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Abstract  
Circadian and multiday rhythms are found across many biological systems, including 
cardiology, endocrinology, neurology, and immunology. In people with epilepsy, epileptic 
brain activity and seizure occurrence have been found to follow circadian, weekly, and 
monthly rhythms. Understanding the relationship between these cycles of brain excitability 
and other physiological systems can provide new insight into the causes of multiday cycles. 
The brain-heart link is relevant for epilepsy, with implications for seizure forecasting, 
therapy, and mortality (i.e., sudden unexpected death in epilepsy). 

We report the results from a non-interventional, observational cohort study, Tracking Seizure 
Cycles. This study sought to examine multiday cycles of heart rate and seizures in adults with 
diagnosed uncontrolled epilepsy (N=31) and healthy adult controls (N=15) using wearable 
smartwatches and mobile seizure diaries over at least four months (M=12.0, SD=5.9; control 
M=10.6, SD=6.4). Cycles in heart rate were detected using a continuous wavelet transform. 
Relationships between heart rate cycles and seizure occurrence were measured from the 
distributions of seizure likelihood with respect to underlying cycle phase.  

Heart rate cycles were found in all 46 participants (people with epilepsy and healthy 
controls), with circadian (N=46), about-weekly (N=25) and about-monthly (N=13) rhythms 
being the most prevalent. Of the participants with epilepsy, 19 people had at least 20 reported 
seizures, and 10 of these had seizures significantly phase locked to their multiday heart rate 
cycles. 

Heart rate cycles showed similarities to multiday epileptic rhythms and may be comodulated 
with seizure likelihood. The relationship between heart rate and seizures is relevant for 
epilepsy therapy, including seizure forecasting, and may also have implications for 
cardiovascular disease. More broadly, understanding the link between multiday cycles in the 
heart and brain can shed new light on endogenous physiological rhythms in humans. 
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Introduction  

Cyclic phenomena are ubiquitous in biological systems. In the field of chronobiology, 

circadian rhythms (and related 24-hour rhythms) have been widely studied. However, other 

timescales, including weekly (circaseptan), monthly (circalunar or circatringian), seasonal 

and even longer rhythms have also been observed across a diverse range of physiological 

functions.1–3 In neurology, huge strides have been made in chronic brain recording devices, 

leading to overwhelming evidence that multiday cycles govern brain excitability in people 

with epilepsy.4–7 

 

The phenomena of multiday cycles in epilepsy were identified through observation of 

individuals’ seizure patterns.7 Subsequent studies using chronic electroencephalography 

(EEG) have shown that periodicity of seizure occurrence is underpinned by individual-

specific circadian and multiday rhythms of epileptic activity5,8 and brain excitability6 in 

humans and other mammals.9,10 Importantly, multiday cycles in epilepsy exist for most 

people,4–6,11 and appear to be ‘free-running’ in the sense that they are not tied to 

environmental cues (weekday, lunar cycle, calendar),12 are equally prevalent in men and 

women4,5,7,11 and are observed across epilepsy syndromes and seizure types.4 

 

Although multiday cycles of brain activity have been predominantly investigated in people 

with epilepsy, it is unlikely that these slower rhythms are limited to epilepsy. Other episodic 

psychiatric conditions are suggestive of multiday modulation, including bipolar disorder,13 

depression14 and other psychopathologies.15 Aside from neurology, multiday cycles are 

recognised in cardiology, immunology and endocrinology, for instance.3 Therefore, we 

hypothesise that free-running multiday rhythms are widespread across major organ systems, 
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analogous to circadian rhythms. However, identifying systemic, multiday oscillatory 

biomarkers has been limited by availability of chronic recording capabilities. 

 

Of the wider physiological systems, long-term cardiac monitoring is more accessible than 

other physiological monitoring pertinent to multiday cycles. Indeed, chronobiology has a 

long history in cardiology and the aetiology of heart disease. In addition to well documented 

circadian rhythms of cardiac electrophysiology and arrhythmias,16 some studies have also 

identified intrinsic multiday cycles of cardiac output.17–19 These studies suggest that longer 

rhythms also drive cardiac activity, which may be linked to aforementioned multiday rhythms 

in the brain. 

