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Abstract  
 
Purpose 
Although statistical models have been employed to detect and classify lung nodules using deep learning-extracted 
and clinical features, there is a lack of model validation in independent, multinational datasets from computed 
tomography (CT) scans and patient clinical information. To this end, we developed a deep learning-based algorithm 
to predict the malignancy of pulmonary nodules and validated its performance in three independent datasets 
containing multiracial and multinational populations.  
 
Methods  
In this study, a convolutional neural network-based algorithm to predict lung nodule malignancy was built based on 
CT scans and patient-wise clinical features (i.e. sex, spiculation, and nodule location). The model consists of three 
steps: (1) a deep learning algorithm to automatically extract features from CT scans, (2) clinical features were 
concatenated with the nodule features after dimension reduction by the principal component analysis (PCA), and (3) 
a multivariate logistic regression model was employed to classify the malignancy of the lung nodules. The model 
was trained by a dataset containing 1,556 nodules from 813 patients from the National Lung Screening Trial (NLST). 
The performance of the model was evaluated on three independent, multi-institutional datasets LIDC and Infervision 
Multi-Center (IMC) dataset, which contains 562 nodules from 293 patients, and 2044 nodules from 589 patients, 
respectively. The model accuracy was measured by the area under curve (AUC) of receiver operating characteristic 
(ROC) analysis.   
 
Results  
The study shows that the AUCs of ROCs on the NLST dataset, LIDC dataset, and IMC dataset are 0.91, 0.86, and 
0.95, respectively. The inclusion of clinical features does not significantly improve the model performance. 
Quantitatively, the summed-up weight on the prediction accuracy of the 10 nodule features extracted by the deep 
learning algorithm equals to 0.091, while the weight of patient sex, nodule spiculation, and location is 0.031, 0.052, 
and 0.008, respectively. 
 
Conclusion  
The convolutional neural network-based model for lung nodule classification could be generalized to multiple 
datasets containing diverse populations. The addition of three patient clinical features to the nodule features 
extracted by deep learning does not boost the performance of the model.  
 
Keywords: lung cancer diagnosis, pulmonary nodule, deep learning, computed tomography 
 
 
 

Introduction 
 
Over 12 million US adults experience a diagnostic error every year in outpatient settings [1].  Potentially 80,000 
preventable deaths in US hospitals associated with failures in diagnosis every year. In addition, diagnostic errors 
lead to other serious harms or permanent disability [2]. Therefore, it is important to minimize diagnostic errors. 
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Lung cancer is the most common cancer in both men and women in the U.S. Lung cancer screening with low-dose 
computed tomography (LDCT) has been shown to reduce mortality by 20–43% and is included in US screening 
guidelines [5-7]. The Lung-RADS guidelines were published by the American College of Radiology (ACR), where 
Lung-RADS provide the reporting guidelines for LDCT lung cancer screening, in order to standardize image 
interpretation by radiologists and management recommendations. The Lung-RADS guideline is based on a variety 
of image findings, but primarily nodule size and growth [7].  
 
Having a high nodule malignancy prediction is very important because of the high clinical and financial costs of 
missed diagnosis, late diagnosis and unnecessary biopsy procedures resulting from false negatives and false 
positives [8-9]. The diagnostic error of lung cancer leads to “high severity harms” and “malpractice claims”.  The 
total payments summed to more than a hundred billion dollars from 2006-2015 for lung cancer cases [2]. Persistent 
inter-reader variability and incomplete characterization of comprehensive imaging findings remain as limitations of 
the lung cancer screening program [10-11]. Clinical judgement failures, or the failure of recognition, is the second 
leading cause of diagnostic errors [3]. Lung cancers can be missed when sizes of lesions are small and hard to see 
[4]. Increased workload, physician fatigue typically exacerbates the observer error. The limitations of the lung 
cancer screening program and the detection errors suggest opportunities for more computer systems to aid the 
radiologists to improve the detection performance and improve the inter-reader consistency. 
 
