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25

26 Abstract

27 Introduction. Detecting voice disorders from voice recordings could allow for frequent, remote,
28 and low-cost screening before costly clinical visits and a more invasive laryngoscopy

29 examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice

30 recordings using machine learning, to identify which acoustic variables were important for

31 prediction to increase trust, and to determine model performance relative to clinician

32 performance.

33 Methods. Patients with confirmed UVFP through endoscopic examination (N=77) and controls

34 with normal voices matched for age and sex (N=77) were included. Voice samples were elicited
35 by reading the Rainbow Passage and sustaining phonation of the vowel "a". Four machine

36 learning models of differing complexity were used. SHapley Additive exPlanations (SHAP) was

37 used to identify important features.

38 Results. The highest median bootstrapped ROC AUC score was 0.87 and beat clinician's

39 performance (range: 0.74 — 0.81) based on the recordings. Recording durations were different
40 between UVFP recordings and controls due to how that data was originally processed when

41 storing, which we can show can classify both groups. And counterintuitively, many UVFP

42 recordings had higher intensity than controls, when UVFP patients tend to have weaker voices,

43 revealing a dataset-specific bias which we mitigate in an additional analysis.

44 Conclusion. We demonstrate that recording biases in audio duration and intensity created
45 dataset-specific differences between patients and controls, which models used to improve

46 classification. Furthermore, clinician's ratings provide further evidence that patients were
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47 over-projecting their voices and being recorded at a higher amplitude signal than controls.

48 Interestingly, after matching audio duration and removing variables associated with intensity in
49 order to mitigate the biases, the models were able to achieve a similar high performance. We
50 provide a set of recommendations to avoid bias when building and evaluating machine learning

51 models for screening in laryngology.

52 Keywords: vocal fold paralysis, acoustic analysis, voice, speech, explainability, interpretability,

53 machine learning, bias

54

55

56

57


https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.23.20235945; this version posted March 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

5

ssINTRODUCTION

59 VVoice recordings provide a rich source of information related to vocal tract physiology
60 and human physical and mental health. Given advances in smartphones and

61 wearables, these recordings can be made anytime and anywhere. Thus the search for
62 disorder-specific acoustic biomarkers has been gaining momentum. Voice biomarkers
63 have been reported for detecting Parkinson's disease (1) as well as psychiatric

64 disorders including depression, schizophrenia, and bipolar disorder (for a systematic

65 review, see Low et al, 2020 (2)). Given our scientific understanding of the complexity of
66 speech production, multiple acoustic features have been devised for use in machine

67 learning models. In Figure 1, we describe a schematic of speech production and the

68 process of extracting certain acoustic features from an audio signal (see also Quatieri,
692008 (3)), which is an important part of explaining how pathophysiology would affect

70 acoustic features that are used in machine learning classifiers. Panel (A) depicts speech
71 as the result of the neural coordination of three subsystems: the respiratory system

72 (lungs), the laryngeal system (vocal folds), and the resonatory system of the vocal tract
73 (pharynx, oral cavity, nasal cavity, articulators, and subglottal effects). Speech

74 production requires air flow from the lungs to generate sound sources that are filtered
75 by the vocal tract. Panel (B) captures the fact that environmental, microphone, and

76 digital sampling characteristics (e.g., background noise, microphone gain, sampling

77 rate) can affect acoustic features. Panel (C) shows the waveform of the audio signal,

78 representing areas of compression (positive amplitude; higher air pressure) and
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79 rarefaction (negative amplitude; lower air pressure). Higher amplitudes can lead to

8o higher perceived loudness. Prosodic features arise from changes over longer segments
g1 of time, which is perceived in the rhythm, stress, and intonation of speech. A segment of
82 the waveform is shown in the right panel, indicating a periodic signal from the vocal

g3 folds. Panel (D) shows that for a given time window, a spectrum (right panel) can be

g4 obtained through a fast Fourier transform (FFT) which represents the magnitude of the
g5 frequencies in the signal with peaks (formants F1-F3) due to vocal tract filtering of the
86 source signal produced by the vocal folds. The spectrogram (left panel) is a

g7 representation of the spectrum as it varies over time and can be obtained through a

g8 short-term Fourier transform (STFT). The approximate location of the FO and first

g9 formants are displayed. Finally, (E) It is possible to separate source and filter

92 components by computing the inverse FFT of the log of the magnitude of the spectrum,
91 called the cepstrum (right panel). The peak in the cepstrum reflects the periodic glottal
92 fold vibration while lower quefrency components reflect properties of the resonatory

93 subsystem. For speech recognition, Mel filters are applied to the spectrum to better

94 approximate human hearing. A conversion of the Mel-spectrum to a cepstrum using a
95 Discrete Cosine Transform (DCT) generates mel-frequency cepstral coefficients

96 (MFCCs). Similar to the cepstrum, lower MFCCs track vocal-tract filter information.

97

98
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100 Figure 1. Schematic of speech production and the process of extracting certain acoustic features
101 from an audio signal.

102 (A) Speech production, (B) recording characteristics, (C) waveform of audio signal with fundamental

103 frequency (f0), (D) spectrogram with formants F1-F3 and intensity, (E) mel-frequency cepstral coefficients
104 (MFCCs). Full description in the main text.

105 Furthermore, while machine learning (ML) can be a powerful and successful approach
106 for diagnostics, they are often treated as "black-boxes". It can be difficult to determine
107how the model is making a decision, that is, how it is combining input features from a
108 given patient to generate a prediction. This is particularly worrisome given ML
109algorithms can detect and associate unintended or clinically irrelevant relationships and
110introduce bias that may be difficult to anticipate. Explainable ML refers to a series of
112methods and quantitative analyses for uncovering and "explaining" the rationale behind
112the decision made by complex algorithms, which is particularly critical in the high-stake

113decisions of medicine to increase trust among clinicians and patients (4).

114 There are many challenges for applying acoustic analysis to detect specific disorders.

115Voice characteristics are highly varied and change over time. Laryngeal pathology, age,
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116gender, size, weight, general state of health, smoking/vaping, and medications can
117impact vocal acoustic characteristics. Diseases in the larynx and phonatory system (i.e.,
118larynx, resonating structures, lungs) and/or neurological system, will also affect voice.
119Compensatory production strategies and environmental conditions can also change the
120vocal signal. Furthermore, because hoarseness is such a frequent occurrence and

121 specialty voice centers are rare, vocal fold disorders are often undiagnosed,

122under-reported, or misdiagnosed (5).