 

Brain-heart dynamics have long been of interest in epilepsy research and clinical 

management. Epileptic seizures can cause functional changes in the autonomic nervous 

system, often detected as acute changes in heart rate (tachycardia, bradycardia) or heart rate 

variability (HRV) near the onset or offset of seizures.20,21 Pre-ictal changes in heart rate and 

HRV have been identified as potential triggers or predictors of impending seizures, 21 

however to our knowledge, the relationship between heart rate changes and seizures has not 

been investigated over multiday timescales. 

 

Understanding the relationship between the brain and heart at slower timescales (e.g., weekly, 

monthly or seasonal) can provide new insight into causes of multiday physiological cycles. If 

cardiac electrophysiology shows multiday rhythms akin to cycles of brain excitability, this 

will provide a new avenue to monitor aspects of neurological diseases. Similarly, 

characterising slow changes in cardiac activity may be important for treating heart conditions. 
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This study aimed to 1) identify possible multiday cycles of heart rate, and 2) determine 

whether there are associations between heart rate cycles and seizure likelihood in people with 

epilepsy.  

Results 

Descriptive statistics of continuous data are reported as mean +/- standard deviation. We 

defined ultradian cycles as rhythms less than 24 hours, circadian cycles as 24-hour rhythms 

and multiday cycles as any rhythm greater than 24 hours. We also defined the following 

subsets of multiday cycles: ‘about-weekly’ as 5 – 9 days and ‘about-monthly’ as 28 – 32 

days. 

Participants 

There were 31 participants with epilepsy (21 female) with 12.0 +/- 5.9 months of continuous 

heart rate data at 89.3 +/- 8.2% adherence. There were 15 healthy control participants (6 

female) with 10.6 +/- 6.4 months of continuous heart rate recorded at 89 +/- 7% adherence.  

For patients with epilepsy, the cumulative seizure diary duration was 55.0 years (mean 21.3 

+/- 21.0 months), documenting over 3,619 seizures (mean 117 +/- 118 seizures) with 2,244 of 

these (mean 72 +/- 100) reported during the wearable monitoring period. 

Table 1 shows the demographics and statistics of participants with epilepsy. Participants’ 

anti-epileptic drugs (AED) are given in Supplementary Table 1. Healthy control participants 

are shown in Supplementary Table 2. 

Table 1. Demographics of participants with epilepsy.  

Participant Gender Epilepsy Typea 

Recording 
length 
(months) Seizures 

Adherence 
(%) 

Average 
Heart 
Rate 
(BPMb) 

P1 F Focal (T) 16.5 105 100 93 
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P2 F GGE 12.7 3 97 70 

P3 M Focal (T) 14.5 213 88 79 

P4 M GGE 5.6 65 92 80 
P5 M Focal (TO) 14.8 120 94 65 
P6 F Multi-focal 4.0 37 80 89 

P7 F Focal 20.6 29 100 78 
P8 F GGE (JME) 4.1 2 80 70 
P9 F Focal (HH) 13.2 0 99 62 

P10 M Focal 13.4 67 100 70 
P11 F Focal (T) 19.3 32 99 69 
P12 F Focal (HH) 5.2 0 80 77 
P13 F GGE (JAE) 6.9 169 80 82 
P14 M Focal (T) 20.2 24 82 75 
P15 M Focal 4.8 20 80 84 
P16 M Focal (TP) 6.9 29 80 76 
P17 F Focal (T) 6.2 7 80 69 
P18 F Multi-focal 10.8 5 80 74 
P19 F Focal (T) 21.8 103 82 87 
P20 F Focal (T) 21.3 7 94 77 
P21 M Focal (T) 8.1 21 93 72 
P22 F Focal (T) 9.3 0 99 85 
P23 F Focal (T) 22.3 416 99 73 
P24 F Multi-focal 14.7 4 92 62 
P25 M GGE (JME) 6.2 3 80 64 
P26 F GGE (JAE) 4.2 14 98 70 
P27 F Focal (T) 13.6 148 80 86 
P28 F Focal 10.8 6 97 79 
P29 F Focal (F) 9.0 251 89 78 
P30 F Multi-focal 15.8 58 83 88 
P31 M Focal and 

