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‭Abstract‬

‭Introduction.‬‭Detecting voice disorders from voice‬‭recordings could allow for frequent, remote,‬

‭and low-cost screening before costly clinical visits and a more invasive laryngoscopy‬

‭examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice‬

‭recordings using machine learning, to identify which acoustic variables were important for‬

‭prediction to increase trust, and to determine model performance relative to clinician‬

‭performance.‬

‭Methods.‬‭Patients with confirmed UVFP through endoscopic‬‭examination (N=77) and controls‬

‭with normal voices matched for age and sex (N=77) were included. Voice samples were elicited‬

‭by reading the Rainbow Passage and sustaining phonation of the vowel "a". Four machine‬

‭learning models of differing complexity were used. SHapley Additive exPlanations (SHAP) was‬

‭used to identify important features.‬

‭Results.‬‭The highest median bootstrapped ROC AUC score‬‭was 0.87 and beat clinician's‬

‭performance (range: 0.74 – 0.81) based on the recordings. Recording durations were different‬

‭between UVFP recordings and controls due to how that data was originally processed when‬

‭storing, which we can show can classify both groups. And counterintuitively, many UVFP‬

‭recordings had higher intensity than controls, when UVFP patients tend to have weaker voices,‬

‭revealing a dataset-specific bias which we mitigate in an additional analysis.‬

‭Conclusion.‬‭We demonstrate that recording biases in‬‭audio duration and intensity created‬

‭dataset-specific differences between patients and controls, which models used to improve‬

‭classification. Furthermore, clinician's ratings provide further evidence that patients were‬
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‭over-projecting their voices and being recorded at a higher amplitude signal than controls.‬

‭Interestingly, after matching audio duration and removing variables associated with intensity in‬

‭order to mitigate the biases, the models were able to achieve a similar high performance. We‬

‭provide a set of recommendations to avoid bias when building and evaluating machine learning‬

‭models for screening in laryngology.‬

‭Keywords:‬‭vocal fold paralysis, acoustic analysis,‬‭voice, speech, explainability, interpretability,‬

‭machine learning, bias‬
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‭INTRODUCTION‬

‭Voice recordings provide a rich source of information related to vocal tract physiology‬

‭and human physical and mental health. Given advances in smartphones and‬

‭wearables, these recordings can be made anytime and anywhere. Thus the search for‬

‭disorder-specific acoustic biomarkers has been gaining momentum. Voice biomarkers‬

‭have been reported for detecting Parkinson's disease‬‭(1)‬‭as well as psychiatric‬

‭disorders including depression, schizophrenia, and bipolar disorder (for a systematic‬

‭review, see Low et al, 2020‬‭(2)‬‭). Given our scientific‬‭understanding of the complexity of‬

‭speech production, multiple acoustic features have been devised for use in machine‬

‭learning models. In Figure 1, we describe a schematic of speech production and the‬

‭process of extracting certain acoustic features from an audio signal (see also Quatieri,‬

‭2008‬‭(3)‬‭), which is an important part of explaining‬‭how pathophysiology would affect‬

‭acoustic features that are used in machine learning classifiers. Panel (A) depicts speech‬

‭as the result of the neural coordination of three subsystems: the respiratory system‬

‭(lungs), the laryngeal system (vocal folds), and the resonatory system of the vocal tract‬

‭(pharynx, oral cavity, nasal cavity, articulators, and subglottal effects). Speech‬

‭production requires air flow from the lungs to generate sound sources that are filtered‬

‭by the vocal tract. Panel (B) captures the fact that environmental, microphone, and‬

‭digital sampling characteristics (e.g., background noise, microphone gain, sampling‬

‭rate) can affect acoustic features. Panel (C) shows the waveform of the audio signal,‬

‭representing areas of compression (positive amplitude; higher air pressure) and‬
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‭rarefaction (negative amplitude; lower air pressure). Higher amplitudes can lead to‬

‭higher perceived loudness. Prosodic features arise from changes over longer segments‬

‭of time, which is perceived in the rhythm, stress, and intonation of speech. A segment of‬

‭the waveform is shown in the right panel, indicating a periodic signal from the vocal‬

‭folds. Panel (D) shows that for a given time window, a spectrum (right panel) can be‬

‭obtained through a fast Fourier transform (FFT) which represents the magnitude of the‬

‭frequencies in the signal with peaks (formants F1–F3) due to vocal tract filtering of the‬

‭source signal produced by the vocal folds. The spectrogram (left panel) is a‬

‭representation of the spectrum as it varies over time and can be obtained through a‬

‭short-term Fourier transform (STFT). The approximate location of the F0 and first‬

‭formants are displayed. Finally, (E) It is possible to separate source and filter‬

‭components by computing the inverse FFT of the log of the magnitude of the spectrum,‬

‭called the cepstrum (right panel). The peak in the cepstrum reflects the periodic glottal‬

‭fold vibration while lower quefrency components reflect properties of the resonatory‬

‭subsystem. For speech recognition, Mel filters are applied to the spectrum to better‬

‭approximate human hearing. A conversion of the Mel-spectrum to a cepstrum using a‬

‭Discrete Cosine Transform (DCT) generates mel-frequency cepstral coefficients‬

‭(MFCCs). Similar to the cepstrum, lower MFCCs track vocal-tract filter information.‬
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‭Figure 1. Schematic of speech production and the process of extracting certain acoustic features‬
‭from an audio signal.‬
‭(A) Speech production, (B) recording characteristics, (C) waveform of audio signal with fundamental‬
‭frequency (f0), (D) spectrogram with formants F1-F3 and intensity, (E) mel-frequency cepstral coefficients‬
‭(MFCCs). Full description in the main text.‬

‭Furthermore, while machine learning (ML) can be a powerful and successful approach‬

‭for diagnostics, they are often treated as "black-boxes". It can be difficult to determine‬

‭how the model is making a decision, that is, how it is combining input features from a‬

‭given patient to generate a prediction. This is particularly worrisome given ML‬

‭algorithms can detect and associate unintended or clinically irrelevant relationships and‬

‭introduce bias that may be difficult to anticipate. Explainable ML refers to a series of‬

‭methods and quantitative analyses for uncovering and "explaining" the rationale behind‬

‭the decision made by complex algorithms, which is particularly critical in the high-stake‬

‭decisions of medicine to increase trust among clinicians and patients‬‭(4)‬‭.‬

‭There are many challenges for applying acoustic analysis to detect specific disorders.‬

‭Voice characteristics are highly varied and change over time. Laryngeal pathology, age,‬
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‭gender, size, weight, general state of health, smoking/vaping, and medications can‬

‭impact vocal acoustic characteristics. Diseases in the larynx and phonatory system (i.e.,‬

‭larynx, resonating structures, lungs) and/or neurological system, will also affect voice.‬

‭Compensatory production strategies and environmental conditions can also change the‬

‭vocal signal. Furthermore, because hoarseness is such a frequent occurrence and‬

‭specialty voice centers are rare, vocal fold disorders are often undiagnosed,‬

‭under-reported, or misdiagnosed‬‭(5)‬‭.‬

‭We chose vocal fold paralysis as the study cohort for several reasons. First, it is‬

‭clinically important. UVFP can have detrimental effects on voice and quality of life with‬

‭resultant morbidity related to respiration, swallowing and aspiration‬‭(6)‬‭. Vocal fold‬

‭paralysis may occur due to iatrogenic injury, malignancy, idiopathic, and neurological‬

‭disease‬‭(7)‬‭. Overall, surgical iatrogenic injury accounts‬‭for 46% of all UVFP in adults‬

‭and thyroid and parathyroid surgeries are responsible for 32% of postsurgical UVFP‬‭(8)‬‭.‬

‭There is a significant need for a screening tool for the diagnosis and tracking of UVFP‬

‭because of the high impact of this condition on productivity and quality of life. Screening‬

‭could be done remotely and frequently, especially when surgical specialists and‬

‭laryngeal exams are not readily accessible due to geographical, financial, and other‬

‭barriers‬‭(9)‬‭. Using an explainable ML model as a screening‬‭tool for UVFP can provide‬