Prior studies have reported that deep learning-based algorithms have shown excellent performance on the nodule 
malignancy classification. For example, Causey et al. [12] used the LIDC/IDRI cohort to train a sophisticated CNN 
classification model (i.e. NoduleX) and achieved high accuracy for nodule malignancy classification, with an AUC 
of 0.99. Although with excellent prediction, NoduleX was trained and tested on the same database that has a 
relatively small number of CT images (thousands) and nodules. Furthermore, as they pointed out, their model may 
not be generalizable to other image datasets with different CT scan image quality or ground truthing methods. These 
drawbacks will limit its adoption and application in real scenarios.  
 
Google AI’s end-to-end approach has presented promising lung cancer detection results using deep learning [13]. 
They conducted clinical trials with a level similar to, or better than, that of radiologists. Although the results are 
promising, their model lacks validation from external databases and code availability. Moreover, radiologists 
indicated that Google AI’s claims were two strong, and the recommendations from black-box nature of a proprietary 
AI system was likely to be accepted by medical professionals.  
 
Previous statistical predictive tools based on patient and nodule characteristics have achieved high predictive 
accuracy of lung nodule malignancy. McWilliams et al. [14] developed multivariable logistic regression models 
with predictors including age, sex, family history of lung cancer, emphysema, nodule size, nodule position, and 
nodule type, using subjects from the Pan-Canadian Early Detection of Lung Cancer Study (PanCan) and the British 
Columbia Cancer Agency (BCCA). They found that out of all the clinical characteristics, patient age, nodule 
position, and nodule type play significant weights in the model’s predictability. Use of this model has been 
recommended for pulmonary nodule risk estimation in lung cancer screening, although a later study reported that 
experienced and trainee radiologists had superior ability for lung cancer prediction compared with the multivariate 
model.  
 
In this study, we aim to evaluate the prediction accuracy of lung nodule malignancy by deep learning model and 
validate its robustness on multiracial, multinational datasets. We also compared the model performance with deep 
learning features extracted from CT images only and combined deep learning feature and clinical features.  
 
 

Materials and Methods 
 
NLST dataset 
The training cohort is consisted of the data from participants of the NLST trial. All positive cases are confirmed by 
biopsy in the trial. Negative cases are randomly selected from the NLST participants who are not diagnosed lung 
cancer in the time period of the trial. We screened out 624 sets of data that were diagnosed with lung cancer based 
on the report, including 633 malignant nodules, and 189 sets of data that were not diagnosed with lung cancer, 
including 923 non-malignant nodules. 
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LIDC dataset 
The Lung Image Database Consortium (LIDC) database consists of diagnostic and lung cancer screening thoracic 
CT scans with annotated lesions. It contains 1018 subjects collected from 7 academic and 8 medical imaging 
companies. Each CT scan was independently reviewed by four experienced thoracic radiologists and was marked 
with lesions in three categories (“nodule >= 3 mm”, “nodule < 3mm”, and “no-nodule >= 3mm”). Each nodule in 
the “nodule >= 3 mm” class was then given a malignancy score and a detailed segmentation. The malignancy scores 
were defined as follows: 1 “Highly Unlikely for Cancer”, 2 “Moderately Unlikely for Cancer”, 3 “Indeterminate 
Likelihood”, 4 “Moderately Suspicious for Cancer”, 5 “Highly Suspicious for Cancer”. Nodules containing the label 
of 1 “High Unlikely for Cancer” are considered benign (negative cases) and 5 “Highly Suspicious for Cancer” are 
considered malignant (positive cases).  
 
We select nodules with label 1 “Highly Unlikely for Cancer” and label 5 “Highly Suspicious for Cancer” as Benign 
and Suspicious cases as the gold standard, respectively. Based on the report, we screened 106 sets of data that were 
diagnosed as lung cancer, including 239 malignant nodules, and 87 sets of data that were not diagnosed with lung 
cancer, including 323 non-malignant nodules. 
 