Generalized (DEE) 
16.5 286 92 62 

 
21 Female 
10 Male  

M=12.0 
SD=5.9 

M=72.4 
SD=100.8 

M=89.3 
SD=8.2 

M=75.6 
SD=8.5 

aEpilepsy types are separated into Focal, Multi-focal, GGE or Focal and Generalised. The epilepsy syndrome or 
lobar epileptogenic zone is presented in brackets where the data is available. T = temporal, TO = temporo-
occipital, TP = temporo-parietal, HH = hypothalamic hamartoma, DEE = Developmental and Epileptic 
Encephalopathy, JME=juvenile myoclonic epilepsy, JAE=juvenile absence epilepsy, GGE=genetic generalised 
epilepsy).  
bBeats per minute 
 
 
Heart rate cycles in people with epilepsy 
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Figure 1. Distribution of heart rate cycles. (A) Cycle strength (expressed as the normalised 
wavelet power, y-axis) for different periods (x-axis, logarithmic scale) averaged across the 

cohort. Note that wavelet power was normalized between 0 and 1 (by subtracting the 
minimum and dividing by the range) for each participant to facilitate visualization. (B) Raster 

plot showing cycle strength (colour bar) for each individual (y-axis) at different periods 
(logarithmic scale). (C, D) Number of people (y-axis) with significant cycles at different 

periods up to 40 days (x-axis) for men and women, respectively. Note that the x-axis (up to 
40 days) is a subset of the x-axis in panels A and B (up to 167 days) as indicated by the grey 

arrows and black dotted lines. 

 

We first investigated whether multiday cycles of average heart rate were present in people 

with epilepsy. At least one heart rate cycle was found in all participants in the cohort. Cycles 

were found at weekly, monthly, and longer timescales (see Figure 1b). 94% (N=29/31) had a 

multiday cycle, 55% (N=17/31) demonstrated about-weekly cycles and 29% (N=9/31) 

demonstrated about-monthly cycles (Table 2). Only 9 of the 17 about-weekly cycles were 
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found at precisely 7 days, suggesting that about-weekly cycles were generally not driven by 

the artificial working week (Supplementary Figure 7). 23% of participants (N=7/31) also had 

a shorter ultradian cycle. The distributions of cycles were similar for men (Figure 1c) and 

women (Figure 1d), including about-monthly cycles (p = 0.62 using Kolmogorov-Smirnov 

test for equivalence). Only two participants’ about-monthly cycles were found at precisely 

29.5 days (the lunar period). 

When averaged across the entire cohort, a clear peak at 24 hours was observed, as well as 

smaller peaks at around one week and one month (Figure 1a) (see Supplementary Figures 3,4 

for individual analyses). 

 

Figure 2. Examples of multiday heart rate cycles. Data are shown for two different 
participants, P21 (a-c) and P30 (d-f). (A, D): Heart rate (y-axis) smoothed with a 2-day 

moving average filter shows multiday cycles. Insets (blue) show circadian rhythms of heart 
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rate. (B, E): A graphical representation of the bandpass filtered heart rate signals for different 
cycles (corresponding respectively to spectrum peaks in panels (C, F). Note that the signal 

amplitudes for different cycles (coloured traces) have been normalised to the same range. (D, 
G): Wavelet power spectra for different scales (x-axis). Significant cycle periods (peaks) are 

labelled with coloured dots. 

 

Striking examples of multiday heart rate cycles for two participants are shown in Figure 2. 