‭greater clarity as to who most needs laryngoscopy and provides insight in the key voice‬

‭characteristics related to the pathophysiology‬‭(10–14)‬‭.‬‭The costs associated with UVFP‬

‭not only relate to patient morbidity and diminished quality of life but also to the economic‬

‭burden placed on our healthcare system. Greater lengths of hospitalization and‬
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‭increased hospital costs have been associated with postsurgical VFP‬‭(15,16)‬‭. Access to‬

‭specialists for diagnosis is limited and early detection and management of UVFP appear‬

‭to improve length of stay and surgical outcomes‬‭(17)‬‭.‬‭Special consideration should be‬

‭given to what the model can actually classify: a model that generalizes well in‬

‭classifying UVFP from controls may not be able to screen for UVFP out of other voice‬

‭disorders, but could be used to monitor UVFP patients remotely and affordably during‬

‭treatment or detect risk for UVFP when it is the most likely cause such as dysphonia‬

‭after thyroid surgery.‬

‭Furthermore, UVFP is an ideal model for demonstrating the explainability of ML. UVFP‬

‭occurs when the mobility of a single vocal fold is impaired as a consequence of‬

‭neurological injury and diagnosis is consistently verified through routine laryngoscopy;‬

‭therefore, ground truth labels are available. Second, the clinical signs of UVFP are‬

‭well-described. These characteristics include a weak, breathy voice quality, early vocal‬

‭fatigue, reduced cough strength, and aspiration with thin liquids‬‭(18,19)‬‭. Therefore, the‬

‭acoustic differences between UVFP patients and healthy controls can be interpreted‬

‭with regards to perceptual symptoms and a well-understood pathophysiology. In‬

‭contrast, explaining important variables to predict a disorder which is hard to diagnose‬

‭(e.g., has low inter-rater reliability) and has an unclear pathophysiology would ironically‬

‭result in a poor explanation, because it would be puzzling how or even if the disorder‬

‭could modulate the important acoustic variables. Of course, machine learning models‬

‭can also offer novel explanations into a disorder by characterizing novel characteristics.‬

‭However, if these models use high-dimensional feature vectors, they are more likely to‬
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‭overfit when using small datasets‬‭(20,21)‬‭, which should lead to more skepticism of‬

‭these novel explanations.‬

‭There have been several studies detecting unilateral vocal fold paralysis (UVFP) using‬

‭machine learning‬‭(22–30)‬‭; however, most have included‬‭the disorder among a set of‬

‭voice disorders to be predicted. Limitations of these prior studies could be seen to fall‬

‭into one of following types: not reporting the performance when classifying the subset of‬

‭participants with UVFP out of the participants with dysphonia they were trying to detect;‬

‭small sample sizes given most studies contained 10 participants with UVFP or fewer‬

‭with one study containing 50 participants‬‭(31)‬‭; a‬‭lack of algorithmic explanations: they‬

‭either do not report on the relative importance of each acoustic variable; use input data‬

‭such as a spectrogram in a black-box deep learning model which could make attempts‬

‭at algorithmic explanations on images such as saliency maps more opaque than results‬

‭from feature importance of handcrafted features; use a black-box model such as neural‬

‭network without attempting to explain its predictions with deep learning explainability‬

‭methods‬‭(32)‬‭; use a single type of model which may‬‭pick up on certain types of patterns‬

‭but miss others leading to incomplete conclusions on feature importance; use only a few‬

‭features which may impede better predictive performance by not capturing certain‬

‭relevant information; and/or not publicly share models or data to help test their‬

‭generalizability to new data.‬

‭The objectives of our study were: to detect UVFP using ML; to evaluate the‬

‭effectiveness of different models in differentiating the acoustic signals between patients‬
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‭with UVFP and patients with normal functioning vocal folds (i.e., controls); to explain‬

‭which features are most important to the diagnostic models and examine the‬

‭pathophysiological relevance; and to compare performance to human clinicians‬

‭evaluating audio recordings. To achieve these objectives, we evaluated four different‬

‭classes of machine learning algorithms to assess classification performance, obtained‬

‭the minimal set of features necessary for detection, and identified the most important‬

‭acoustic features for model construction after removing redundant features. Ultimately,‬

‭we wanted to see if the most important features identified by the machine learning‬

‭models matched clinically-known relevant acoustic changes.‬

‭MATERIALS AND METHODS‬

‭This study was approved by the Institutional Review Board at Massachusetts Eye and‬

‭Ear Infirmary and Partners Healthcare (IRB 2019002711).‬

‭Participants and voice samples‬

‭Through retrospective chart analysis from 2009 to 2019, a total of 1043 patient charts‬

‭were reviewed from a tertiary care laryngology practice who underwent endoscopic‬

‭evaluation and voice testing. Of those, 53 patients with confirmed UVFP were identified.‬

‭They had documented vocal fold paralysis by endoscopic examination and had‬

‭undergone acoustic analysis as part of routine clinical care. Each patient had four‬
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‭acoustic recordings. These included three sustained vocalizations of the "a" vowel‬

‭sound (‬‭ɑ in the International Phonetic Alphabet)‬‭and a reading of the introductory‬

‭paragraph of the rainbow passage‬‭(33)‬‭. The acoustic‬‭recordings were all taken in an‬

‭acoustically shielded room. For each of these 53 patients, a board-certified‬

‭otolaryngologist reviewed their clinical history, video laryngoscopy as well as their audio‬

‭samples to confirm that they were correctly classified to have UVFP. Voice samples‬

‭from an additional 24 patients were collected prospectively using a mobile software,‬

‭OperaVOX‬‭TM‬ ‭on an iPad, who were being treated for‬‭UVFP. These patients also had‬

‭the same four acoustic recordings as the patients from retrospective chart review. This‬

‭combination of data collection yielded a total of 77 UVFP patients for analysis, of which‬

‭48 had left UVFP and 29 right UVFP.‬

‭All of the patients were then matched with control samples from a database of patients‬

‭without UVFP who had also undergone acoustic analysis. Each control was the same‬

‭sex and had the same smoking status as the UVFP patient and within three years of‬

‭age, and had documented laryngeal examinations that verified the absence of vocal fold‬

‭mucosal pathology. The controls were excluded if they had established laryngeal‬

‭surgery, vocal fold lesions, radiation, head and neck cancer, or neurological disease.‬

‭The controls had recorded the same four acoustic recordings as the retrospectively‬

‭gathered UVFP group. A board-certified otolaryngologist confirmed that the voice‬

‭recordings and video laryngoscopies of these controls matched normal expectancies.‬

‭The reading samples were divided in thirds to match the amount of vowel production‬

‭samples, resulting in 6 samples for most participants. Reading recordings were not‬
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‭13‬

‭available for three patients and three patient vowel samples were removed due to‬

‭containing multiple vowel productions or a cough. The final dataset that was analyzed is‬

‭described in Table 1. Reading+vowel refers to including all samples (i.e., ~6 samples)‬

‭from the same participant with the goal of either obtaining higher performance or‬

‭discovering features that show variation in relation to diagnosis consistently across‬

‭tasks. Mean (SD) audio lengths were 6.81s (5.47) for reading samples and 3.95s (1.00)‬

‭for vowel samples.‬‭The audio samples were processed‬‭using OpenSmile with the‬

‭eGeMAPS configuration file (article‬‭(34)‬‭, source‬‭code‬‭(35)‬‭) which applies different‬

‭summarization statistics to the time series depending on the feature resulting in 88‬

‭features per sample covering information related to the vocal folds (F0, jitter, shimmer),‬

‭intensity (loudness, HNR), vocal tract (F1–3 frequency, bandwidth, amplitude), spectral‬

‭balance (alpha ratio, Hammamberg index, spectral slope, MFCC 1–4, spectral flux), and‬

