covariates in xi,post, where xi,post in the present analysis includes only the NCHS county
classification.

Note the omission of the zero-degree polynomial terms in the post-intervention terms of the second
summation in (2), intentionally omitting mean shifts in the polynomial function upon the intro-
duction of the intervention. This is done to specify continuity in the polynomial trend across the
introduction of the intervention, as we would not expect the intervention to initiate an immediate
jump or drop in daily deaths.

Finally, the idiosyncratic factor ri is specified using county-specific random effects [Laird & Ware,
1982] for each polynomial coefficient

ri(t) :=
2∑

k=0

ξ
(i)
k tk, (ξ

(i)
0 , ξ

(i)
1 , ξ

(i)
2 )> ∼ N(0,Σ),

implying that each county is modeled to have it’s own pre-intervention polynomial time trend.

The above model specification is used for the Stay-at-home model and Mobility model described
in the main text. The Double intervention model has a three-fold specification, where equation
(2) is augmented with a third summation that has the same construction as the second summation.
The second term specifies the bend after the mobility intervention, and the third term captures the
additional or residual effect of the stay-at-home order that is not captured by the change in mobility.

B.2 Posterior Inference

We base inference on simulations from the posterior distributions of the parameters in models of
the form (2) simulations from the models. To evaluate impacts of intervention timing, we simulate
from the posterior predictive distribution of deaths from each county’s time polynomial, but where
the intervention timing, di, is replaced with alternative hypothetical timing corresponding to earlier
or later intervention. Specifically, under different values of di, we take a sample from the posterior
predictive distribution for each county and take group averages by NCHS category for each time t.
Group-average curves are calculated by averaging point-wise posterior predictive quantities among
counties within the same NCHS category. In addition, we compute the number of days since the
threshold at the peak and the number of per capita deaths at the peak for each one of the average
curves per NCHS. We repeat this process for 1,000 posterior samples to produce a set of 1,000
aggregate statistics and curves for each NCHS.
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Figure 6: Shows the time-varying of the confounding variables. For each covariate the figure shows
median and 90% posterior credible intervals. The zero-th line is shown in gray in each subplot.
Effects that do not consider contain the zero-th line are statistically significant.

Note that, since model (2) is specified to borrow information across all counties, results for a given
county may be different in all three of the above models, even if the mobility and stay-at-home
intervention dates coincide.

B.3 Drivers of Pre-intervention Trajectory Heterogeneity

With the rationale that different county characteristics are associated with differently-shaped lo-
cal epidemic death curves, the model from Section 2.4 permits individual counties to have pre-
intervention daily death trajectories that explicitly depend on the county-level covariates: NCHS
Urban-Rural Classification Scheme for Counties and percent of residents that are Black, Hispanic,
aged 65 years and older, and attending college. Note that given the specification of the model, the
differences that are due to the timing of the intervention influence are captured separately.

For both the stay-at-home and mobility models, we find that NCHS category, percent of college
student residents, and percent of Hispanic residents had significant impact on death trajectories.
In the double intervention model, these same characteristics plus the percent of Black residents
had significant impact. A table presenting the coefficient estimates associated with each county
characteristic and its interaction with the linear and quadratic time polynomial terms appears in
Table 3 in the Appendix. Note that the coefficient estimates in the table are not easily interpreted nor
directly comparable in magnitude across the three models since the time polynomial in each model is
orthogonalized using the poly function in R, but judgments of statistical significance remain valid.
Figure 6 summarizes the covariate impacts across the different models. The figure shows posterior
estimates and uncertainty intervals of the interaction between time polynomials and coefficients
effects. More precisely, for each covariate j with corresponding polynomial coefficients βj =

(βj
0, β

j
1, β

j
2) in the regression model (2), we take 1,000 samples from their posterior distribution and

for each sample compute an estimate of the total contribution of covariate j through time given by
cj(t) =

∑
k=0 t

kβj
k. Figure 6 is showing the pointwise median and quantiles at each time t of the

posterior samples of the total contribution cj(t). Observe that all models yield similar estimates
for the confounding variables effects, but the percent of Hispanic residents and college students are
the most statistically significant variables, as evidenced by the fact that the curves do not contain
the zero line. Note that these results should be interpreted as descriptive summaries of how these
daily death trajectories varied across levels of these characteristics. For example, the estimates for
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Stay-home only Mobility only Double intervention
Parameter Mean [5%, 95%] Mean [5%, 95%] Mean [5%, 95%]