Cycles are apparent from visual inspection of average heart rate (Figure 2a,d) and were 

robust over the duration of recording (Figure 2b,e). Wavelet analysis confirmed significant 

cycles at daily (24 h), about-weekly (7 d) and multiday (15.0 and 33.5 d) periods for P21 

(Figure 2c), and daily (24 h) and about-monthly (30.5 d) periods for P30 (Figure 2f).  

Heart rate cycles in participants without epilepsy 

 

Figure 3. Distribution of heart rate cycles in people without epilepsy. (A): Cycle strength 
(expressed as the normalised wavelet power, y-axis) for different periods (x-axis, logarithmic 
scale) averaged across the cohort. (B, C): Number of people (y-axis) with significant cycles 
at different periods up to 40 days (x-axis) for men and women, respectively. The grey arrow 

and black dotted lines show 24-hour, 7-day and 30-day locations along the x-axes. 
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Heart rate cycles were investigated in healthy controls. Figure 3 shows the distribution of 

multiday heart rate cycles across the control cohort (two individual examples are shown in 

Supplementary Figure 5). Although it is difficult to draw conclusions from a small cohort, 

cycles did appear to be more common at daily and weekly timescales, evident from the peaks 

in the population average (Figure 3a). Out of the total cohort of 15 people (6 female), all had 

a circadian cycle, 12 had a multiday cycle, with 8 showing about-weekly cycles and 4 

showing about-monthly cycles (Table 2). All four of the about-monthly cycles occurred in 

women; although, the overall distributions of cycles were not significantly different between 

men and women (p = 0.51 using Kolmogorov-Smirnov test for equivalence).  

Multiday heart rate cycles related to seizure risk 

Among the 31 participants with epilepsy, 19 (10 female) had recorded at least 20 seizures 

during the wearable recording time and, therefore, were eligible for further seizure analysis. 

Phase locking of seizures to heart rate cycles was quantified by the synchronisation index (SI, 

see Methods). Of these eligible participants, 17 (89%) had seizures significantly locked onto 

at least one heart rate cycle (see Table 2). Eight people had both fast (circadian or ultradian) 

and multiday cycles comodulated with seizure likelihood, 10 had seizures significantly 

locked onto a multiday cycle and 14 had seizures significantly locked onto a circadian cycle. 

Table 2. Participants with significant heart rate cycles and phase locking of seizures.  

Participants Total Heart rate cycles 

  Ultradian Circadian Multidaya About-weekly About-monthly 
With epilepsy 31 7 31 29 17 9 
Control 15 0 15 12 8 4 
  Heart rate cycles (seizures phase locked)b 

With >20 

seizures 

19 (17) 3 (1) 19 (14) 19 (10) 10 (3) 6 (1) 

aMultiday cycles comprise all cycles greater than 24 hours, including about-weekly and about-monthly. 
bThe number of eligible participants (with at least 20 seizures) who had significant heart rate cycles, and the 
number of participants whose seizures were phase locked to their heart rate cycle shown in brackets.  
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Figure 4 shows three different example participants whose seizures were significantly 

synchronised to their underlying multiday heart rate cycles, demonstrated by the tight 

distributions of seizures (SI values between 0.44 – 0.56) with respect to these individuals’ 

circadian (Figure 4b), about-weekly (Figure 4d) and 14.5-day multiday (Figure 4f) cycles. 

 

Figure 4. Examples of seizure occurrences locked to heart rate cycles for three 
participants. (A, B) P23 (416 seizures), (C, D) P31 (286 seizures), (E, F) P1 (105 seizures). 
(A, C, E) Heart rate (y-axis) and self-reported seizures (dots). A moving average (MA) filter 
was applied to heart rate (black line) to highlight cycles (A: 1-hour MA, C, E: 2-day MA). 