123We chose vocal fold paralysis as the study cohort for several reasons. First, it is

124 clinically important. UVFP can have detrimental effects on voice and quality of life with
125resultant morbidity related to respiration, swallowing and aspiration (6). Vocal fold

126 paralysis may occur due to iatrogenic injury, malignancy, idiopathic, and neurological
127disease (7). Overall, surgical iatrogenic injury accounts for 46% of all UVFP in adults
128and thyroid and parathyroid surgeries are responsible for 32% of postsurgical UVFP (8).
129 There is a significant need for a screening tool for the diagnosis and tracking of UVFP
130 because of the high impact of this condition on productivity and quality of life. Screening
131 could be done remotely and frequently, especially when surgical specialists and
132laryngeal exams are not readily accessible due to geographical, financial, and other
133barriers (9). Using an explainable ML model as a screening tool for UVFP can provide
134Qgreater clarity as to who most needs laryngoscopy and provides insight in the key voice
135 characteristics related to the pathophysiology (10-14). The costs associated with UVFP
136 not only relate to patient morbidity and diminished quality of life but also to the economic

137burden placed on our healthcare system. Greater lengths of hospitalization and
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13gincreased hospital costs have been associated with postsurgical VFP (15,16). Access to
139 specialists for diagnosis is limited and early detection and management of UVFP appear
140to improve length of stay and surgical outcomes (17). Special consideration should be
141given to what the model can actually classify: a model that generalizes well in

142 classifying UVFP from controls may not be able to screen for UVFP out of other voice
143disorders, but could be used to monitor UVFP patients remotely and affordably during
144treatment or detect risk for UVFP when it is the most likely cause such as dysphonia

145 after thyroid surgery.

146 Furthermore, UVFP is an ideal model for demonstrating the explainability of ML. UVFP
147 0ccurs when the mobility of a single vocal fold is impaired as a consequence of

148 neurological injury and diagnosis is consistently verified through routine laryngoscopy;
149therefore, ground truth labels are available. Second, the clinical signs of UVFP are
1sowell-described. These characteristics include a weak, breathy voice quality, early vocal
151 fatigue, reduced cough strength, and aspiration with thin liquids (18,19). Therefore, the
152acoustic differences between UVFP patients and healthy controls can be interpreted
153with regards to perceptual symptoms and a well-understood pathophysiology. In
154contrast, explaining important variables to predict a disorder which is hard to diagnose
155(e.g., has low inter-rater reliability) and has an unclear pathophysiology would ironically
156result in a poor explanation, because it would be puzzling how or even if the disorder
157 could modulate the important acoustic variables. Of course, machine learning models
158 can also offer novel explanations into a disorder by characterizing novel characteristics.

159 However, if these models use high-dimensional feature vectors, they are more likely to
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160 0verfit when using small datasets (20,21), which should lead to more skepticism of

161these novel explanations.

162 There have been several studies detecting unilateral vocal fold paralysis (UVFP) using
163machine learning (22—-30); however, most have included the disorder among a set of
164voice disorders to be predicted. Limitations of these prior studies could be seen to fall
165into one of following types: not reporting the performance when classifying the subset of
166 participants with UVFP out of the participants with dysphonia they were trying to detect;
167small sample sizes given most studies contained 10 participants with UVFP or fewer

168 With one study containing 50 participants (31); a lack of algorithmic explanations: they
169 either do not report on the relative importance of each acoustic variable; use input data
17esuch as a spectrogram in a black-box deep learning model which could make attempts
171 at algorithmic explanations on images such as saliency maps more opaque than results
172from feature importance of handcrafted features; use a black-box model such as neural
173network without attempting to explain its predictions with deep learning explainability
174methods (32); use a single type of model which may pick up on certain types of patterns
175but miss others leading to incomplete conclusions on feature importance; use only a few
176 features which may impede better predictive performance by not capturing certain
177relevant information; and/or not publicly share models or data to help test their

178 generalizability to new data.

179 The objectives of our study were: to detect UVFP using ML; to evaluate the

180 effectiveness of different models in differentiating the acoustic signals between patients

10


https://paperpile.com/c/lGEwoX/TquBZ+IHv2H
https://paperpile.com/c/lGEwoX/gebpS+deOBR+aUCQk+g7SE0+G1mGk+byHfh+K9BGT+oSVjd+2O6wU
https://paperpile.com/c/lGEwoX/1ZS8k
https://paperpile.com/c/lGEwoX/ZdLyV
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.23.20235945; this version posted March 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

11

181with UVFP and patients with normal functioning vocal folds (i.e., controls); to explain
182which features are most important to the diagnostic models and examine the

183 pathophysiological relevance; and to compare performance to human clinicians

184 evaluating audio recordings. To achieve these objectives, we evaluated four different
185 classes of machine learning algorithms to assess classification performance, obtained
186the minimal set of features necessary for detection, and identified the most important
187acoustic features for model construction after removing redundant features. Ultimately,
188we wanted to see if the most important features identified by the machine learning

189models matched clinically-known relevant acoustic changes.

190

10:MATERIALS AND METHODS

192 This study was approved by the Institutional Review Board at Massachusetts Eye and

193 Ear Infirmary and Partners Healthcare (IRB 2019002711).

192 Participants and voice samples

195 Through retrospective chart analysis from 2009 to 2019, a total of 1043 patient charts
196 were reviewed from a tertiary care laryngology practice who underwent endoscopic
197evaluation and voice testing. Of those, 53 patients with confirmed UVFP were identified.
198 They had documented vocal fold paralysis by endoscopic examination and had

199undergone acoustic analysis as part of routine clinical care. Each patient had four

11


https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.23.20235945; this version posted March 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

12

200 acoustic recordings. These included three sustained vocalizations of the "a" vowel
201sound (a in the International Phonetic Alphabet) and a reading of the introductory

202 paragraph of the rainbow passage (33). The acoustic recordings were all taken in an
203 acoustically shielded room. For each of these 53 patients, a board-certified

204 0tolaryngologist reviewed their clinical history, video laryngoscopy as well as their audio
205 samples to confirm that they were correctly classified to have UVFP. Voice samples

206 from an additional 24 patients were collected prospectively using a mobile software,
207OperaVOX™ on an iPad, who were being treated for UVFP. These patients also had
208the same four acoustic recordings as the patients from retrospective chart review. This
209 combination of data collection yielded a total of 77 UVFP patients for analysis, of which

21048 had left UVFP and 29 right UVFP.

211 All of the patients were then matched with control samples from a database of patients
212without UVFP who had also undergone acoustic analysis. Each control was the same
2138ex and had the same smoking status as the UVFP patient and within three years of
214age, and had documented laryngeal examinations that verified the absence of vocal fold
215mucosal pathology. The controls were excluded if they had established laryngeal
216surgery, vocal fold lesions, radiation, head and neck cancer, or neurological disease.