Degree=0

(Intercept) -11.3* [-15.8, -6.79] -9.71* [-14.4, -5.42] -10* [-14.6, -5.38]
NCHS-2 0.27 [-0.11, 0.67] 0.87* [0.44, 1.26] 1* [0.54, 1.43]
NCHS-3 0.01 [-0.42, 0.5] 0.55* [0.11, 0.99] 0.65* [0.2, 1.09]
NCHS-4 -0.17 [-0.74, 0.4] 0.03 [-0.63, 0.65] 0.25 [-0.37, 0.9]
NCHS-5 0.4 [-0.34, 1.08] 0.9* [0.29, 1.54] 1.04* [0.28, 1.74]
NCHS-6 0.12 [-0.96, 1.18] -0.64 [-2.48, 1.09] 0.22 [-1.77, 2.2]
% in college -0.09* [-0.12, -0.07] -0.08* [-0.11, -0.06] -0.08* [-0.11, -0.06]
% black 0.07 [-0.03, 0.16] 0.07 [-0.02, 0.18] 0.11* [0.01, 0.21]
% hispanic -0.29* [-0.45, -0.15] -0.36* [-0.5, -0.22] -0.34* [-0.47, -0.2]
% +65 age 0.28 [-0.26, 0.82] 0.07 [-0.47, 0.57] 0.04 [-0.54, 0.62]

Degree=1

(Linear) -19.7 [-313, 274] 20.7 [-217, 266] -46.8 [-287, 168]
NCHS-2 -37.6* [-70.6, -3.77] 8.29 [-19.6, 35.1] 11.5 [-18.7, 42.7]
NCHS-3 -50* [-84.3, -18] -15.5 [-44.3, 14] -14.8 [-49.5, 15.3]
NCHS-4 -102* [-148, -61.4] -91.2* [-134, -49] -86.3* [-130, -42.5]
NCHS-5 -98.5* [-154, -41.7] -42.7* [-81.4, -2.42] -63.3* [-116, -13.1]
NCHS-6 -140* [-229, -52.1] -151* [-252, -59.9] -62.2 [-223, 95.7]
% in college -2.56* [-4.2, -0.87] -1.89* [-3.24, -0.43] -1.74* [-3.09, -0.43]
% black 7.39 [-0.14, 14.6] 1.85 [-3.64, 7.67] 5.43 [-0.38, 11.1]
% hispanic 4.62 [-4.96, 14.2] 5.4 [-1.18, 12.6] 4.6 [-2.4, 11.8]
% +65 age 15.9 [-19, 48.7] 13 [-16.3, 40.3] 19.3 [-6.67, 46.6]

Degree=2

(Quadratic) -172 [-407, 52.9] -20.7 [-176, 130] -4.05 [-176, 154]
NCHS-2 -7.46 [-28.2, 12] 0.43 [-14.5, 14.7] 0.38 [-14.3, 14.3]
NCHS-3 4.2 [-17.2, 25.5] -2.64 [-17.3, 11.2] 0.51 [-14.7, 16]
NCHS-4 -10.4 [-38.2, 16.7] -15.7 [-35.3, 3.34] -15.6 [-36.5, 4.3]
NCHS-5 -13 [-45.3, 20.9] 9.42 [-9.01, 28] -4.78 [-30, 18.8]
NCHS-6 -47.2* [-94.3, -0.89] -2.15 [-52, 46.9] 36.6 [-42.5, 116]
% in college 0.61 [-0.63, 1.9] -0.04 [-0.99, 0.83] -0.07 [-0.95, 0.85]
% black 2.65 [-3.14, 8.56] -2.77 [-6.7, 1.12] -1.08 [-5.09, 3.28]
% hispanic 2.32 [-4.39, 9.12] 1.37 [-3.42, 5.89] 0.93 [-3.68, 5.96]
% +65 age 9.06 [-17.2, 36.8] 1.14 [-16.6, 19.7] -2.31 [-21.7, 17.7]

Table 3

Hispanic population are first negative but gradually increase towards zero. One could hypothesize
that this relationship could be attributed to the fact that counties with higher Hispanic population,
particularly southern counties, also had more extant COVID safety awareness since the epidemic
took hold later in calendar time.