Panels (B, D, F) Corresponding circular histograms of the phase distributions of individuals’ 
heart rate cycles (white bins) showing the phase of seizure occurrences (shaded bins). 
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Landmark phases are labelled as ‘peak’ (π/2), ‘trough’ (3π/2), ‘rising’ (2π) and ‘falling’ (π). 
Multiday circular histograms (Panels D, F) bins have the same phase width (2π/18) although 
these correspond to different durations (labelled by black arrows), depending on the period of 

the multiday cycle. The circadian histogram (Panel B) bins have widths of 1 hour (2π/24). 

 

Figure 5 shows the mean resultant vectors for every heart rate cycle where significant seizure 

phase locking was observed (exact SI values, preferred phase/circular mean, and p-values are 

given in Supplementary Tables 4 and 5). For multiday cycles the phase of seizure occurrence 

appeared relatively diverse. For circadian cycles, seizures tended to occur on the falling phase 

(around afternoon); this distribution was suggestive of a reporting bias that could affect phase 

locking of self-reported events to circadian cycles (Supplementary Figure 6). However, it is 

important to note that a diurnal reporting bias would not affect phase-locking to multiday 

cycles. 

 

Figure 5. Phase locking of seizures to heart rate cycles. Both subplots show individual 
heart rate cycles (arrows) with significant phase locking of seizure occurrence. The lengths of 
the arrows indicate the strength of phase locking, or SI (radial axis, between 0 and 1), while 
the direction indicates the preferred phase of seizure occurrence (polar axis). (A) Circadian 
cycles, all periods were 24 hours. (B) Multiday cycles (including about-weekly and about-

monthly), 6– to 128-day periods (colour bar). 
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Discussion  

Multiday heart rate cycles were found in most participants (N=29/31 people with epilepsy 

and N=12/15 healthy controls, Table 2), with striking examples of about-weekly and about-

monthly rhythms, although not linked to the calendar week or month. Apart from a few 

limited studies3, such long-term, individual-specific rhythms in average heart rate have not 

previously been documented. Furthermore, for people with epilepsy, seizures preferentially 

occurred at limited phases of their multiday heart rate cycles in approximately half the 

individuals considered (10 out of 19), which is similar to the observed 60% prevalence of 

multiday epileptic rhythms in people with epilepsy.11 This phase relationship suggests heart 

rate cycles may be comodulated with already established multiday cycles of seizure 

likelihood. 4–6 Elucidating the relationship between periodic fluctuations in cortical 

excitability and heart rate has the potential to shed light on underlying mechanisms of 

multiday physiological rhythms with clinical applications for both neurological and 

cardiovascular diseases. 

Mechanisms of multiday cycles in the heart and brain 

Endogenous multiday cycles of epileptic activity are well documented,7 with seminal studies 

in animal models9,10 and humans5,8 revealing free-running multiday cycles. Multiday heart 

rate cycles showed similar features to these cycles of epileptic brain activity, with cycles 

more common at about-weekly and about-monthly time scales (Figure 1), and a preference 

for seizures to occur on a particular phase of heart rate cycles (Figure 4, Table 2), which are 

also properties of epileptic rhythms.5,6 Nevertheless, the current study cannot determine 

whether multiday cycles in the brain and heart are causally linked. Ictal and peri-ictal 

increase in heart rate is common in epilepsy21, although the low resolution of self-reported 

seizure times prevented detection of ictal tachycardia in our study. In any case, acute, peri-
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ictal heart rate changes would not account for the observed multiday cycles. Furthermore, the 

existence of similar rhythms in people without epilepsy (Figure 3) suggests that heart rate 

cycles were not primarily driven by the occurrence of seizures. Conversely, people without 

epilepsy likely do still experience fluctuations in brain excitability22,23. Circadian rhythms of 

heart rate are modulated via the autonomic nervous system and involve sympathetic-

parasympathetic balance24, which is commonly disrupted in people with epilepsy20. 

Therefore, it is plausible that cortical and cardiac dynamics might also be linked over 

multiday timescales. Future investigations into a mechanistic relationship between multiday 

cycles of heart rate and epileptic activity are warranted.  