‭prosody (voice and unvoiced segments, loudness peaks per second). See section‬

‭"eGeMAPS features" in Sup. Mat. for full list.‬

‭Table 1. Sample sizes and demographic information‬

‭UVFP‬ ‭Controls‬ ‭Total‬

‭N‬ ‭77‬ ‭77‬ ‭154‬

‭Mean age (SD)‬ ‭56.4 (18.7)‬ ‭56.6 (18.8)‬ ‭56.5 (18.7)‬

‭Sex (F/M)‬ ‭39/38‬ ‭39/38‬ ‭78/76‬

‭Reading‬ ‭222‬ ‭231‬ ‭453‬

‭Vowel‬ ‭227‬ ‭231‬ ‭458‬

‭Reading+vowel (total)‬ ‭449‬ ‭462‬ ‭911‬

‭SD: standard deviation; F: female; M: male.‬
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‭14‬

‭Machine learning models of increasing complexity‬

‭With the goal of classifying voices recording into either UVFP or controls, we used four‬

‭machine learning algorithms of increasing complexity from the‬‭scikit-learn‬‭(v0.21.3)‬

‭using the‬‭pydra-ml‬‭(v0.3.1) toolbox‬‭(36)‬‭(default‬‭parameters were used unless‬

‭otherwise specified). By complexity we mean models are more complex if they are‬

‭harder to simulate, that is, harder to take the input data and model parameters and step‬

‭through every calculation required to produce a prediction in a reasonable time which‬

‭increases with the amount of parameters and interactions‬‭(37)‬‭.‬

‭(1) Logistic Regression: a simple linear model that is constrained to use few features‬

‭due to an L1 penalty making it the simplest model (“liblinear” solver was used which is‬

‭ideal for smaller datasets).‬

‭(2) Stochastic Gradient Descent (SGD) Classifier: we used a log loss which implements‬

‭a logistic regression; therefore, it is also a linear model but tends to use more features‬

‭due to an elastic net penalty, making it slightly more complex (the max_iter parameter‬

‭was set to 5000 and early_stopping was set to True).‬

‭(3) Random Forest: it is an algorithm that uses simpler decision trees (i.e., weak‬

‭learners) on feature subsets "but then takes the majority of the votes of the decision‬

‭trees' predictions to create a stronger learner, making it harder to interpret which‬

‭features are important across trees.‬
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‭15‬

‭(4) Multi-Layer Perceptron: it is a neural network classifier which incorporates, in our‬

‭case, 100 instances of perceptrons (artificial neurons), which are connected to each‬

‭input feature through weights with a ReLU activation function to capture nonlinear‬

‭relationships in the data. It is not possible to know exactly how the hundreds of internal‬

‭weights interact to determine feature importance, making the model difficult to interpret‬

‭directly from its parameters (the max_iter parameter was set to 1000; alpha or the L2‬

‭penalty parameter was set to 1).‬

‭To generate independent test and train data splits, a bootstrapped group shuffle split‬

‭sampling scheme was used. Bootstrapping is more optimal than cross-validation on‬

‭smaller datasets and provides a measure of uncertainty through a confidence interval‬

‭(38)‬‭. For each iteration of bootstrapping, a random‬‭selection of 20% of the participants,‬

‭balanced between the two groups, was used to create a held-out test set. The‬

‭remaining 80% of participants were used for training. This process was repeated 50‬

‭times, and the four classifiers were fitted and tested for each test/train split.. We used‬

‭the default of 50 bootstrapping splits from pydra-ml to reduce computational time.‬

‭Median ROC AUC stabilized to larger spit values at around 40 splits for logistic‬

‭regression models across tasks (see Sup. Mat. Figure S1) while reducing runtime‬

‭compared to larger split values. The Area Under the Receiver Operating Characteristic‬

‭Curve  (ROC AUC; perfect classification = 1; chance = 0.5) was computed to evaluate‬

‭the performance of the models on each bootstrapping iteration, resulting in a distribution‬

‭of 50 ROC AUC scores for each classifier. To ensure results were not due to choosing‬

‭scikit-learn's hyperparameter default settings, hyperparameter tuning was performed on‬
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‭16‬

‭the main models using all features and achieved similar performance to non-fine-tuned‬

‭models (see Sup. Mat. Table S1). The focus of our study is identifying bias and not‬

‭achieving –in our case– a small increment in performance; therefore, given the large‬

‭number of models, analyses, and bootstrapping samples in our study which focuses on‬

‭identifying bias, we chose default parameters given the small changes in performance‬

‭we observed with hyperparameter tuning. Additionally, for each iteration, each classifier‬

‭was trained with randomized patient/control labelings to generate a null distribution of‬

‭ROC AUC scores (i.e., a permutation test). Each model's performance was statistically‬

‭compared to their null model's distribution  using an empirical p-value, a common and‬

‭effective measure for evaluating classifier performance (see Definition 1 in‬‭(39)‬‭). The‬

‭significance level was set to alpha = 0.05.‬

‭Assessing feature importance‬

‭Kernel SHAP (SHapley Additive exPlanations) was used to determine which acoustic‬

‭features were most important for each model to detect UVFP. This method is model‬

‭agnostic in that it can take any trained target model (even “black box” neural networks)‬

‭and compute feature importance‬‭(40)‬‭. It does so by‬‭performing regression with L1‬

‭penalty between different sets of input features and a single prediction made by the‬

‭target model. It then uses the coefficients of the additional regression model as a‬

‭measure of feature importance for a single prediction. We took the average of the‬

‭absolute SHAP values across all test predictions (positive and negative values are both‬

‭important for classification). We then weighted the average values by the model’s‬
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‭17‬

‭median performance since an important feature for a bad model could be a less‬

‭important feature for a good model and vice versa. Since we trained each model 50‬

‭times (i.e., one for each bootstrapping split), we computed the mean SHAP values‬

‭across splits for each model. This pipeline (i.e., machine learning models, bootstrapping‬

‭scheme, SHAP analysis) was done using‬‭pydra-ml‬‭.‬

‭Reducing collinearity to do explainability analysis using‬

‭Independence Factor‬

‭Highly correlated features (i.e., collinearity) can influence model generation and‬

‭interpretation. Two models may obtain similar performance while using different features‬

‭or placing different weights on the same features (i.e., underspecification‬‭(20,41)‬‭) . This‬

‭makes it difficult to compare algorithmic explanations across models. For instance,‬

‭mean F1 frequency may be less important to a given model because the model uses‬

‭mean F2 frequency which happens to capture very similar information in a particular‬

‭dataset (i.e., has a high correlation), whereas a different model may use F1 instead of‬

‭F2 or use both but assign less importance to each and still obtain the same‬

‭performance. To enforce models to use the same features that capture very similar‬

‭information and be able to compare feature importance across models, we kept a single‬

‭feature out of the sets of features that share similar information above a given threshold.‬

‭We used a custom algorithm we call Independence Factor whereby for each‬

‭feature in alphabetical (i.e., arbitrary) order, we removed features that show strong‬
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‭18‬

‭dependence above a given threshold. The step was repeated for remaining features.‬

‭We use distance correlation from the Python‬‭dcor‬‭package‬‭(v0.4) because, unlike‬

‭Pearson‬‭r‬‭or Spearman‬‭rho‬‭, it can capture non-monotonic‬‭relationships‬‭(42,43)‬‭. We‬

‭have included several examples of non-monotonic associations between variables in‬

‭our dataset that would be captured better by dcor (see Sup. Mat. Figure S2). We used‬

‭the following threshold values for the distance correlation [1.0, 0.9, 0.8, 0.7, 0.6, 0.5,‬

‭0.4, 0.3, 0.2] to compute the Independence Factor, which removed increasingly more‬

‭features (i.e., 1.0 keeps all features and 0.2 removes features that have a distance‬

‭correlation above 0.2). We chose the feature size which contains at least one model‬

‭that scores within three percentage points of the performance using all features, with‬

‭the goal of obtaining a more parsimonious model for subsequent explanation while‬

‭maintaining high accuracy. Thus, removing redundant features makes the models‬

‭easier to interpret for clinical relevance. To visualize the original redundancy across‬

‭features, we computed clustermaps using‬‭seaborn‬‭package‬‭(v0.10.1) performing‬