217 The controls had recorded the same four acoustic recordings as the retrospectively
218gathered UVFP group. A board-certified otolaryngologist confirmed that the voice
219recordings and video laryngoscopies of these controls matched normal expectancies.
220 The reading samples were divided in thirds to match the amount of vowel production

221 samples, resulting in 6 samples for most participants. Reading recordings were not

12
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222available for three patients and three patient vowel samples were removed due to

223 containing multiple vowel productions or a cough. The final dataset that was analyzed is
224described in Table 1. Reading+vowel refers to including all samples (i.e., ~6 samples)
225from the same participant with the goal of either obtaining higher performance or

226 discovering features that show variation in relation to diagnosis consistently across
227tasks. Mean (SD) audio lengths were 6.81s (5.47) for reading samples and 3.95s (1.00)
228for vowel samples. The audio samples were processed using OpenSmile with the
229eGeMAPS configuration file (article (34), source code (35)) which applies different
23psummarization statistics to the time series depending on the feature resulting in 88
231features per sample covering information related to the vocal folds (FO, jitter, shimmer),
232intensity (loudness, HNR), vocal tract (F1-3 frequency, bandwidth, amplitude), spectral
233balance (alpha ratio, Hammamberg index, spectral slope, MFCC 1-4, spectral flux), and
234prosody (voice and unvoiced segments, loudness peaks per second). See section

235"eGeMAPS features" in Sup. Mat. for full list.

236 Table 1. Sample sizes and demographic information

UVFP Controls Total
N 77 77 154
Mean age (SD) 56.4 (18.7) 56.6 (18.8) 56.5 (18.7)
Sex (F/M) 39/38 39/38 78/76
Reading 222 231 453
Vowel 227 231 458
Reading+vowel (total) 449 462 911

237 SD: standard deviation; F: female; M: male.

13
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23sMachine learning models of increasing complexity

239 With the goal of classifying voices recording into either UVFP or controls, we used four
240machine learning algorithms of increasing complexity from the scikit-learn (v0.21.3)
241using the pydra-ml (v0.3.1) toolbox (36) (default parameters were used unless

242 0therwise specified). By complexity we mean models are more complex if they are
243harder to simulate, that is, harder to take the input data and model parameters and step
244through every calculation required to produce a prediction in a reasonable time which

245increases with the amount of parameters and interactions (37).

246 (1) Logistic Regression: a simple linear model that is constrained to use few features
247due to an L1 penalty making it the simplest model (“liblinear” solver was used which is

24gideal for smaller datasets).

249 (2) Stochastic Gradient Descent (SGD) Classifier: we used a log loss which implements
250a logistic regression; therefore, it is also a linear model but tends to use more features
251due to an elastic net penalty, making it slightly more complex (the max_iter parameter

252was set to 5000 and early_stopping was set to True).

253(3) Random Forest: it is an algorithm that uses simpler decision trees (i.e., weak
254learners) on feature subsets "but then takes the majority of the votes of the decision
255trees' predictions to create a stronger learner, making it harder to interpret which

256 features are important across trees.

14
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257(4) Multi-Layer Perceptron: it is a neural network classifier which incorporates, in our
258 case, 100 instances of perceptrons (artificial neurons), which are connected to each
259input feature through weights with a ReLU activation function to capture nonlinear
260relationships in the data. It is not possible to know exactly how the hundreds of internal
261 weights interact to determine feature importance, making the model difficult to interpret
262directly from its parameters (the max_iter parameter was set to 1000; alpha or the L2

263 penalty parameter was set to 1).

264 To generate independent test and train data splits, a bootstrapped group shuffle split
265sampling scheme was used. Bootstrapping is more optimal than cross-validation on
266 Smaller datasets and provides a measure of uncertainty through a confidence interval
267(38). For each iteration of bootstrapping, a random selection of 20% of the participants,
268 balanced between the two groups, was used to create a held-out test set. The
269remaining 80% of participants were used for training. This process was repeated 50
27otimes, and the four classifiers were fitted and tested for each test/train split.. We used
271the default of 50 bootstrapping splits from pydra-ml to reduce computational time.
272Median ROC AUC stabilized to larger spit values at around 40 splits for logistic
273regression models across tasks (see Sup. Mat. Figure S1) while reducing runtime
274compared to larger split values. The Area Under the Receiver Operating Characteristic
275Curve (ROC AUC; perfect classification = 1; chance = 0.5) was computed to evaluate
276the performance of the models on each bootstrapping iteration, resulting in a distribution
2770f 50 ROC AUC scores for each classifier. To ensure results were not due to choosing

278 scikit-learn's hyperparameter default settings, hyperparameter tuning was performed on

15
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279the main models using all features and achieved similar performance to non-fine-tuned
28omodels (see Sup. Mat. Table S1). The focus of our study is identifying bias and not
281achieving —in our case— a small increment in performance; therefore, given the large
282number of models, analyses, and bootstrapping samples in our study which focuses on
283identifying bias, we chose default parameters given the small changes in performance
284we observed with hyperparameter tuning. Additionally, for each iteration, each classifier
285was trained with randomized patient/control labelings to generate a null distribution of
286 ROC AUC scores (i.e., a permutation test). Each model's performance was statistically
287compared to their null model's distribution using an empirical p-value, a common and
288 effective measure for evaluating classifier performance (see Definition 1 in (39)). The

289 significance level was set to alpha = 0.05.

290 Assessing feature importance

291 Kernel SHAP (SHapley Additive exPlanations) was used to determine which acoustic
292features were most important for each model to detect UVFP. This method is model
293agnostic in that it can take any trained target model (even “black box” neural networks)
294and compute feature importance (40). It does so by performing regression with L1

295 penalty between different sets of input features and a single prediction made by the

296 target model. It then uses the coefficients of the additional regression model as a

297 measure of feature importance for a single prediction. We took the average of the

298 absolute SHAP values across all test predictions (positive and negative values are both

299important for classification). We then weighted the average values by the model’s
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3eemedian performance since an important feature for a bad model could be a less
se1important feature for a good model and vice versa. Since we trained each model 50
302times (i.e., one for each bootstrapping split), we computed the mean SHAP values
3e3across splits for each model. This pipeline (i.e., machine learning models, bootstrapping

3e4scheme, SHAP analysis) was done using pydra-ml.

305 Reducing collinearity to do explainability analysis using

sosIndependence Factor

3o7 Highly correlated features (i.e., collinearity) can influence model generation and
seginterpretation. Two models may obtain similar performance while using different features
3e90r placing different weights on the same features (i.e., underspecification (20,41)) . This
31emakes it difficult to compare algorithmic explanations across models. For instance,
311mean F1 frequency may be less important to a given model because the model uses
312mean F2 frequency which happens to capture very similar information in a particular
313dataset (i.e., has a high correlation), whereas a different model may use F1 instead of
314F2 or use both but assign less importance to each and still obtain the same
s1sperformance. To enforce models to use the same features that capture very similar
31einformation and be able to compare feature importance across models, we kept a single

317feature out of the sets of features that share similar information above a given threshold.