 

In contrast to epileptology, the existence of multiday cycles of heart rate has not been widely 

described in the cardiology literature, although some earlier studies (limited to short-term 

recordings of less than one month, or case studies) have documented endogenous weekly 

rhythms and 7-day cycles in heart rate and blood pressure. 17,18 The current work also found 

multiday heart rate cycles commonly had weekly periodicities, in both men and women and 

people with and without epilepsy (Figures 1,3). Some about-weekly heart rate cycles were 

found with precisely 7-day periods (N=9/17 people with epilepsy and N=6/8 healthy 

controls), suggesting there was some entrainment by behavioural changes over the 

workweek. However, the occurrence of about-weekly cycles that were not linked to the 

workweek (i.e., between 5 – 9 days) indicates heart rate cycles also had an endogenous 

component.  

 

The causal mechanisms of multiday epileptic rhythms or heart rate cycles are not understood, 

although several hormonal, metabolic and other environmental factors are implicated in 
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endogenous multiday cycles in humans.1–3,7 Female sex hormones have been widely linked to 

monthly cycles of epileptic activity in women25 and the menstrual cycle may also lead to 

changes in heart rate and HRV.26 However, hormonal changes cannot explain the similar 

prevalence of monthly cycles of seizures in children and men,4,5,27 nor the present results 

demonstrating monthly cycles of heart rate in males (Figure 1c). Chronic stress can promote 

autonomic imbalance affecting both heart rate28 and epileptic brain activity29, and stress is 

also perceived as one of the leading factors triggering seizures30. However, stress is not 

typically considered to follow regular, multiday cycles. To elucidate the drivers of co-

modulated cardiac and epileptic activity, future studies should target a range of candidate 

mechanisms for long-term monitoring. 

Clinical applications 

Heart rate cycles can provide a biomarker for individual seizure likelihood, which may be 

used to guide epilepsy therapy or in seizure forecasting systems. Seizure forecasting is 

considered a key goal of epilepsy treatment, restoring a degree of control to people with 

refractory seizures; however, most forecasting algorithms have been deployed for intracranial 

EEG, which poses challenges for widespread availability of seizure warning systems.31 

Importantly, forecasting algorithms based on multiday cycles have emerged as the most 

accurate, recently surpassing all previous approaches on a benchmark human dataset6 as well 

as showing excellent performance for larger cohorts,32 and using data from seizure diaries.33 

If heart rate can be shown to reliably track multiday cycles of seizure likelihood, then 

similarly powerful seizure forecasts may eventually be derived from wearable devices, a 

concept that has already been demonstrated in retrospective studies34,35. 
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In addition to seizure forecasting, monitoring heart rate cycles may provide insight into the 

long-term role of heart rate and HRV in risk of sudden unexpected death in epilepsy 

(SUDEP). There are stereotypical cardiorespiratory changes prior to the occurrence of 

SUDEP36, with electrocardiographic abnormalities and impaired autonomic control 

associated with a higher risk of SUDEP.37 Long-term ECG monitoring may be predictive of 

SUDEP in people with epilepsy.38,39 However, despite circadian modulation of SUDEP risk - 

with substantially higher incidence at night36 - longer rhythms have not yet been investigated. 

The existence of co-modulated heart rate and seizure cycles makes heart rate cycles a feasible 

biomarker for the risk of both seizure occurrence and SUDEP. 