Importantly, while we only evaluated explicit pre-intervention heterogeneity with respect to this
relatively small subset of covariates that were included in the model, the inclusion of county-specific
random effects is designed to capture additional heterogeneity in death curves attributable to other
factors.

B.4 Additional Summaries of Trajectory Characteristics under Hypothetical Intervention Timing

Table 4 provides numerical estimates (median and inter-quartile range (IQR) intervals) of the average
number of days since local epidemic initiation (3/10 million death threshold) to the peak in daily
deaths and the height of the daily death peak under each intervention timing. The table suggests
statistically significant differences in NCHS 1-3 between the actual and early estimates as well as
between actual and late estimates. For example, for both models early intervention in NCHS 1 is
associated with a change in deaths at the peak of approximately 2 less deaths per 1 million, and an
earlier peak of 5 days for the stay-home model and 8 days for the mobility model. Differences in
NCHS 4-6 are not statistically significant for either model since the IQR intervals strongly overlap.
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Days since threshold at peak Deaths per 1 million at peak
NCHS Early Actual Late Early Actual Late

1 21 (2) 26 (1) 28 (2) 1.59 (0.42) 3.50 (0.16) 4.94 (0.89)
2 19 (4) 23 (2) 23 (1) 1.56 (0.49) 2.95 (0.29) 3.59 (0.52)
3 15 (2) 21 (2) 23 (2) 1.02 (0.25) 1.99 (0.16) 2.47 (0.41)
4 14 (2) 19 (2) 20 (2) 1.77 (0.58) 2.46 (0.33) 2.19 (0.49)
5 13 (4) 18 (2) 20 (3) 3.08 (1.40) 4.97 (0.79) 4.84 (1.57)
6 22 (16.25) 23 (14) 18 (4) 18.47 (54.90) 12.12 (9.74) 6.65 (4.17)

(a) Stay-at-home order model

Days since threshold at peak Deaths per 1 million at peak
NCHS Early Actual Late Early Actual Late

1 16 (2) 24 (1) 27 (1) 1.30 (0.37) 3.20 (0.19) 5.66 (1.13)
2 11 (2) 19 (2) 24 (1) 1.02 (0.28) 3.33 (0.29) 7.74 (1.50)
3 10 (2) 18 (1) 21 (2) 0.92 (0.25) 2.31 (0.18) 4.15 (0.88)
4 11 (3) 16 (1) 18 (2) 2.75 (1.14) 2.96 (0.41) 2.41 (0.80)
5 7 (2) 16 (3) 25 (5) 3.27 (1.20) 6.28 (1.03) 9.65 (3.44)
6 11 (12) 21 (25.25) 33 (25) 35.13 (72.47) 16.97 (49.00) 8.34 (71.33)

(b) Mobility decrease model

Table 4: Summary statistics for fitted daily deaths curves per NCHS. The table shows the median
and interquartile range (IQR) in parenthesis for the peak of the average curve per NCHS from 1000
posterior samples. Significant effects can be seen in NCHS 1-3.

B.5 County Level Model Posterior Predictions

Figure 7 shows the observed and hypothetical trajectories for three selected counties counties: King
County, Washington; Kings County, New York; and Jefferson County, Louisiana. In King County,
Washington, a hypothetical late adoption of a stay-home order does not appear to have a significant
impact on the post-intervention death curve trajectory, suggesting that its curve had already flattened
by the time the policy was adopted, likely as a result of awareness brought by national attention as
the first US cases emerged in this county. In Kings County, New York, the 50% mobility decrease
was reached three days after the stay-home was adopted and yet the models’ estimation show that a
late mobility-intervention would have a significantly higher peak than a late policy-intervention and
that it would more dramatically bend the post-intervention trend. Finally, in the case of Louisiana’s
Jefferson County, even if both the policy and mobility interventions happened exactly on the same
day, the late policy-intervention counterfactual has a considerable overlap with the original fit con-
trasting with the late mobility-intervention counterfactual.
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Figure 7: The early and late intervention timing counterfactuals for three counties. We simulate
1000 draws from the Bayesian posterior predictive distribution of the (log) expected counts for each
county, and take point-wise medians and 5%/95% quantiles for each t: in blue the fitted credible
intervals; in green (red) the early (late) credible bands around the counterfactual medians. The three
plots on the left show estimates using the stay-at-home model, and on the right estimates from the
mobility model. The vertical dotted lines depict the actual and hypothetical date of the intervention
plus the intervention lag.
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