318 We used a custom algorithm we call Independence Factor whereby for each

319feature in alphabetical (i.e., arbitrary) order, we removed features that show strong

17
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320dependence above a given threshold. The step was repeated for remaining features.
321 We use distance correlation from the Python dcor package (v0.4) because, unlike
322Pearson r or Spearman rho, it can capture non-monotonic relationships (42,43). We
323have included several examples of non-monotonic associations between variables in
3240ur dataset that would be captured better by dcor (see Sup. Mat. Figure S2). We used
325the following threshold values for the distance correlation [1.0, 0.9, 0.8, 0.7, 0.6, 0.5,
3260.4, 0.3, 0.2] to compute the Independence Factor, which removed increasingly more
327features (i.e., 1.0 keeps all features and 0.2 removes features that have a distance
328 correlation above 0.2). We chose the feature size which contains at least one model
329that scores within three percentage points of the performance using all features, with
33ethe goal of obtaining a more parsimonious model for subsequent explanation while
331maintaining high accuracy. Thus, removing redundant features makes the models
332easier to interpret for clinical relevance. To visualize the original redundancy across
333features, we computed clustermaps using seaborn package (v0.10.1) performing
334hierarchical clustering with the average-linkage method and Euclidean distance. This
33s5was performed on the pairwise distance correlation, computed separately on data from

336 UVFP, controls, UVFP+controls and on reading, vowel, and reading+vowel.

337

sss Performance using most important and least important features

339 Studies tend to report and describe the top N features out of M features, but it is not

34oclear what performance the model would obtain when using only those top N features;

18
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341 perhaps it would perform substantially worse than the full model. We will report
342 performance using only top 5 features as well as performance without top 5 features to

3a3provide a more realistic evaluation of their importance.

saaPerformance using audio duration

345Figure 2 indicates clear differences in the distributions of audio recording duration between

346 UVFP patients and controls. This is due to how recordings were processed and saved and not
347 necessarily due to an intrinsic property of UVFP (e.g., slower speech), which reveals a bias that
34gmodels can leverage but is not expected to generalize well under different audio processing

349 procedures. Therefore, we examine whether audio duration alone could perform well in

350 classification of UVFP. The mean (and standard deviation) for the audio duration for reading
351task is 3.5 s (0.00 s) for the controls and 10.25 s (6.17 s) for the UVFP patients and the audio
352duration for sustained vowel task is 4.11 s (0.07 s) for the controls and 3.74 s (1.3 s) for the

353 UVFP patients.

Reading Vowel
M M Group
[ UVFP
200 200 3 Control
150 | 150
€
3
8
100 100 A
50 A 50 4
5 10 15 20 25 1 2 3 4 5 6 7 8
Audio duration [s] Audio duration [s]

354

355 Figure 2. Distribution of audio duration for reading and vowel tasks split by group reveals
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356 a dataset bias. The mode of the audio durations for the controls is 3.5 s for reading samples

357and 4.11 s for vowel samples.
358
359

360

se1 Performance using cepstral peak prominence

362 To evaluate whether results are sensitive to choice of features, we use a different set of
se3features derived from cepstral peak prominence (CPP) given it has been shown to be a
3e4good measure of breathiness and dysphonia (44,45). We match the summary statistics
3esacross the audio recording that eGeMAPS uses: CPP mean, CPP coefficient of

366 variation (standard deviation normalized by the mean), CPP 20th percentile and CPP
36780th percentile. We use our custom Python implementation which matches MatLab's

368 COVAREP output (46).

369 Clinician ratings

37eIn order to corroborate whether there are unintended recording differences between
371 UVFP patients and controls that may lead to bias, one otorhinolaryngologist and two
372speech-language pathologists rated each audio recording of the reading task (one per
373 participant, not split in three) for the following variables (and possible responses), in

374order: background noise (None, Some, High); UVFP (yes, no), CAPE-V severity (0 to

20
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375100), CAPE-V roughness (0 to 100), CAPE-V breathiness (0 to 100), CAPE-V strain (0
376t0 100), CAPE-V pitch (0 to 100), CAPE-V loudness (0 to 100; estimated loudness as if
377the rater were in the recording room), recording loudness (low, medium, high; loudness
378 of the recording). Inter-rater agreement was assessed using intra-class correlation for
379all numerical variables and Light's k for the binary presence of UVFP (47) using the R
3sepackage irr (v0.84.1) (48). The entire reading task was provided instead of the task split
381in three to make assignment easier for clinicians. The reading task was chosen over the

382sustained vowel because we expected it to be easier for clinicians to detect UVFP.

:s3sRESULTS

ssaPerformance of models using acoustic features

385In Table 2, we report performance for models using all features, models after removing
386 redundant features, models using only top 5 features (to understand their unique role in
387 performance), models using all 88 features without 5 features (to understand whether
38sthe top 5 features are necessary for high performance), models using audio duration
389length, and models using a different feature set based on CPP. Performance was found
390to be high across most models except CPP-based models. Some of the models just

391 using audio duration length were able to achieve close to the highest performance,
392which reflects the expected effect of the difference in the dataset. Given dependent
393features provide similar information (see Supplementary Figures S1, S2, S3, S4, S5,

39456, S7, S8, and S9) and distort feature importance analyses, we then tested

21


https://paperpile.com/c/lGEwoX/HM4ZE
https://paperpile.com/c/lGEwoX/1Vwe2
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.23.20235945; this version posted March 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

22

395 performance after removing redundant features using the Independence Factor method
396 previously described. Supplementary Figure S12 shows performance for different
397feature set sizes with increasing amounts of redundant features. From this analysis, we
398 selected the feature-set size that resulted in best performance using the least amount of
399features for subsequent analyses: 39 features (reading), 13 (vowel), 19

400 (reading+vowel). After removing related features (i.e., reducing collinearity) from the
se10riginal 88 features, similar performance was obtained (median ROC AUC = 0.84-0.87)
s02using fewer features. Supplementary Materials "Feature selection" section describes an
se3analysis of how this method compares to removing features across each train set (see
404Sup. Mat. Table S1).

405

406
407
408
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409 Table 2. Model performance
Features |LogisticRegression MLP RandomForest SGDClassifier
Reading 88 .87 (.78-.93; .50) |.87 (.80-.93; .50) | .87 (.76-.91; .49) | .83 (.76-.89; .50)
\Vowel 88 .84 (.77-.89; .50) |.86 (.79-.91; .50) | .86 (.79-.91; .51) | .80 (.72-.87; .50)

Reading+Vowel | 88 .84 (.76-.91; .50) |.86 (.74-.92; .48) | .85 (.77-.92; .49) |.79 (.72-.86; .51)

Reading 39 .84 (.76-.92; .50) |.83 (.76-.91; .50) | .87 (.77-.91; .51) |.78 (.71-.86; .51)

Vowel 13 .80 (.70-.90; .50) |.81 (.74-.91; .50) | .84 (.75-.90; .52) |.74 (.58-.87; .51)

Reading+Vowel | 19 .79 (.70-.84; .50) |.82 (.75-.88; .51) | .84 (.77-.91; .51) |.70 (.61-.77; .52)

eading op ) .73-.89; . ) .78-.92; . ) 77-.90; . ) .56-.87; .
Readi Top5 | .81(.73-.89; .50) |.86 (.78-.92; .47)| .85 (.77—.90; .50) | .75 (.56—.87; .57)

Vowel Top5 | .78 (.67—.87;.50) |.82 (.74-.92; .53)|.81 (.72—.87; .50) |.72 (.57-.82; .49)

Reading+Vowel| Top5 | .80 (.70-.86;.50) |.82 (.74-.88; .50) | .81 (.74—.89; .53) | .72 (.55-.83; .52)