 

Multiday heart rate cycles may have implications for cardiology. The relevance of circadian 

cycles to cardiovascular disease has long been recognised. Circadian patterns are observed 

across most arrhythmic events regardless of whether an underlying heart condition is 

present.24 In addition to circadian rhythms of cardiovascular disease, seven-day 19 and 

seasonal patterns 40  have been documented. Multiple studies show a Monday peak in cardiac 

mortality  and hospital admissions for cardiovascular disease.19 Although it is hypothesised 

that these weekly patterns may be related to endogenous variation in cardiac output,1 

weekday and seasonal trends are more likely to be driven by environmental factors.19 The 

current study found some precise 7-day heart rate cycles, although most multiday heart rate 

cycles were not locked to a 7-day week, or associated with a particular weekday, suggesting 

that incidence of cardiovascular disease should be explored in relation to underlying 

individual-specific cycle periods to investigate potential high-risk times for common 

dysfunctions. Just as circadian regulation leads to danger times for people with heart 

conditions, it is possible that risk factors for cardiac mortality also fluctuate over multiday 

timescales. 
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Limitations and future work 

The current study was based on self-reported seizure times, so noise could influence results. 

We had previously demonstrated that, for some people, multiday cycles established from 

seizure diaries align with cycles recorded from true electrographic seizures.33 Nevertheless, 

reporting bias could influence seizure timing, particularly with respect to circadian heart rate 

cycles, where reporting was likely to be affected by time of day (Supplementary Figure 6). 

On the other hand, weekly heart rate cycles were not always aligned to the precise 7-day 

workweek, so reporting bias linked to the day of the week would not drive synchronisation to 

these longer cycles (Supplementary Figure 7). This study did not monitor behavioural aspects 

such as exercise, medication adherence or dietary changes, which may drive multiday cycles. 

 

Heart rate cycles were measured from a consumer, wearable device, with reduced accuracy 

and temporal resolution compared to ECG. These limitations restricted the assessment of 

cardiac signals to look at average heart rate (within a 5-minute window), rather than other 

features, such as HRV, which may be critical to understanding brain-heart interactions in 

epilepsy.20 Wearable heart rate sensors are also subject to artefacts, although measurement 

noise was likely to be at a higher frequency than the multiday time scale focused on in the 

current work. It is worth noting that the heart rate measured via Fitbit photoplethysmography 

has been validated against ECG, showing no significant difference in resting heart rate during 

sleep 42, although systematic errors emerge during high intensity exercise.43 

 

Future work will extend these results to validate the existence of multiday heart rate cycles 

and their relationship to electrographic seizures using chronic sub-scalp EEG and additional 
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wearable sensors. For now, it is our hope that the prospect of multiday cycles governing 

diverse physiological systems leads to new breakthroughs in understanding biological 

rhythms and treatment of disease. 

Methods 

Study design 

Tracking Seizure Cycles is an ongoing observational cohort study examining seizure and 

other biological cycles and their interactions using long-term non-invasive monitoring. The 

study was approved by the St Vincent’s Hospital Human Research Ethics Committee (HREC 

009.19). 

Participants 

Adults (18 years and over) with a confirmed epilepsy diagnosis and healthy controls were 

recruited between August 2019 and March 2021. Participants with epilepsy had uncontrolled 

or partially controlled seizures and were recruited through neurologist referral. Healthy 

controls were recruited from the general population. All participants provided written 

informed consent. 

Data collection 

Continuous data were collected via mobile and wearable devices. All participants wore a 

smartwatch (Fitbit) and participants with epilepsy manually reported seizure times in a freely 

available mobile diary app (Seer App). Participants with epilepsy were instructed to report all 

their clinically apparent events, including generalised and focal seizures (both aware and 

unaware). The smartwatch continuously measured participants’ heart rates (via 

photoplethysmography) at 5s resolution. 
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Statistical analyses 

All analyses were executed in Python (version 3.7.9).  

Heart rate cycle analysis 

To evaluate the strength of heart rate cycles, participants were required to have at least four 

months of recordings with over 80% adherence (i.e., less than 20% missing data), with 

adherence defined as at least one heart rate recording every hour.   

Cycles were measured at different periods using a wavelet transform approach that was 

previously proposed for the detection of multiday cycles of epileptic activity.5 The 

continuous heart rate signal was first down-sampled to one timestamp every five minutes. 