‭hierarchical clustering with the average-linkage method and Euclidean distance. This‬

‭was performed on the pairwise distance correlation, computed separately on data from‬

‭UVFP, controls, UVFP+controls and on reading, vowel, and reading+vowel.‬

‭Performance using most important and least important features‬

‭Studies tend to report and describe the top N features out of M features, but it is not‬

‭clear what performance the model would obtain when using only those top N features;‬
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‭19‬

‭perhaps it would perform substantially worse than the full model. We will report‬

‭performance using only top 5 features as well as performance without top 5 features to‬

‭provide a more realistic evaluation of their importance.‬

‭Performance using audio duration‬

‭Figure 2 indicates clear differences in the distributions of audio recording duration between‬

‭UVFP patients and controls. This is due to how recordings were processed and saved and not‬

‭necessarily due to an intrinsic property of UVFP (e.g., slower speech), which reveals a bias that‬

‭models can leverage but is not expected to generalize well under different audio processing‬

‭procedures. Therefore, we examine whether audio duration alone could perform well in‬

‭classification of UVFP. The mean (and standard deviation) for the audio duration for reading‬

‭task is 3.5 s (0.00 s) for the controls and 10.25 s (6.17 s) for the UVFP patients and the audio‬

‭duration for sustained vowel task is 4.11 s (0.07 s) for the controls and 3.74 s (1.3 s) for the‬

‭UVFP patients.‬

‭Figure 2. Distribution of audio duration for reading and vowel tasks split by group reveals‬
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‭20‬

‭a dataset bias.‬‭The mode of the audio durations for the controls is 3.5 s for reading samples‬

‭and 4.11 s for vowel samples.‬

‭Performance using cepstral peak prominence‬

‭To evaluate whether results are sensitive to choice of features, we use a different set of‬

‭features derived from cepstral peak prominence (CPP) given it has been shown to be a‬

‭good measure of breathiness and dysphonia‬‭(44,45)‬‭.‬‭We match the summary statistics‬

‭across the audio recording that eGeMAPS uses: CPP mean, CPP coefficient of‬

‭variation (standard deviation normalized by the mean), CPP 20th percentile and CPP‬

‭80th percentile. We use our custom Python implementation which matches MatLab's‬

‭COVAREP output‬‭(46)‬‭.‬

‭Clinician ratings‬

‭In order to corroborate whether there are unintended recording differences between‬

‭UVFP patients and controls that may lead to bias, one otorhinolaryngologist and two‬

‭speech-language pathologists rated each audio recording of the reading task (one per‬

‭participant, not split in three) for the following variables (and possible responses), in‬

‭order: background noise (None, Some, High); UVFP (yes, no), CAPE-V severity (0 to‬
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‭21‬

‭100), CAPE-V roughness (0 to 100), CAPE-V breathiness (0 to 100), CAPE-V strain (0‬

‭to 100), CAPE-V pitch (0 to 100), CAPE-V loudness (0 to 100; estimated loudness as if‬

‭the rater were in the recording room), recording loudness (low, medium, high; loudness‬

‭of the recording). Inter-rater agreement was assessed using intra-class correlation for‬

‭all numerical variables and Light's k for the binary presence of UVFP‬‭(47)‬‭using the R‬

‭package‬‭irr (v‬‭0.84.1)‬‭(48)‬‭. The entire reading task‬‭was provided instead of the task split‬

‭in three to make assignment easier for clinicians. The reading task was chosen over the‬

‭sustained vowel because we expected it to be easier for clinicians to detect UVFP.‬

‭RESULTS‬

‭Performance of models using acoustic features‬

‭In Table 2, we report performance for models using all features, models after removing‬

‭redundant features, models using only top 5 features (to understand their unique role in‬

‭performance), models using all 88 features without 5 features (to understand whether‬

‭the top 5 features are necessary for high performance), models using audio duration‬

‭length, and models using a different feature set based on CPP. Performance was found‬

‭to be high across most models except CPP-based models. Some of the models just‬

‭using audio duration length were able to achieve close to the highest performance,‬

‭which reflects the expected effect of the difference in the dataset. Given dependent‬

‭features provide similar information (see Supplementary Figures S1, S2, S3, S4, S5,‬

‭S6, S7, S8, and S9) and distort feature importance analyses, we then tested‬
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‭22‬

‭performance after removing redundant features using the Independence Factor method‬

‭previously described. Supplementary Figure S12 shows performance for different‬

‭feature set sizes with increasing amounts of redundant features. From this analysis, we‬

‭selected the feature-set size that resulted in best performance using the least amount of‬

‭features for subsequent analyses: 39 features (reading), 13 (vowel), 19‬

‭(reading+vowel). After removing related features (i.e., reducing collinearity) from the‬

‭original 88 features, similar performance was obtained (median ROC AUC = 0.84–0.87)‬

‭using fewer features. Supplementary Materials "Feature selection" section describes an‬

‭analysis of how this method compares to removing features across each train set (see‬

‭Sup. Mat. Table S1).‬
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‭Table 2. Model performance‬

‭Features‬ ‭LogisticRegression‬ ‭MLP‬ ‭RandomForest‬ ‭SGDClassifier‬

‭Reading‬ ‭88‬ ‭.87 (.78–.93; .50)‬ ‭.87 (.80–.93; .50)‬ ‭.87 (.76–.91; .49)‬ ‭.83 (.76–.89; .50)‬

‭Vowel‬ ‭88‬ ‭.84 (.77–.89; .50)‬ ‭.86 (.79–.91; .50)‬ ‭.86 (.79–.91; .51)‬ ‭.80 (.72–.87; .50)‬

‭Reading+Vowel‬ ‭88‬ ‭.84 (.76–.91; .50)‬ ‭.86 (.74–.92; .48)‬ ‭.85 (.77–.92; .49)‬ ‭.79 (.72–.86; .51)‬

‭Reading‬ ‭39‬ ‭.84 (.76–.92; .50)‬ ‭.83 (.76–.91; .50)‬ ‭.87 (.77–.91; .51)‬ ‭.78 (.71–.86; .51)‬

‭Vowel‬ ‭13‬ ‭.80 (.70–.90; .50)‬ ‭.81 (.74–.91; .50)‬ ‭.84 (.75–.90; .52)‬ ‭.74 (.58–.87; .51)‬

‭Reading+Vowel‬ ‭19‬ ‭.79 (.70–.84; .50)‬ ‭.82 (.75–.88; .51)‬ ‭.84 (.77–.91; .51)‬ ‭.70 (.61–.77; .52)‬

‭Reading‬ ‭Top 5‬ ‭.81 (.73–.89; .50)‬ ‭.86 (.78–.92; .47)‬ ‭.85 (.77–.90; .50)‬ ‭.75 (.56–.87; .57)‬

‭Vowel‬ ‭Top 5‬ ‭.78 (.67–.87; .50)‬ ‭.82 (.74–.92; .53)‬ ‭.81 (.72–.87; .50)‬ ‭.72 (.57–.82; .49)‬

‭Reading+Vowel‬ ‭Top 5‬ ‭.80 (.70–.86; .50)‬ ‭.82 (.74–.88; .50)‬ ‭.81 (.74–.89; .53)‬ ‭.72 (.55–.83; .52)‬

‭Reading‬ ‭88 - Top 5‬ ‭.85 (.76–.92; .50)‬ ‭.87 (.77–.92; .49)‬ ‭.85 (.77–.90; .52)‬ ‭.82 (.71–.89; .51)‬

‭Vowel‬ ‭88 - Top 5‬ ‭.84 (.75–.93; .50)‬ ‭.86 (.72–.93; .51)‬ ‭.84 (.74–.94; .52)‬ ‭.80 (.70–.90; .48)‬

‭Reading+Vowel‬ ‭88 - Top 5‬ ‭.84 (.74–.89; .50)‬ ‭.85 (.76–.91; .50)‬ ‭.85 (.76–.91; .50)‬ ‭.79 (.71–.87; .50)‬