Reading 88 - Top 5| .85 (.76-.92; .50) |.87 (.77—.92; .49) | .85 (.77-.90; .52) | .82 (.71-.89; .51)

Vowel 88 - Top 5| .84 (.75-.93; .50) |.86 (.72-.93; .51) | .84 (.74—.94; .52) | .80 (.70-.90; .48)

Reading+Vowel 88 - Top 5| .84 (.74-.89; .50) |.85 (.76-.91; .50) | .85 (.76-.91; .50) |.79 (.71-.87; .50)

Reading Duration 1| 81 (.73—.88; .50) |.81 (.73-.88; .50) | .85 (.77-.93; .50) |.76 (.50-.88; .50)

Vowel Duration 1| 70 (.61-.77; .50) |.80 (.70-.91; .51) | .86 (.76—.94; .52) | .50 (.31-.68; .51)

Reading+Vowel Duration 1| 70 (.64-.76; .50) |.76 (.67—.84; .50) | .86 (.73—.92; .50) |.64 (.45—.70; .50)

Reading CPP4 | 76 (64-.84;.50) |.76 (.64—.84; .46)|.71 (.64—.78; .55) |.74 (.60—.84; .50)

Vowel CPP4 | 82(.73-.90; .50) |.82(.71-.90; .53)|.77 (.65—.85; .50) |.77 (.40—.86; .49)

Reading+Vowel | CPP 4 | 72 (65-.80;.50) |.74 (.68-.84; .53)|.72 (.65-.78; .50) | .68 (.44—.78; .49)

410 Performance of models using either all 88 features, non-redundant features (39, 13, 19), top five most
411important features, all 88 features minus top 5 most important features using eGeMAPS features. We
412then compared this to using just audio duration as well as a different feature set based on CPP. Median
413ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model
414trained on permuted labels which should be at .50 if at chance). For full distributions of scores see Figure
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415811 in Supplementary Materials. Removing features is a post-hoc analysis because features were

416 selected based on observing performance on the test sets, and therefore performance might be slightly
417 overly optimistic and would need to be tested on an independent test set for further validation. MLP:
418 Multi-Layer Perceptron; SGD: Stochastic Gradient Descent Classifier; CPP: Cepstral Peak Prominence.

419 The bootstrapped ROC AUC distributions and permutation tests for the reduced
420 (parsimonious) models using the non-redundant feature set are shown in Figure 3.
421 Models distribution were all significantly different than their null distribution after

422correcting for multiple comparisons using a Benjamini-Hochberg procedure.

423

424
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430 Given 24 UVFP patients were recorded with a different device, an iPad, we trained

431 models without their samples to make sure these differences in recordings were not
432driving performance. There was a small drop in performance, which could be due to a
433bias (the full, original model using information of the recording device), but could also be
434due to removing training samples. The drop in performance is not large enough to
a3s5suspect that differences in recording are driving the full original model's performance

436 (see Sup. Mat. Table S2, Table S3, and analysis in Supplementary section

437"Performance removing participants that used other recording system").

133 Assessing feature importance

439 Figure 4 reports feature importance using SHAP for all models. For the reading-based
saomodels, all models tend to use the same top 5 features except SGD, which also has the
441 lowest performance. For further description of features and the chosen classification of
s42features, see Eyben et al. (2015) (34) and Low et al. (2020) (2). When reviewing
sa3important features, it is key to note that any of the features with which it is codependent
444 0r associated could be a reasonable important feature (see clusters of redundant
s45features in Supplementary Figures S3-S11). The variance on feature importance rank is
446 evidence that models can use different feature information and still obtain similar high
s47—although not perfect— performance. We further display the distribution of each top
sagfeature and its individual performance in Figure 5, which shows that no single feature is
449 enough to dissociate groups with high performance. This figure also revealed the bias:

s50the intensity-related feature equivalent sound level was counterintuitively higher for
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451 UVFP patients than controls. Figure 6 reports similarity between top 5 features and all
s520riginal 88 eGeMAPS features. Features that have a high dcor or distance correlation
453(i.e., cluster) with top 5 features were not used in models to avoid redundancy, but still
454 share similar information and can therefore be considered important features as well.
455 Hierarchically-clustered heatmaps for other data types (vowel, reading, both) and
as6groups (UVFP patients, controls, both) are displayed in Supplementary Figures S1, S2,
45783, S4, S5, S6, S7, S8, and S9. Clustering tends to reflect pre-defined features types
458such as those reflecting patterns from vocal folds, intensity, vocal tract, spectral

459analyses, and prosody.
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465Figure 5. Distributions for top 5 features and corresponding performance for single features. Logistic

466 Regression with L1 penalty was used. No single feature is enough to dissociate groups with high

467 performance. Null models' median performance was 0.5.
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468

469Figure 6. Feature redundancy with top 5 features highlighted. Top 5 features are highlighted in bold and
470their rank is displayed. Squares are clusters of redundant features. Computed with all participants on the
471reading task.
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s72Clinician ratings

473The median ROC AUC for humans was 0.78 (min. = 0.74 to max. = 0.81) meaning the
474machine learning models performed better than the highest performing clinician on the
475limited available data, that is, the audio samples of the reading task. Interestingly, using
476the average clinician's CAPE-V ratings within machine learning models was able to obtain
477@ maximum median ROC AUC of 0.84 (0.72-0.92) with the Random Forest model (Table
478 3). Using clinicians' perceptual ratings of background noise and recording loudness

479achieved a maximum median ROC AUC of 0.77 (.63— .87).

480 Table 3. Performance using clinician ratings as variables for machine learning models

Features | LogisticRegression MLP RandomForest SGD
CAPE-V 6 .80 (.69-.88; .50) | .81 (.71-.90; .50) | .84 (.72—.92; .49) | .77 (.45-.92; .51)
Noise+ 2 .76 (.59-.86; .50) | .77 (.63-.87; .50) | .73 (.62—.83; .52) | .64 (.45-.78; .50)
loudness

481 Median ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model
482trained on permuted labels which should be at .50 if at chance).

4831In Figures 6 and 7 we report the inter-rater reliability (Flight's kappa and ICC) along with
484the distribution of the ratings. Common cutoffs for inter-rater agreement are poor for values
485less than .40, fair for values between .40 and .59, good for values between .60 and .74,
sg86and excellent for values between .75 and 1.0 (49). Background noise had poor reliability
sg7across rater, UVFP and recording loudness had fair reliability (see Figure 7) and

488 CAPE-V-inspired ratings scored good to excellent except for pitch which was fair (see

489Figure 8).
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490

491Figure 7. Descriptive statistics and inter-rater reliability of clinician ratings for unilateral vocal fold
492 paralysis (UVFP), background noise, and recording loudness indicating likely bias. Controls and UVFP
493 are ground truth diagnosis from the full clinical interview. Ratings are on brief reading samples. Bars indicate
494 maximum and minimum count across the three raters. The disproportionate amount of UVFP samples rated
495as having high background noise and high loudness indicates likely bias, where the gain might have been
496 raised for some UVFP patients and they may have phonated more intensely. kappa: Light's kappa; ICC:

497 intra-class correlation coefficient.