Linear interpolation was performed for up to 1 hour either side of a missing segment, to 

account for time to charge the wearable device. Longer recording gaps were interpolated with 

a straight line at the average value of all the data (see Supplementary Appendix 1). Missing 

segments that were interpolated with a straight line ranged from 0.1 - 1354 hours (M = 17.9, 

SD = 68.3 hours). Simulation showed that most cycles could be detected after interpolation, 

even with long missing segments, or multiple missing segments (Supplementary Table 3 and 

Supplementary Figure 2). 

Prior to wavelet analysis the heart rate signal was z-standardised (by subtracting the mean 

and dividing by the standard deviation). Candidate cycle periods were then tested using a 

continuous Morlet wavelet transform, where significant peaks in the global wavelet power 

(using the time-averaged significance test described in 44) were determined to be significant 

heart rate cycle periods (Supplementary Appendix 2). We considered the cone of influence of 

the wavelet – areas of the wavelet that are potentially affected by edge-effect artefacts – by 

restricting cycle periods from 2.4 hours to a maximum period of one-quarter of the recording 

length (i.e., a minimum of four cycles had to be observed). A Morlet wavelet was chosen to 
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be consistent with other multiday cycles work in epilepsy5. We also found the wavelet 

approach to be less vulnerable to noise than Fourier transformations, although both methods 

did pick up multiple closely spaced peaks (Supplementary Figure 4), likely because 

physiological data does not display perfect periodicity. To eliminate some of these additional 

peaks we used a peak significance threshold of 99%. 

To extract heart rate cycles, the standardised heart rate signal was bandpass filtered into 

distinct component frequencies matching the significant cycle frequencies (identified from 

wavelet decomposition). The bandpass filter applied at each significant cycle was a second-

order zero-phase Butterworth bandpass filter with cut-off frequencies at ±33.3% of the cycle 

frequency. For instance, someone with significant cycles (wavelet spectrum peaks) at 24 

hours, 9 days and 30 days would have three bandpass filters applied with cut-off frequencies 

of 16-32 hours, 6-12 days and 20-40 days, respectively. These cut-off frequencies were 

chosen to account for phase shifts in the cycle over the recording time and is consistent with 

previous work.5 To account for bandpass overlap in significant cycle frequencies, we 

introduced a sparsity criterion, whereby only the strongest peak within any cycle’s bandpass 

filter pass band was considered.  

Relationship between seizures and heart rate cycles 

To evaluate potential co-modulation between seizure occurrence and heart rate cycles, 

participants were required to have at least 20 reported seizures. Co-modulation was measured 

from the degree of ‘phase-locking’ of seizure times with respect to underlying heart rate 

cycles, i.e., how tightly seizure times were linked to a particular point (phase) of the cycle. 

Phase-locking was quantified by the magnitude of the mean resultant vector computed from 

the phase of all seizures. The magnitude of the mean resultant vector (henceforth called the 

synchronisation index, SI) ranges from 0 to 1, where 0 indicates a uniform distribution (i.e., 
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no relationship) and 1 indicates perfect alignment with respect to an underlying cycle. The 

angle or direction of the mean resultant vector indicates the preferred phase of seizure 

occurrence; for instance, seizures could be more likely near the peak or trough of average 

heart rate cycles. 

The continuous phase of heart rate cycles was estimated using the Hilbert transform. The 

times of seizure occurrence were mapped to the estimated phase of heart rate cycles. Seizure 

phases were then binned into 24 (circadian cycles) or 18 (all other periods) equal sized bins 

(ranging from 0 to 2π) to produce a phase distribution. The SI values were computed from 

these phase distributions. An omnibus (Hodges-Ajne) test45 was used to determine whether 

seizures were significantly phase-locked to the heart rate cycle by testing the null hypothesis 

that the phase distribution was uniform. A Bonferroni correction was used to reduce the 

experiment-wise error, by accounting for comparisons across multiple heart rate cycles (see 

Supplementary Appendix 3). 

Data availability  

Excluding participants who did not consent to share their data publicly, all deidentified data 

will be made available on Figshare following publication. 
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