‭Reading‬ ‭Duration 1‬ ‭.81 (.73–.88; .50)‬ ‭.81 (.73–.88; .50)‬ ‭.85 (.77–.93; .50)‬ ‭.76 (.50–.88; .50)‬

‭Vowel‬ ‭Duration 1‬ ‭.70 (.61–.77; .50)‬ ‭.80 (.70–.91; .51)‬ ‭.86 (.76–.94; .52)‬ ‭.50 (.31–.68; .51)‬

‭Reading+Vowel‬ ‭Duration 1‬ ‭.70 (.64–.76; .50)‬ ‭.76 (.67–.84; .50)‬ ‭.86 (.73–.92; .50)‬ ‭.64 (.45–.70; .50)‬

‭Reading‬ ‭CPP 4‬ ‭.76 (.64–.84; .50)‬ ‭.76 (.64–.84; .46)‬ ‭.71 (.64–.78; .55)‬ ‭.74 (.60–.84; .50)‬

‭Vowel‬ ‭CPP 4‬ ‭.82 (.73–.90; .50)‬ ‭.82 (.71–.90; .53)‬ ‭.77 (.65–.85; .50)‬ ‭.77 (.40–.86; .49)‬

‭Reading+Vowel‬ ‭CPP 4‬ ‭.72 (.65–.80; .50)‬ ‭.74 (.68–.84; .53)‬ ‭.72 (.65–.78; .50)‬ ‭.68 (.44–.78; .49)‬

‭Performance of models using either all 88 features, non-redundant features (39, 13, 19), top five most‬
‭important features, all 88 features minus top 5 most important features using eGeMAPS features. We‬
‭then compared this to using just audio duration as well as a different feature set based on CPP. Median‬
‭ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model‬
‭trained on permuted labels which should be at .50 if at chance). For full distributions of scores see Figure‬
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‭S11 in Supplementary Materials. Removing features is a post-hoc analysis because features were‬
‭selected based on observing performance on the test sets, and therefore performance might be slightly‬
‭overly optimistic and would need to be tested on an independent test set for further validation. MLP:‬
‭Multi-Layer Perceptron; SGD: Stochastic Gradient Descent Classifier; CPP: Cepstral Peak Prominence.‬

‭The bootstrapped ROC AUC distributions and permutation tests for the reduced‬

‭(parsimonious) models using the non-redundant feature set are shown in Figure 3.‬

‭Models distribution were all significantly different than their null distribution after‬

‭correcting for multiple comparisons using a Benjamini-Hochberg procedure.‬
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‭Figure 3. Model performance comparison using a permutation test using non-redundant features.‬
‭Scores from models trained on true labels (blue) and trained on permuted labels (orange) over‬
‭bootstrapping splits.‬
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‭Given 24 UVFP patients were recorded with a different device, an iPad, we trained‬

‭models without their samples to make sure these differences in recordings were not‬

‭driving performance. There was a small drop in performance, which could be due to a‬

‭bias (the full, original model using information of the recording device), but could also be‬

‭due to removing training samples. The drop in performance is not large enough to‬

‭suspect that differences in recording are driving the full original model's performance‬

‭(see Sup. Mat. Table S2, Table S3, and analysis in Supplementary section‬

‭"Performance removing participants that used other recording system").‬

‭Assessing feature importance‬

‭Figure 4 reports feature importance using SHAP for all models. For the reading-based‬

‭models, all models tend to use the same top 5 features except SGD, which also has the‬

‭lowest performance. For further description of features and the chosen classification of‬

‭features, see Eyben et al. (2015)‬‭(34)‬‭and Low et‬‭al. (2020)‬‭(2)‬‭. When reviewing‬

‭important features, it is key to note that any of the features with which it is codependent‬

‭or associated could be a reasonable important feature (see clusters of redundant‬

‭features in Supplementary Figures S3-S11). The variance on feature importance rank is‬

‭evidence that models can use different feature information and still obtain similar high‬

‭–although not perfect– performance. We further display the distribution of each top‬

‭feature and its individual performance in Figure 5, which shows that no single feature is‬

‭enough to dissociate groups with high performance. This figure also revealed the bias:‬

‭the intensity-related feature equivalent sound level was counterintuitively higher for‬
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‭UVFP patients than controls. Figure 6 reports similarity between top 5 features and all‬

‭original 88 eGeMAPS features. Features that have a high dcor or distance correlation‬

‭(i.e., cluster) with top 5 features were not used in models to avoid redundancy, but still‬

‭share similar information and can therefore be considered important features as well.‬

‭Hierarchically-clustered heatmaps for other data types (vowel, reading, both) and‬

‭groups (UVFP patients, controls, both) are displayed in Supplementary Figures S1, S2,‬

‭S3, S4, S5, S6, S7, S8, and S9. Clustering tends to reflect pre-defined features types‬

‭such as those reflecting patterns from vocal folds, intensity, vocal tract, spectral‬

‭analyses, and prosody.‬
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‭Figure 4. Feature importance parallel coordinate plot.‬‭Rank reads from bottom (most important) to top‬
‭(least important). Mean rank is weighted by performance of each model to avoid a lower performing model‬
‭biasing the mean rank.‬
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‭29‬

‭Figure 5. Distributions for top 5 features and corresponding performance for single features.‬‭Logistic‬
‭Regression with L1 penalty was used.‬‭No single feature‬‭is enough to dissociate groups with high‬
‭performance. Null models' median performance was 0.5.‬

‭29‬

‭464‬

‭465‬

‭466‬

‭467‬

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2020.11.23.20235945doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/
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‭Figure 6. Feature redundancy with top 5 features highlighted.‬‭Top 5 features are highlighted in bold and‬
‭their rank is displayed. Squares are clusters of redundant features. Computed with all participants on the‬
‭reading task.‬
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‭Clinician ratings‬

‭The median ROC AUC for humans was 0.78 (min. = 0.74 to max. = 0.81) meaning the‬

‭machine learning models performed better than the highest performing clinician on the‬

‭limited available data, that is, the audio samples of the reading task. Interestingly, using‬

‭the average clinician's CAPE-V ratings within machine learning models was able to obtain‬

‭a maximum median ROC AUC of 0.84 (0.72–0.92) with the Random Forest model (Table‬

‭3). Using clinicians' perceptual ratings of background noise and recording loudness‬

‭achieved a maximum median ROC AUC of 0.77 (.63– .87).‬

‭Table 3. Performance using clinician ratings as variables for machine learning models‬

‭Features‬ ‭LogisticRegression‬ ‭MLP‬ ‭RandomForest‬ ‭SGD‬

‭CAPE-V‬ ‭6‬ ‭.80 (.69–.88;‬‭.50‬‭)‬ ‭.81 (.71–.90; .50)‬ ‭.84 (.72–.92; .49)‬ ‭.77 (.45–.92; .51)‬

‭Noise+‬
‭loudness‬ ‭2‬ ‭.76 (.59–.86; .50)‬ ‭.77 (.63–.87; .50)‬ ‭.73 (.62–.83; .52)‬ ‭.64 (.45–.78; .50)‬

‭Median ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model‬
‭trained on permuted labels which should be at .50 if at chance).‬

‭In Figures 6 and 7 we report the inter-rater reliability (Flight's kappa and ICC) along with‬

‭the distribution of the ratings. Common cutoffs for inter-rater agreement are poor for values‬

‭less than .40, fair for values between .40 and .59, good for values between .60 and .74,‬

‭and excellent for values between .75 and 1.0‬‭(49)‬‭.‬‭Background noise had poor reliability‬

‭across rater, UVFP and recording loudness had fair reliability (see Figure 7) and‬

‭CAPE-V-inspired ratings scored good to excellent except for pitch which was fair (see‬