498
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500 Figure 8. How clinicians rate the audio recordings of read speech: descriptive statistics and
501 inter-rater reliability of average clinician ratings. The average across raters was taken for each recording.

502 1CC: intra-class correlation coefficient.

503

so4Bias mitigation: matching audio duration and removing features associated to
sosintensity

506 We trimmed the longer UVFP samples so they were matched to control samples (all samples were
507the same duration), removing the audio duration difference. Vowel samples could not be matched

508 by trimming as some UVFP samples were shorter and some were longer than control samples;

509 therefore we demonstrate an attempt at bias mitigation only with reading samples. In Table 4, we
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510show results on these samples after additionally removing all intensity features as well as variables
s11that have a distance correlation (dcor) with any of them >= 0.3 and 0.4 based on the reading
s512samples. Models have comparable performance to models with the original duration and
s13intensity-related biases. See section "Biased features" and Table S4 in Sup. Mat. for a list of the 44
s14features associated with audio duration and the 14 intensity related features. For distance

s15correlations between audio duration and features, see Sup. Mat. Table S6.

516

517 Table 4. Performance keeping features least associated with intensity features on samples
518 of equal audio length after trimming.

Features | LogisticRegression MLP RandomForest SGD
dcor<0.4 44 .88 (.80-.92; .50) | .87 (.81-.92; .47) | .87 (.78-.93; .45)| .83 (.76—.90; .48)
dcor<0.3 20 .84 (.78-.89; .50) | .83 (.76-.9; .49) |.85(.78-.91; .53)| .79 (.66-.87; .51)

519 Median ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model
520trained on permuted labels which should be at .50 if at chance).

521

s22Discussion

523 This study achieves high performance in detecting UVFP from healthy voices using a few
524seconds of audio recordings and surpassing clinician evaluations even after mitigating the
525 biases we found in the dataset. As a result of performing the explainability analysis, we
526 discovered a likely bias: intensity features were higher for UVFP patients than controls on
s27average (Figure 5) when UVFP patients should have weaker voices. There are two likely

s28causes. A first cause is that the software that had been used prompted users to speak
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529 louder if they had a weak voice in order to achieve an audible recording. A second cause

530 was supported by clinicians' ratings: clinicians rated UVFP patients as having louder

531 recordings and more background noise than controls on average —when they should have
532 similar levels—, which are proxies for microphone gain having been increased. This would

533 have helped models improve performance using characteristics stemming from the

534 recording idiosyncrasies instead of from pathophysiology. However, we removed features

535 correlating with the clearly biased features and still achieved high performance.

536 Our study expands on prior studies which have used pre-existing commercial databases,
537 smaller sample sizes, fewer features, and/or methods for model evaluation that can be

538 biased in small datasets given the test sets may not be representative (for a discussion on
539 bootstrapping for clinical datasets, see Figure 6 ). Critically, we provide a roadmap for
540 evaluating models more thoroughly including quantitatively explaining models and

541 checking the robustness of the models to different choices of speech-eliciting tasks,

542 algorithms, and feature sets. All of this should increase trust when no bias is found and
543 when explanations are robust across models and make sense to experts. Such a model
544 could fulfill several clinical needs: (1) postoperative screening for thyroid surgery-related
545 UVFP since after thyroid surgery, UVFP is common, occurring in up to 5 to 10% of cases?.
546 Furthermore, laryngoscopy is not readily available to all postoperative populations and
547 symptomatic changes are notoriously variable. An ML-based screening could help identify
548 patients needing further workup and treatment, and earlier diagnosis is essential to

549 optimize long-term outcomes 2*2°, (2) Monitoring voice during speech therapy and after

550 surgical treatment for confirmed UVFP to measure when and if the patient's voice is

35


https://paperpile.com/c/lGEwoX/LBnHr
https://www.zotero.org/google-docs/?Rtdqod
https://www.zotero.org/google-docs/?e5OXUK
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.23.20235945; this version posted March 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

36

551 approximating a healthy voice. (3) Preoperative screening prior to surgeries that are at
552 high risk for developing UVFP such as thyroid, head and neck, cardiac, thoracic,

553 esophageal, and cervical spine operations.

554 In Table 5 we summarize several key recommendations to avoid bias when building and
555 explaining machine learning tools for laryngology, although more could be added, and we

556 expand upon how we dealt with some of these steps in the following sections.

557
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558 Table 5. Recommendations to avoid bias for explainable machine learning models that use
559 audio recordings for screening in laryngology

Recommendations Description

Before data collection |- Pre-register hypotheses as to which variables should be important for
predicting the target group to question effects that are not anticipated by theory
(50)

During recording - In a controlled recording setting: models could use any unintended differences
between groups to improve classification (demonstrated in our study); therefore,
it is important to make sure microphone gain, background noise, instructions are
consistent across participants and reflect how recordings will be done once
deployed.

- In a remote setting: it is desirable that models work on people's mobile devices
outside the clinic. Since we cannot fully control the recording procedure, we
should make sure there are no biases affecting one group more than another,
test pilot instructions, and collect much more data to weaken the effect of
individual recording idiosyncrasies.

- Perform pilot studies to do an initial quality control

- Collect representative samples so models generalize to different protected
groups (e.g., ages, genders, races) or provide appropriate warnings (51).

- Providing instructions so participants do not overproject their voice and control
recording procedure so a minimum loudness threshold is not needed (as
demonstrated in our study)

Preprocessing and - Quality control: remove non-natural outliers due to measurement errors, wrong
exploratory data data collection, or wrong data entry (e.g., fixing mislabeled files, unexpected
analysis silent recordings, recordings with extreme much background noise)(52)

- Avoid or be cautious with preprocessing steps that might reduce the properties
associated with the disorder (e.g., denoising may remove breathiness
information which may be useful for prediction).

- Observe distribution of variables between groups (e.g., audio duration) to make
sure there are no differences that are not intrinsic to the disorder. Extra
inspection of the data should be taken with retrospective studies where recording
protocols were not controlled as in our study.

During training and - Train multiple machine learning models of different complexity: two models may
evaluation perform similarly but use input variables in different ways. If after training a
model we only explain one of them, we might have biased conclusions of what
variables characterize the disorder as we demonstrate.

- Avoid overfitting (i.e., finding patterns that do not generalize to new samples).
Simple held-out test sets (e..g, of 20%) may not be representative of the
population or the dataset, and therefore resampling methods (k-fold
cross-validation, bootstrapping) are better. If performing hyperparameter tuning,
nested resampling is needed to avoid overfitting (2). Avoid feature selection and
dimensionality reduction using information from the test set/s. (38,53)

- Report performance on most and remaining important features as done in our

study
During explainability - Choosing one of the variables that are highly dependent due to collinearity
analyses (e.g., that correlate above 0.8 Spearman rho or dcor above a threshold that

does not reduce performance as we did in this study) or due to multicollinearity
(remove variables if variance inflation factor > 5 or 10) (54); grouping correlated
variables using leave-one-feature-out (LOFO); obtaining one variable from the
correlated variables through dimensionality reduction (without using the test set
which could lead to overfitting).
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- Make conclusions from the features that are robustly important across models;
here we take the average importance rank weighted by model performance.