Infervision Multi-Center Database  
Infervision multi-center dataset consists of CT scans from 6 hospitals at different geographic areas in China, 
including Dalian Zhongshan Hospital, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, 
Jiangsu University Affiliated Hospital, Fujian Medical University Affiliated Union Hospital, Wuhan Tongji Hospital, 
and Shengjing Hospital. Patients with lung cancer were confirmed by surgical biopsies. All the data and reports have 
been desensitized. In this dataset, we screened 502 sets of data diagnosed as lung cancer based on the report, 
including 300 malignant nodules, and 87 sets of data from undiagnosed lung cancer, including 1744 non-malignant 
nodules. And all of those nodules have been marked by radiologists according to the report, in order to unify the 
form with the other two dataset annotations. 
 
Data Preprocessing 
Preprocessing on CT scans: (a) Resample. The CT slice spacings were different. In order to obtain isotropic 3D 
volume data of nodules, the 3D nearest neighbor algorithm was used to resample the entire set of CTs of the patients, 
so that the spacing in each direction of x, y, and z was fixed to 0.625. We did the same for the 2D marker boxes to 
ensure the markers remain unchanged. (b) Extract the nodule area. The 2D markers frame were merged to obtain the 
3D markers, and the target areas were extracted from the 3D markers. According to the merging rule: if IOU>0.3 in 
the 2D marker boxes of the adjacent layers, the merging could be performed, which means that the two 2D marker 
boxes belong to the same 3D marker. The final 3D marks were the smallest rectangle that can contain all the merged 
2D marks. To extract the cube areas, we took the maximum rectangle side length as the side length and the rectangle 
center point as the center to extract the cube nodule areas. 
 
Processing clinical information: The 3 clinical information were all enumerated information and the 3 characteristic 
values were assigned to the 3 clinical information.  The assignment methods are: gender (male: 1, female: 0), glitch 
(with: 1, without: 0), upper lung (In: 1, not in: 0) 
 
Data Augmentation 
Data augmentation was performed by randomly selecting several of the following data enhancements methods, 
including random rotation, folding, center blocking, and brightness change. to perform data enhancement. The 
resulting datasets were uniformly resized into the dimension of 64x64x64. 
 
Deep Learning Feature extraction 
The feature extraction model is based on the backbone of the 3-D ResNet34 architecture. A 3-D (X, Y, Z) image 
volume is extracted and processed through successive 3-D (X, Y, Z) convolution and max pooling layers to produce 
spatial features that are gathered in a fully-connected layer into a 1-D “feature vector” and then to a final 
classification layer where a sigmoid function provides an output prediction.  
 
Combined Deep learning Feature and Clinical Features 
We selected three clinical features—sex, nodule upper lung, and speculation—that have the highest weights 
according to the Brock University cancer prediction equation. The Brock equation has been adopted by LungRADs. 
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These three clinical features of each patient were annotated by experienced thoracic radiologists. We combine these 
three features with the nodule features extracted from the corresponding CT scans by our deep learning model after 
principal component analysis (PCA) to avoid overfitting. We then performed a multivariate logistic regression to 
classify benign versus malignant nodules. 
 
Training, Validation and Testing 
The feature extraction convolutional neural network was trained on the NLST dataset using four GTX 1080 with a 
batch size of 32, a dropout rate of 0.5, Adam optimizer, and a learning rate of 0.0001. We performed five-fold cross-
validation on the NLST dataset to get 5 sub-models, and 5 sub-models were tested on the test dataset. The final test 
result was the average of the results of the 5 sub-models. 
 
 
 
 

Results  
 
Study cohorts 
 
A total of 1,556 nodules from 813 patients were collected from the NLST cohort to train the deep learning model. 
The detailed demographics are shown in Table 1. The flowchart of patient selection is shown in Figure 1.  
 