‭Figure 8).‬
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‭32‬

‭Figure 7. Descriptive statistics and inter-rater reliability of clinician ratings for unilateral vocal fold‬
‭paralysis (UVFP), background noise, and recording loudness indicating likely bias‬‭. Controls and UVFP‬
‭are ground truth diagnosis from the full clinical interview. Ratings are on brief reading samples. Bars indicate‬
‭maximum and minimum count across the three raters. The disproportionate amount of UVFP samples rated‬
‭as having high background noise and high loudness indicates likely bias, where the gain might have been‬
‭raised for some UVFP patients and they may have phonated more intensely. kappa: Light's kappa; ICC:‬
‭intra-class correlation coefficient.‬
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‭Figure 8. How clinicians rate the audio recordings of read speech: descriptive statistics and‬
‭inter-rater reliability of average clinician ratings.‬‭The average across raters was taken for each recording.‬
‭ICC: intra-class correlation coefficient.‬

‭Bias mitigation: matching audio duration and removing features associated to‬

‭intensity‬

‭We trimmed the longer UVFP samples so they were matched to control samples (all samples were‬

‭the same duration), removing the audio duration difference. Vowel samples could not be matched‬

‭by trimming as some UVFP samples were shorter and some were longer than control samples;‬

‭therefore we demonstrate an attempt at bias mitigation only with reading samples.  In Table 4, we‬
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‭show results on these samples after additionally removing all intensity features as well as variables‬

‭that have a distance correlation (dcor) with any of them >= 0.3 and 0.4 based on the reading‬

‭samples. Models have comparable performance to models with the original duration and‬

‭intensity-related biases. See section "Biased features" and Table S4 in Sup. Mat. for a list of the 44‬

‭features associated with audio duration and the 14 intensity related features. For distance‬

‭correlations between audio duration and features, see Sup. Mat. Table S6.‬

‭Table 4. Performance keeping features least associated with intensity features on samples‬
‭of equal audio length after trimming.‬

‭Features‬ ‭LogisticRegression‬ ‭MLP‬ ‭RandomForest‬ ‭SGD‬

‭dcor<0.4‬ ‭44‬ ‭.88 (.80–.92; .50)‬ ‭.87 (.81–.92; .47)‬ ‭.87 (.78–.93; .45)‬ ‭.83 (.76–.90; .48)‬

‭dcor<0.3‬ ‭20‬ ‭.84 (.78–.89; .50)‬ ‭.83 (.76–.9; .49)‬ ‭.85 (.78–.91; .53)‬ ‭.79 (.66–.87; .51)‬
‭Median ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model‬
‭trained on permuted labels which should be at .50 if at chance).‬

‭Discussion‬

‭This study achieves high performance in detecting UVFP from healthy voices using a few‬

‭seconds of audio recordings and surpassing clinician evaluations even after mitigating the‬

‭biases we found in the dataset. As a result of performing the explainability analysis, we‬

‭discovered a likely bias: intensity features were higher for UVFP patients than controls on‬

‭average (Figure 5) when UVFP patients should have weaker voices. There are two likely‬

‭causes.  A first cause is that the software that had been used prompted users to speak‬
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‭louder if they had a weak voice in order to achieve an audible recording. A second cause‬

‭was supported by clinicians' ratings: clinicians rated UVFP patients as having louder‬

‭recordings and more background noise than controls on average –when they should have‬

‭similar levels–, which are proxies for microphone gain having been increased. This would‬

‭have helped models improve performance using characteristics stemming from the‬

‭recording idiosyncrasies instead of from pathophysiology. However, we removed features‬

‭correlating with the clearly biased features and still achieved high performance.‬

‭Our study expands on prior studies which have used pre-existing commercial databases,‬

‭smaller sample sizes, fewer features, and/or methods for model evaluation that can be‬

‭biased in small datasets given the test sets may not be representative (for a discussion on‬

‭bootstrapping for clinical datasets, see Figure 6‬‭(2)‬‭). Critically, we provide a roadmap for‬

‭evaluating models more thoroughly including quantitatively explaining models and‬

‭checking the robustness of the models to different choices of speech-eliciting tasks,‬

‭algorithms, and feature sets. All of this should increase trust when no bias is found and‬

‭when explanations are robust across models and make sense to experts. Such a model‬

‭could fulfill several clinical needs: (1) postoperative screening for thyroid surgery-related‬

‭UVFP since after thyroid surgery, UVFP is common, occurring in up to 5 to 10% of cases‬‭27‬‭.‬

‭Furthermore, laryngoscopy  is not readily available to all postoperative populations and‬

‭symptomatic changes are notoriously variable. An ML-based screening could help identify‬

‭patients needing further workup and treatment, and earlier diagnosis is essential to‬

‭optimize long-term outcomes‬‭28,29‬‭. (2) Monitoring‬‭voice during speech therapy and after‬

‭surgical treatment for confirmed UVFP to measure when and if the patient's voice is‬

‭35‬

‭529‬

‭530‬

‭531‬

‭532‬

‭533‬

‭534‬

‭535‬

‭536‬

‭537‬

‭538‬

‭539‬

‭540‬

‭541‬

‭542‬

‭543‬

‭544‬

‭545‬

‭546‬

‭547‬

‭548‬

‭549‬

‭550‬

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2020.11.23.20235945doi: medRxiv preprint 

https://paperpile.com/c/lGEwoX/LBnHr
https://www.zotero.org/google-docs/?Rtdqod
https://www.zotero.org/google-docs/?e5OXUK
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


‭36‬

‭approximating a healthy voice. (3) Preoperative screening prior to surgeries that are at‬

‭high risk for developing UVFP such as thyroid, head and neck, cardiac, thoracic,‬

‭esophageal, and cervical spine operations.‬

‭In Table 5 we summarize several key recommendations to avoid bias when building and‬

‭explaining machine learning tools for laryngology, although more could be added, and we‬

‭expand upon how we dealt with some of these steps in the following sections.‬
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‭Table 5. Recommendations to avoid bias for explainable machine learning models that use‬
‭audio recordings for screening in laryngology‬
‭Recommendations‬ ‭Description‬
‭Before data collection‬ ‭- Pre-register hypotheses as to which variables should be important for‬

‭predicting the target group to question effects that are not anticipated by theory‬
‭(50)‬

‭During recording‬ ‭- In a‬‭controlled‬‭recording setting: models could‬‭use any unintended differences‬
‭between groups to improve classification (demonstrated in our study); therefore,‬
‭it is important to make sure microphone gain, background noise, instructions are‬
‭consistent across participants and reflect how recordings will be done once‬
‭deployed.‬
‭- In a‬‭remote‬‭setting: it is desirable that models‬‭work on people's mobile devices‬
‭outside the clinic. Since we cannot fully control the recording procedure, we‬
‭should make sure there are no biases affecting one group more than another,‬
‭test pilot instructions, and collect much more data to weaken the effect of‬
‭individual recording idiosyncrasies.‬
‭- Perform pilot studies to do an initial quality control‬
‭- Collect representative samples so models generalize to different protected‬
‭groups (e.g., ages, genders, races) or provide appropriate warnings‬‭(51)‬‭.‬
‭- Providing instructions so participants do not overproject their voice and control‬
‭recording procedure so a minimum loudness threshold is not needed (as‬
‭demonstrated in our study)‬

‭Preprocessing and‬
‭exploratory data‬
‭analysis‬

‭- Quality control: remove non-natural outliers due to measurement errors, wrong‬
‭data collection, or wrong data entry (e.g., fixing mislabeled files, unexpected‬
‭silent recordings, recordings with extreme much background noise)‬‭(52)‬
‭- Avoid or be cautious with preprocessing steps that might reduce the properties‬
‭associated with the disorder (e.g., denoising may remove breathiness‬
‭information which may be useful for prediction).‬
‭- Observe distribution of variables between groups (e.g., audio duration) to make‬
‭sure there are no differences that are not intrinsic to the disorder. Extra‬
‭inspection of the data should be taken with retrospective studies where recording‬
‭protocols were not controlled as in our study.‬