- Evaluate potential bias: do important features match hypotheses? Do they
dissociate groups in the expected direction? Do certain recording conditions
perform better than others and were these done for only one group? Does the
model work worse for certain races or age groups? Several metrics can evaluate
this (e.g., see packages AIF360, fairlearn, and EqualityML).

- Use expert ratings to evaluate any potential sources of bias as done in our
study.

- Understandability: are the explanations understandable for the engineer, the
clinician, and/or the patient? (55)

If bias is detected - Use bias mitigation strategies either during pre-processing (removing variables
generating the bias along with variables correlated with these ones), training
(adversarial debiasing, prejudice remover), or evaluation (equalized odds, reject
option classification) (56). See packages AIF360, fairlearn, and EqualityML.

After deployment - Continuous assessment: we need to review predictions and re-assess accuracy
once deployed as new environments and populations could change performance
(i.e., dataset shift (57)).

560

s61 EXplaining acoustic features relevant to detecting vocal fold paralysis

562 Objective acoustic measurement changes associated with vocal fold paralysis have been
563 described and these changes include reduced loudness and maximum phonation time,

564 higher perturbation measurements such as jitter and shimmer, and increased signal to

565 noise ratio (19,58,59); however these were univariate models, and we have demonstrated
566 that using single variables does not seem to provide high predictive performance. While
567 other multivariate machine learning models have been used, these used few features and
568 small or undefined samples and only report feature importance results for one model;

569 therefore it is not clear whether the important features reported would hold using larger

570 feature sets or how other models would perform. Using a much larger initial set of acoustic
571 features for analysis, we demonstrate that several machine learning algorithms of

572 increasing complexity (using more parameters) identify vocal fold paralysis from healthy
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573 voices. We also report that these models can use different features to achieve similar
574 performance. Different models emphasize different features not simply because of its

575 relevance to a disorder, but because of the mathematics associated with the model (e.g.,
576 containing different degrees of interaction effects, regularization, or propensity to

577 underfitting or overfitting) (60). The variability of the ranking of features used by our

578 individual models also illustrates the potential danger of using the single highest

579 performing model, which is commonly seen in published literature.

580 Instead of simply reporting the important features from the highest performing model, we
581 analyzed the models to find common features. The most important features across models
582 were somewhat associated with intensity features (Sup. Mat. Table S5); therefore, even if
583 not strongly associated with intensity features, they could be important due to a

584 combination of intrinsic differences between UVFP and controls for which we provide

585 hypotheses or because of how intensity influences them; a new unbiased dataset would be
586 needed to confirm this. These top features were: intensity, especially equivalent sound

587 pressure level which was redundant with multiple loudness features and seems to be due
588 t0 some patients trying to use more breath for projection or being recorded with a higher
589 microphone gain; Mel Frequency Cepstral Coefficients (especially the first coefficient,

590 which captures spectral envelope or slope, which has be shown to be important for

591 predicting UVFP ((29)); mean FO semitones given FO originates from vocal-fold oscillation,
592 a vocal-fold paralysis is expected to alter FO, and has been shown to help predict

593 pathological speech including UVFP (28);, mean F1 amplitude and frequency, influenced

594 by how the vocal tract filters FO and the shape of the glottal pulse which would be affected

39


https://paperpile.com/c/lGEwoX/WJS01
https://paperpile.com/c/lGEwoX/oSVjd
https://paperpile.com/c/lGEwoX/K9BGT
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.23.20235945; this version posted March 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

40

595 by UVFP voiced and unvoiced segments (prosodic and speech articulation features which
596 may be altered due to changes in the periodicity of FO), and CPP features (which indicate
597 voice quality degradations that could include more breathiness, a typical feature of UVFP
598 (61)). Shimmer variability was important just for reading, and it captures variability in glottal
599 pulses and pressure patterns which ultimately affect FO and has been found to be

600 significantly different between UVFP and a control group (62). When we removed the top 5
601 features from the full feature set, performance is practically equivalent to using 88 features,
602 as expected, since there are features that are redundant with the top 5 features. Therefore,
603 it is not that only these 5 specific features drive performance, but rather the information

604 they contain, which in this dataset is also captured by other features as shown in Figure 6.

605 These acoustic features would corroborate our clinical understanding of glottal

606 incompetence from UVFP and with common patient complaints of reduced loudness, vocal
607 instability, hoarseness, and rough voice; however, they could also be important due to their
608 associations with intensity features. Uncovering and understanding the basic mechanisms
609 and features that models use to generate predictions and outcomes are important as these

610 tools become part of the clinical decision making process.

11 ldentifying and addressing bias

612 Equivalent Sound Level was higher in UVFP patients than controls. This is counter-intuitive
613 because UVFP patients are known to have softer voices as already described; however,
614 clinicians rated most UVFP samples as being louder than controls. The bias discovered

615 was likely due to increasing the gain on the microphone for some UVFP patients, which
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616 would explain the increased background noise in UVFP patients' recordings. A second

617 source of bias may have occurred from requesting UVFP patients to speak louder in order
618 to meet the minimum intensity threshold on the recording softwares Computerized Speech
619 Lab™ and OperaVOX, or patients could have tried this on their own knowing they were
620 being recorded. This behavioral compensation is likely to occur in biomarker research

621 when the participant has a soft voice, especially in retrospective studies like ours where
622 the study goal is not known at the time of recording or when certain software properties
623 lead individuals with weak voices to speak louder. Even though the current models perform
624 better than the clinicians, a systematic comparison would require more clinician and model
625 assessments across datasets. It is likely a model trained on a single dataset might learn
626 intrinsic characteristics of that dataset that do not generalize as well as clinical expertise

627 might.

628 Having said this, this line of research would help us understand the extent to which UVFP
629 detection is generalizable from acoustic data alone. Finding an objective measure of

630 hoarseness is important given a "normal voice" is a fundamentally subjective classification
631 that is not well defined (63,64) and varies with training (65,66), which may result in low

632 reliability of evaluation of disordered voices among clinical rating scales (67).

633 As a post hoc analysis, we address bias by trying to mitigate its effect: we removed
634 variables associated with intensity variables on samples matched on audio duration. After
635 removing these features, the models were able to obtain similar performance using a very

636 different set of features. It is possible that these remaining features better reflect
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637 pathophysiology or that the features extracted are still influenced by intensity, but further

638 studies should address their generalizability or their relation to intensity variation.

639 Evaluating the sensitivity to tasks, model complexity, and features used

640 In addition to getting a better understanding of features, we explored performance in the
641 context of different vocal tasks. Participants carried out two different tasks to elicit voice,
642 reading, which captures more complex speech dynamics, and sustaining vowels, which is
643 a simpler measure of vocalization and the respiratory subsystem. Overall, these dynamics
644 from the speech task may have improved model performance as was observed.