 

Variables No Lung Cancer Lung Cancer Total 

NLST Dataset 

Patients    

 Women 100 (52.91%) 255 (40.861%) 355 (43.66%) 

 Men 89 (47.09%) 369 (59.14%) 458 (56.34%) 

Nodules   1556 

 Women 464 (50.27%) 259 (28.06%) 723 (46.47%) 

 Men 459 (49.73%) 374 (71.94%) 833 (53.53%) 

Spiculation    

 No 922 (99.89%) 393 (62.08%) 1315 (84.51%) 

 Yes 1 (0.11%) 240 (37.92%) 241 (15.49%) 

Upper Lung   1456 

 No 409 (44.31%) 244 (45.78%) 653 

 Yes 514 (55.69%) 289 (54.22%) 803 

LIDC Dataset 

Patients    

 Women 43 (49.42%) 53 (50.00%) 96 (49.74%) 

 Men 44 (50.58%) 53 (50.00%) 97 (50.26%) 

Nodules   1556 

 Women 140 (43.34%) 128 (53.55%) 268 (47.60%) 

 Men 183 (56.66%) 111 (45.45%) 295 (52.40%) 

Spiculation    

 No 68 (28.45%) 14 (4.32%) 82 (14.56%) 

 Yes 171 (71.55%) 310 (95.68%) 481 (85.44%) 
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Upper Lung   1456 

 No 184 (56.79%) 111 (46.44%) 295 (53.40%) 

 Yes 140 (43.21%) 128 (53.56%) 268 (46.60%) 

IMC Dataset 

Patients    

 Women 183 (61.00%) 300 (59.96%) 484 (60.35%) 

 Men 117 (39.00%) 202 (40.04%) 318 (39.65%) 

Nodules   1556 

 Women 1156 (66.28%) 300 (28.06%) 1456 (46.47%) 

 Men 588 (33.72%) 202 (71.94%) 790 (53.53%) 

Spiculation    

 No 0 105 (20.91%) 105 (84.51%) 

 Yes 0 397 (79.09%) 397 (15.49%) 

Upper Lung    

 No 0 232 (46.21%) 232 (46.21%) 

 Yes 0 270 (53.79%) 270 (5.79%) 
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Fig 1. The protocol for patient selection from the NLST cohort. The same protocol is applied to the LIDC and IMC cohorts.  
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Fig 2. Framework of the proposed model.  
 
 
Fig 2 illustrates our residual neural network model for the prediction of lung nodule malignancy. Our model consists
of two major modules. The first module employs a convolutional neural network based on the architecture of
ResNet-34 to extract high dimensional deep learning features from CT scans. Unlike previous pure deep learning-
based approaches, which generate classification purely by the high dimensional features, we then reduce the
dimension of the output of the first network as to avoid possible overfitting. After this, the dimensionally reduced
output is combined with curated patient-wise clinical features by outer concatenation (an operation similar to outer
product) and then fed into a multivariate logistic regression to predict the malignancy of the pulmonary nodules.   
 
 
 
 
 
 

Discussion 
 

 
(a)    (b)     (c) 

 
Figure 3. AUCs of the models using deep learning features extracted from CT images only (image only, red solid line) and
combined deep learning feature and clinical feature (image + clinical, blue dash line) on the NLST dataset (a), LIDC dataset (b)
and IMC dataset (c).  
 
For training and validation, we performed analysis on 1,556 nodules with annotations (633 malignant nodules, 923
benign nodules) from the NLST cohort using 5-fold cross-validation. We found that, both the deep learning features
and machine learning approache can achieve AUCs > 0.90 on the NLST cohort, and the integration of three clinical
features does not remarkably increase the model performance. Unlike other deep learning-based algorithms for lung
nodule malignancy prediction, which lack validation from external datasets, we also achieved high accuracy of
prediction in other two datasets to evaluate the model’s robustness in datasets containing many different metrics
such as patients’ race, country of residency, and the gold standard, which has been rarely reported. We found that
both the pure deep learning feature and DL feature plus clinical features have good performance on the two
validation datasets. The AUCs for LIDC, and LCR are 0.861 (pure DL) / 0.857 (DL + clinical), and 0.949 (pure DL)
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respectively. Noticeably, LIDC has lower AUC value than the other two datasets. It might be because the LIDC’s 
gold standard for malignancy is different than others. That is, the malignant nodules in the LIDC dataset are those 
labeled as “Highly Suspicious” by radiologists, meanwhile in the NLST and LIDC datasets, malignant nodules are 
confirmed by surgery biopsy.  
 