‭During training and‬
‭evaluation‬

‭- Train multiple machine learning models of different complexity: two models may‬
‭perform similarly but use input variables in different ways. If after training a‬
‭model we only explain one of them, we might have biased conclusions of what‬
‭variables characterize the disorder as we demonstrate.‬
‭- Avoid overfitting (i.e., finding patterns that do not generalize to new samples).‬
‭Simple held-out test sets (e..g, of 20%) may not be representative of the‬
‭population or the dataset, and therefore resampling methods (k-fold‬
‭cross-validation, bootstrapping) are better. If performing hyperparameter tuning,‬
‭nested resampling is needed to avoid overfitting‬‭(2)‬‭.‬‭Avoid feature selection and‬
‭dimensionality reduction using information from the test set/s.‬‭(38,53)‬
‭- Report performance on most and remaining important features as done in our‬
‭study‬

‭During explainability‬
‭analyses‬

‭- Choosing one of the variables that are highly dependent due to collinearity‬
‭(e.g.,  that correlate above 0.8 Spearman rho or dcor above a threshold that‬
‭does not reduce performance as we did in this study) or due to multicollinearity‬
‭(remove variables if variance inflation factor > 5 or 10)‬‭(54)‬‭; grouping correlated‬
‭variables using leave-one-feature-out (LOFO); obtaining one variable from the‬
‭correlated variables through dimensionality reduction (without using the test set‬
‭which could lead to overfitting).‬
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‭- Make conclusions from the features that are robustly important‬‭across‬‭models;‬
‭here we take the average importance rank weighted by model performance.‬
‭- Evaluate potential bias: do important features match hypotheses? Do they‬
‭dissociate groups in the expected direction? Do certain recording conditions‬
‭perform better than others and were these done for only one group? Does the‬
‭model work worse for certain races or age groups? Several metrics can evaluate‬
‭this (e.g., see packages AIF360, fairlearn, and EqualityML).‬
‭- Use expert ratings to evaluate any potential sources of bias as done in our‬
‭study.‬
‭- Understandability: are the explanations understandable for the engineer, the‬
‭clinician, and/or the patient?‬‭(55)‬

‭If bias is detected‬ ‭- Use bias mitigation strategies either during pre-processing (removing variables‬
‭generating the bias along with variables correlated with these ones), training‬
‭(adversarial debiasing, prejudice remover), or evaluation (equalized odds, reject‬
‭option classification)‬‭(56)‬‭. See packages AIF360,‬‭fairlearn, and EqualityML.‬

‭After deployment‬ ‭- Continuous assessment: we need to review predictions and re-assess accuracy‬
‭once deployed as new environments and populations could change performance‬
‭(i.e., dataset shift‬‭(57)‬‭).‬

‭Explaining acoustic features relevant to detecting vocal fold paralysis‬

‭Objective acoustic measurement changes associated with vocal fold paralysis have been‬

‭described and these changes include reduced loudness and maximum phonation time,‬

‭higher perturbation measurements such as jitter and shimmer, and increased signal to‬

‭noise ratio‬‭(19,58,59)‬‭; however these were univariate‬‭models, and we have demonstrated‬

‭that using single variables does not seem to provide high predictive performance. While‬

‭other multivariate machine learning models have been used, these used few features and‬

‭small or undefined samples and only report feature importance results for one model;‬

‭therefore it is not clear whether the important features reported would hold using larger‬

‭feature sets or how other models would perform. Using a much larger initial set of acoustic‬

‭features for analysis, we demonstrate that several machine learning algorithms of‬

‭increasing complexity (using more parameters) identify vocal fold paralysis from healthy‬
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‭voices. We also report that these models can use different features to achieve similar‬

‭performance. Different models emphasize different features not simply because of its‬

‭relevance to a disorder, but because of the mathematics associated with the model (e.g.,‬

‭containing different degrees of interaction effects, regularization, or propensity to‬

‭underfitting or overfitting)‬‭(60)‬‭. The variability‬‭of the ranking of features used by our‬

‭individual models also illustrates the potential danger of using the single highest‬

‭performing model, which is commonly seen in published literature.‬

‭Instead of simply reporting the important features from the highest performing model, we‬

‭analyzed the models to find common features. The most important features across models‬

‭were somewhat associated with intensity features (Sup. Mat. Table S5); therefore, even if‬

‭not strongly associated with intensity features, they could be important due to a‬

‭combination of intrinsic differences between UVFP and controls for which we provide‬

‭hypotheses or because of how intensity influences them; a new unbiased dataset would be‬

‭needed to confirm this. These top features were: intensity, especially equivalent sound‬

‭pressure level which was redundant with multiple loudness features and seems to be due‬

‭to some patients trying to use more breath for projection or being recorded with a higher‬

‭microphone gain; Mel Frequency Cepstral Coefficients (especially the first coefficient,‬

‭which captures spectral envelope or slope, which has be shown to be important for‬

‭predicting UVFP (‬‭(29)‬‭); mean F0 semitones given F0‬‭originates from vocal-fold oscillation,‬

‭a vocal-fold paralysis is expected to alter F0, and has been shown to help predict‬

‭pathological speech including UVFP‬‭(28)‬‭;, mean F1‬‭amplitude and frequency, influenced‬

‭by how the vocal tract filters F0 and the shape of the glottal pulse which would be affected‬
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‭by UVFP voiced and unvoiced segments (prosodic and speech articulation features which‬

‭may be altered due to changes in the periodicity of F0), and CPP features (which indicate‬

‭voice quality degradations that could include more breathiness, a typical feature of UVFP‬

‭(61)‬‭). Shimmer variability was important just for‬‭reading, and it captures variability in glottal‬

‭pulses and pressure patterns which ultimately affect F0 and has been found to be‬

‭significantly different between UVFP and a control group‬‭(62)‬‭. When we removed the top 5‬

‭features from the full feature set, performance is practically equivalent to using 88 features,‬

‭as expected, since there are features that are redundant with the top 5 features. Therefore,‬

‭it is not that only these 5 specific features drive performance, but rather the information‬

‭they contain, which in this dataset is also captured by other features as shown in Figure 6.‬

‭These acoustic features would corroborate our clinical understanding of glottal‬

‭incompetence from UVFP and with common patient complaints of reduced loudness, vocal‬

‭instability, hoarseness, and rough voice; however, they could also be important due to their‬

‭associations with intensity features. Uncovering and understanding the basic mechanisms‬

‭and features that models use to generate predictions and outcomes are important as these‬

‭tools become part of the clinical decision making process.‬

‭Identifying and addressing bias‬

‭Equivalent Sound Level was higher in UVFP patients than controls. This is counter-intuitive‬

‭because UVFP patients are known to have softer voices as already described; however,‬

‭clinicians rated most UVFP samples as being louder than controls. The bias discovered‬

‭was likely due to increasing the gain on the microphone for some UVFP patients, which‬
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‭would explain the increased background noise in UVFP patients' recordings. A second‬

‭source of bias may have occurred from requesting UVFP patients to speak louder in order‬

‭to meet the minimum intensity threshold on the recording softwares Computerized Speech‬

‭Lab™ and OperaVOX, or patients could have tried this on their own knowing they were‬

‭being recorded. This behavioral compensation is likely to occur in biomarker research‬

‭when the participant has a soft voice, especially in retrospective studies like ours where‬

‭the study goal is not known at the time of recording or when certain software properties‬

‭lead individuals with weak voices to speak louder. Even though the current models perform‬

‭better than the clinicians, a systematic comparison would require more clinician and model‬

‭assessments across datasets. It is likely a model trained on a single dataset might learn‬

‭intrinsic characteristics of that dataset that do not generalize as well as clinical expertise‬

‭might.‬

‭Having said this, this line of research would help us understand the extent to which UVFP‬

‭detection is generalizable from acoustic data alone. Finding an objective measure of‬

‭hoarseness is important given a "normal voice" is a fundamentally subjective classification‬

‭that is not well defined‬‭(63,64)‬‭and varies with training‬‭(65,66)‬‭, which may result in low‬

‭reliability of evaluation of disordered voices among clinical rating scales‬‭(67)‬‭.‬

‭As a post hoc analysis, we address bias by trying to mitigate its effect: we removed‬

‭variables associated with intensity variables on samples matched on audio duration. After‬

‭removing these features, the models were able to obtain similar performance using a very‬

‭different set of features. It is possible that these remaining features better reflect‬
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‭pathophysiology or that the features extracted are still influenced by intensity, but further‬