645 Comparing simpler and more complex models is important because simpler models such
646 as Logistic Regression could be preferred because they tend to generalize better given
647 they are less at risk for overfitting the training set and they are more interpretable and thus

648 biases can be assessed more directly (68).

649 By removing redundant features, we can concentrate on finding the most useful features
650 for further analysis. Performance decreased only slightly while we made models more

651 parsimonious and explainable. This approach is key given the curse of dimensionality in
652 machine learning that may make models unnecessarily complex and harder to generalize

653 (20).

654 Often studies will report the top N features but not how predictive they are in isolation. In
655 our study we ran models on the top 5 features together (Table 2). The lower performance

656 Of these top 5 features relative to a richer feature set helps demonstrate that model
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657 performance is dependent on interactions across multiple additional features (with the

658 exception of samples from the reading task which obtained an AUC of 0.86 using just the 5
659 features). We also ran models without top 5 features to demonstrate that leaving features
660 that are redundant with these top features results in almost equivalent high performance to
661 using all 88 features since the redundant features share information. Furthermore, when
662 training models on the individual features from within these top 5 one at a time, the

663 performance was reduced considerably with scores from 0.55 to 0.71. This indicates the
664 need for these models to combine multiple features to achieve high performance and any
665 model evaluation should not focus on only the common or top features without testing their

666 predictive performance.

667 Limitations and future directions

668 We cannot determine how the bias will affect the model's performance on future samples,
669 but it will likely underperform in samples where length was not different between groups,
670 where gain cannot be changed, and where participants are instructed to not overproject
671 their voice; however, it is possible the model could underperform for other reasons

672 including dataset shift (e.g., the distribution of voice characteristics or demographics is

673 different in a new sample).

674 The classification using just duration itself varied across models and clinicians who
675 listened to the reading passage in its entirety did not achieve as good a classification as
676 the best performing models. Duration itself was not included as a feature in the

677 eGeMaps-based models and has a complex effect on both machines and humans. For
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678 example, duration could have affected eGeMAPS features (e.g, introduce more variability
679 to the functionals that are computed over sliding time windows) and duration of vowels

680 varied extensively across the UVFP group thus cannot itself be tied to underlying

681 pathophysiology. Therefore, important future work should analyze how duration may affect
682 these features, should address the intrinsic variability in durations of UVFP patients in

683 responding to speech items, and should incorporate models of production that include a
684 consideration of respiratory capabilities, articulation changes, and vocal fold

685 pathophysiology.

686 It is not clear whether these models could detect UVFP from other voice disorders or just
687 healthier voices; however, a model that generalizes well in classifying UVFP from controls
688 could be used to monitor UVFP patients remotely and affordably during treatment or detect
689 risk for UVFP when it is the most likely cause (e.g., dysphonia after thyroid surgery).

690 Larger sample sizes with curated examinations can help increase diverse representation
691 across voice quality and thereby potentially reduce bias in classifier performance. We did
692 not analyze potential racial bias given this data was not extracted from the chart review.
693 Our choice of a standardized feature set worked well in this setting, but may fail to work for
694 differential voice disorder diagnosis or when generalizing to larger datasets, which may
695 bring in additional sources of variance unaccounted for in this dataset. With the availability
696 of more data, additional features could be extracted that better capture changes in

697 coordination (e.g., XCORR (69)).

698 Furthermore, while our feature importance evaluation method, SHAP, shows a certain

699 amount of robustness across models, alternative model-agnostic feature-importance
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700 methods (e.g., LOFO, permutation importance) as well as model-specific methods

701 (coefficient values for linear models, mean decrease in impurity for Random Forest) could
702 be compared. Model understandability —how easily are the explanations understood by a
703 speech scientist or a clinician— could be assessed rigorously (55).

704 Finally, debiasing the models by removing features correlated with the biased ones was
705 attempted although it is not clear how exactly intensity may influence certain features; we
706 assume if intensity is influencing a variable, it generally should create some considerable
707 association which we discarded using dcor. Therefore, the effect of the bias can be

708 assessed by testing the model's generalizability to new unbiased datasets. Therefore, we
709 are not promoting our final debiased models as completely unbiased or ready to use, it is
710 possible our debiasing strategies are only partially effective, additional biases remain,

711 and/or additional ways of debiasing have not been considered.

712 We tested how well a model using only the top 5 features performed independently of the
713 model with all features; it is possible to also test how well the incremental set of top

714 features performs (1st, 1st and 2nd, 1st-3rd, etc.), which would be useful in order to

715 compare different models' performance as a function of which features are being used.

716 Conclusion

717 Using one of the largest UVFP datasets to date, our study demonstrates the importance of
718 checking for biases using explainable machine learning and clinician perceptual ratings. In
719 order to first explain models, we tackle collinearity (i.e., redundant or highly correlated

720 independent variables), which biases feature importance, using a custom method called
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721 Independence Factor that selects one out of a set of associated features without losing

722 predictive performance. We then compare how results change across different

723 speech-eliciting tasks, training algorithms, features, features set sizes, and highest and

724 lowest performing features to better understand the process that models use to predict

725 vocal changes associated with laryngeal disease, since analyzing a single model will result
726 in a biased view of how predictions are achieved. During this process, we discovered there
727 was a difference in audio duration between groups clearly not related to intrinsic

728 differences in UVFP speech rate, but in cropping all control recordings to a certain length
729 during audio storage. We also discovered that sound equivalent level was

730 counterintuitively higher in UVFP patients, a likely bias resulting from the weak or

731 underprojected voice that characterizes many UVFP patients: patients were prompted by
732 the recording software to speak louder and the microphone gain was likely raised

733 selectively for these patients with weaker voices, possibly generating higher background
734 noise which was detected through clinician's ratings; therefore the models picked up on

735 the acoustic correlates of this increased intensity, which would impede generalization

736 under different recording procedures and natural audio durations. This is more likely to

737 occur in laryngology datasets when patients have a softer voice.

738 Interestingly, we found that matching audio duration between groups and removing all

739 variables that were clearly related to intensity (e.g., bias mitigation) resulted in similar high
740 performance. In this case, the model may be using information more related to

741 pathophysiology, which would need to be further confirmed by future unbiased samples.

742 Machine learning models tended to surpass clinician's evaluation of the same audio
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743 recordings. Interestingly, using clinician's voice quality ratings on the recordings in machine
744 learning models performed better than their binary evaluation on whether recordings

745 contained a sample of UVFP voice or not.

746 We hope to promote moving beyond using a single model and only reporting top features
747 t0 a better explanation of how these models work as well as being able to understand
748 variance across modeling and evaluation choices. We believe these are all aspects of

749 machine learning that clinicians need to understand prior to using such applications.

750 With these considerations along with the recommendations we make, machine learning
751 applications could aid in laryngology screening, allowing for the potential development of

752 in-home screening assessments and continuous pre- and post-treatment monitoring.
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