Further, we found that the concatenation of the clinical features with the deep learning extracted features has a 
marginal impact on the recall and precision of the model. As aforementioned, we reduced the dimension of the deep 
learning features by selecting the 10 most weighted features that account for a total weight of 0.978. These 10 deep 
learning features are combined with the three clinical features as the input of the multivariate logistic regression 
model. We found that the prediction accuracy (AUCs, recall, and precision) was almost the same compared to the 
pure deep learning features without dimensionality reduction. Quantitatively, the summed-up weight of the 10 
nodule features extracted by the deep learning algorithm equals to 0.091, while the weight of patient sex, nodule 
spiculation, and location is 0.031, 0.052, and 0.008, respectively. We speculate that, compared to the patient clinical 
features, image-derived features may provide a more direct correlation with the malignancy of the lung nodules.  
 
 
Table 2. Cancer Risk Stratification on NLST dataset.  
  Recall Precision TP FP GT 
DL Benign 0.841 0.644 159 88 189 

Malignancy 0.859 0.947 536 30 624 
DL + clinical  Recall Precision TP FP GT 

Benign 0.873 0.620 165 101 189 
Malignancy 0.838 0.956 523 24 626 

 
Table 3. Cancer Risk Stratification on LIDC dataset.  
  Recall Precision TP FP GT 
DL Benign 0.802 0.817 256 58 323 

Malignancy 0.757 0.739 181 64 239 
DL + clinical  Recall Precision TP FP GT 

Benign 0.746 0.834 241 48 323 
Malignancy 0.799 0.700 191 82 239 

 
Table 4. Cancer Risk Stratification on IMC dataset.  
  Recall Precision TP FP GT 
DL Benign 0.878 0.967 1531 53 1744 

Malignancy 0.894 0.678 449 213 502 
DL + clinical  Recall  Precision TP FP GT 

Benign / / / / / 
Malignancy / / / / / 
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Fig. 4. A visual comparison between the nodules with low (A, B) or high (C, D) likelihood of being malignant. The model
prediction rating for A, B, C, D are 0.03, 0.44, 0.73, and 0.99, respectively. The yellow square represents the nodule lesions.  
 
Fig. 4 shows four CT images from the LIDC cohort. Fig. 4(A) represents a male with a nodule having no stipulation
and not on the left upper lung, with a model predicted malignancy score of 0.03 and a label of benign. Fig. 4(B)
denotes a male with a nodule having no stipulation and not on the left upper lung, with a model predicted
malignancy score of 0.44 and a label of benign. Fig. 4(C) represents a female with a nodule having no stipulation
and not on the left upper lung, with a model predicted malignancy score of 0.73 and a label of benign of being
malignant. Fig. 4(D) denotes a male with a nodule having no stipulation and not on the left upper lung, with a model
predicted malignancy score of 0.99 and a label of malignant.  
 
 
We have many limitations in this study. First, the three datasets are composed of CT scans from multiple institutions
from the US and China. The image quality may vary due to different ways of practices. Second, the ground truths
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for nodule malignancy of the three datasets are different. As aforementioned, in the NLST dataset and Infervison 
multi-center dataset, the malignant nodules are confirmed by surgery biopsy. In the IMC dataset, however, the 
malignant nodules were identified and annotated by radiologists. Third, although the three datasets we chose in this 
study include patients with multiracial and multinational backgrounds, the dataset volume is still relatively small. 
We have been collecting more real-world data, and further study will be performed in the futher.  
 
In conclusion, we evaluate the generalizability of a deep learning-based approach in the prediction of lung nodule 
malignancy from CT scans and clinical features. We found that the convolutional neural network algorithm trained 
by the NLST dataset achieved good prediction accuracy on the LIDC dataset and IMC dataset. The model shows 
good robustness on the three independent cohorts containing patients with diverse backgrounds such as race, 
ethnicity, socioeconomic status, and geography. Future, we compared models with the deep learning features only 
and combined deep learning and clinical features, and found no remarkable difference in the prediction accuracy. 
We believe this work showed potential to promote the recognition and adoption of deep learning-based approaches 
for lung cancer diagnosis in the clinical settings.  
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