‭studies should address their generalizability or their relation to intensity variation.‬

‭Evaluating the sensitivity to tasks, model complexity, and features used‬

‭In addition to getting a better understanding of features, we explored performance in the‬

‭context of different vocal tasks. Participants carried out two different tasks to elicit voice,‬

‭reading‬‭, which captures more complex speech dynamics,‬‭and‬‭sustaining vowels‬‭, which is‬

‭a simpler measure of vocalization and the respiratory subsystem. Overall, these dynamics‬

‭from the speech task may have improved model performance as was observed.‬

‭Comparing simpler and more complex models is important because simpler models such‬

‭as Logistic Regression could be preferred because they tend to generalize better given‬

‭they are less at risk for overfitting the training set and they are more interpretable and thus‬

‭biases can be assessed more directly‬‭(68)‬‭.‬

‭By removing redundant features, we can concentrate on finding the most useful features‬

‭for further analysis. Performance decreased only slightly while we made models more‬

‭parsimonious and explainable. This approach is key given the curse of dimensionality in‬

‭machine learning that may make models unnecessarily complex and harder to generalize‬

‭(20)‬‭.‬

‭Often studies will report the top N features but not how predictive they are in isolation. In‬

‭our study we ran models on the top 5 features together (Table 2). The lower performance‬

‭of these top 5 features relative to a richer feature set helps demonstrate that model‬
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‭performance is dependent on interactions across multiple additional features (with the‬

‭exception of samples from the reading task which obtained an AUC of 0.86 using just the 5‬

‭features). We also ran models without top 5 features to demonstrate that leaving features‬

‭that are redundant with these top features results in almost equivalent high performance to‬

‭using all 88 features since the redundant features share information. Furthermore, when‬

‭training models on the individual features from within these top 5 one at a time, the‬

‭performance was reduced considerably with scores from 0.55 to 0.71. This indicates the‬

‭need for these models to combine multiple features to achieve high performance and any‬

‭model evaluation should not focus on only the common or top features without testing their‬

‭predictive performance.‬

‭Limitations and future directions‬

‭We cannot determine how the bias will affect the model's performance on future samples,‬

‭but it will likely underperform in samples where length was not different between groups,‬

‭where gain cannot be changed, and where participants are instructed to not overproject‬

‭their voice; however, it is possible the model could underperform for other reasons‬

‭including dataset shift (e.g., the distribution of voice characteristics or demographics is‬

‭different in a new sample).‬

‭The classification using just duration itself varied across models and clinicians who‬

‭listened to the reading passage in its entirety did not achieve as good a classification as‬

‭the best performing models. Duration itself was not included as a feature in the‬

‭eGeMaps-based models and has a complex effect on both machines and humans.  For‬
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‭example, duration could have affected eGeMAPS features (e.g, introduce more variability‬

‭to the functionals that are computed over sliding time windows) and duration of vowels‬

‭varied extensively across the UVFP group thus cannot itself be tied to underlying‬

‭pathophysiology. Therefore, important future work should analyze how duration may affect‬

‭these features, should address the intrinsic variability in durations of UVFP patients in‬

‭responding to speech items, and should incorporate models of production that include a‬

‭consideration of respiratory capabilities, articulation changes, and vocal fold‬

‭pathophysiology.‬

‭It is not clear whether these models could detect UVFP from other voice disorders or just‬

‭healthier voices; however, a model that generalizes well in classifying UVFP from controls‬

‭could be used to monitor UVFP patients remotely and affordably during treatment or detect‬

‭risk for UVFP when it is the most likely cause (e.g., dysphonia after thyroid surgery).‬

‭Larger sample sizes with curated examinations can help increase diverse representation‬

‭across voice quality and thereby potentially reduce bias in classifier performance. We did‬

‭not analyze potential racial bias given this data was not extracted from the chart review.‬

‭Our choice of a standardized feature set worked well in this setting, but may fail to work for‬

‭differential voice disorder diagnosis or when generalizing to larger datasets, which may‬

‭bring in additional sources of variance unaccounted for in this dataset. With the availability‬

‭of more data, additional features could be extracted that better capture changes in‬

‭coordination (e.g., XCORR‬‭(69)‬‭).‬

‭Furthermore, while our feature importance evaluation method, SHAP, shows a certain‬

‭amount of robustness across models, alternative model-agnostic feature-importance‬
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‭methods (e.g., LOFO, permutation importance) as well as model-specific methods‬

‭(coefficient values for linear models, mean decrease in impurity for Random Forest) could‬

‭be compared. Model understandability –how easily are the explanations understood by a‬

‭speech scientist or a clinician– could be assessed rigorously‬‭(55)‬‭.‬

‭Finally, debiasing the models by removing features correlated with the biased ones was‬

‭attempted although it is not clear how exactly intensity may influence certain features; we‬

‭assume if intensity is influencing a variable, it generally should create some considerable‬

‭association which we discarded using dcor. Therefore, the effect of the bias can be‬

‭assessed by testing the model's generalizability to new unbiased datasets. Therefore, we‬

‭are not promoting our final debiased models as completely unbiased or ready to use, it is‬

‭possible our debiasing strategies are only partially effective, additional biases remain,‬

‭and/or additional ways of debiasing have not been considered.‬

‭We tested how well a model using only the top 5 features performed independently of the‬

‭model with all features; it is possible to also test how well the incremental set of top‬

‭features performs (1st, 1st and 2nd, 1st–3rd, etc.), which would be useful in order to‬

‭compare different models' performance as a function of which features are being used.‬

‭Conclusion‬

‭Using one of the largest UVFP datasets to date, our study demonstrates the importance of‬

‭checking for biases using explainable machine learning and clinician perceptual ratings. In‬

‭order to first explain models, we tackle collinearity (i.e., redundant or highly correlated‬

‭independent variables), which biases feature importance, using a custom method called‬
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‭Independence Factor that selects one out of a set of associated features without losing‬

‭predictive performance. We then compare how results change across different‬

‭speech-eliciting tasks, training algorithms, features, features set sizes, and highest and‬

‭lowest performing features to better understand the process that models use to predict‬

‭vocal changes associated with laryngeal disease, since analyzing a single model will result‬

‭in a biased view of how predictions are achieved. During this process, we discovered there‬

‭was a difference in audio duration between groups clearly not related to intrinsic‬

‭differences in UVFP speech rate, but in cropping all control recordings to a certain length‬

‭during audio storage. We also discovered that sound equivalent level was‬

‭counterintuitively higher in UVFP patients, a likely bias resulting from the weak or‬

‭underprojected voice that characterizes many UVFP patients: patients were prompted by‬

‭the recording software to speak louder and the microphone gain was likely raised‬

‭selectively for these patients with weaker voices, possibly generating higher background‬

‭noise which was detected through clinician's ratings; therefore the models picked up on‬

‭the acoustic correlates of this increased intensity, which would impede generalization‬

‭under different recording procedures and natural audio durations. This is more likely to‬

‭occur in laryngology datasets when patients have a softer voice.‬

‭Interestingly, we found that matching audio duration between groups and removing all‬

‭variables that were clearly related to intensity (e.g., bias mitigation) resulted in similar high‬

‭performance. In this case, the model may be using information more related to‬

‭pathophysiology, which would need to be further confirmed by future unbiased samples.‬

‭Machine learning models tended to surpass clinician's evaluation of the same audio‬
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‭recordings. Interestingly, using clinician's voice quality ratings on the recordings in machine‬

‭learning models performed better than their binary evaluation on whether recordings‬

‭contained a sample of UVFP voice or not.‬

‭We hope to promote moving beyond using a single model and only reporting top features‬

‭to a better explanation of how these models work as well as being able to understand‬

‭variance across modeling and evaluation choices. We believe these are all aspects of‬

‭machine learning that clinicians need to understand prior to using such applications.‬

‭With these considerations along with the recommendations we make, machine learning‬

‭applications could aid in laryngology screening, allowing for the potential development of‬

‭in-home screening assessments and continuous pre- and post-treatment monitoring.‬
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