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 Abstract 

 Introduction.  Detecting voice disorders from voice  recordings could allow for frequent, remote, 

 and low-cost screening before costly clinical visits and a more invasive laryngoscopy 

 examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice 

 recordings using machine learning, to identify which acoustic variables were important for 

 prediction to increase trust, and to determine model performance relative to clinician 

 performance. 

 Methods.  Patients with confirmed UVFP through endoscopic  examination (N=77) and controls 

 with normal voices matched for age and sex (N=77) were included. Voice samples were elicited 

 by reading the Rainbow Passage and sustaining phonation of the vowel "a". Four machine 

 learning models of differing complexity were used. SHapley Additive exPlanations (SHAP) was 

 used to identify important features. 

 Results.  The highest median bootstrapped ROC AUC score  was 0.87 and beat clinician's 

 performance (range: 0.74 – 0.81) based on the recordings. Recording durations were different 

 between UVFP recordings and controls due to how that data was originally processed when 

 storing, which we can show can classify both groups. And counterintuitively, many UVFP 

 recordings had higher intensity than controls, when UVFP patients tend to have weaker voices, 

 revealing a dataset-specific bias which we mitigate in an additional analysis. 

 Conclusion.  We demonstrate that recording biases in  audio duration and intensity created 

 dataset-specific differences between patients and controls, which models used to improve 

 classification. Furthermore, clinician's ratings provide further evidence that patients were 
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 4 

 over-projecting their voices and being recorded at a higher amplitude signal than controls. 

 Interestingly, after matching audio duration and removing variables associated with intensity in 

 order to mitigate the biases, the models were able to achieve a similar high performance. We 

 provide a set of recommendations to avoid bias when building and evaluating machine learning 

 models for screening in laryngology. 

 Keywords:  vocal fold paralysis, acoustic analysis,  voice, speech, explainability, interpretability, 

 machine learning, bias 
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 5 

 INTRODUCTION 

 Voice recordings provide a rich source of information related to vocal tract physiology 

 and human physical and mental health. Given advances in smartphones and 

 wearables, these recordings can be made anytime and anywhere. Thus the search for 

 disorder-specific acoustic biomarkers has been gaining momentum. Voice biomarkers 

 have been reported for detecting Parkinson's disease  (1)  as well as psychiatric 

 disorders including depression, schizophrenia, and bipolar disorder (for a systematic 

 review, see Low et al, 2020  (2)  ). Given our scientific  understanding of the complexity of 

 speech production, multiple acoustic features have been devised for use in machine 

 learning models. In Figure 1, we describe a schematic of speech production and the 

 process of extracting certain acoustic features from an audio signal (see also Quatieri, 

 2008  (3)  ), which is an important part of explaining  how pathophysiology would affect 

 acoustic features that are used in machine learning classifiers. Panel (A) depicts speech 

 as the result of the neural coordination of three subsystems: the respiratory system 

 (lungs), the laryngeal system (vocal folds), and the resonatory system of the vocal tract 

 (pharynx, oral cavity, nasal cavity, articulators, and subglottal effects). Speech 

 production requires air flow from the lungs to generate sound sources that are filtered 

 by the vocal tract. Panel (B) captures the fact that environmental, microphone, and 

 digital sampling characteristics (e.g., background noise, microphone gain, sampling 

 rate) can affect acoustic features. Panel (C) shows the waveform of the audio signal, 

 representing areas of compression (positive amplitude; higher air pressure) and 
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 6 

 rarefaction (negative amplitude; lower air pressure). Higher amplitudes can lead to 

 higher perceived loudness. Prosodic features arise from changes over longer segments 

 of time, which is perceived in the rhythm, stress, and intonation of speech. A segment of 

 the waveform is shown in the right panel, indicating a periodic signal from the vocal 

 folds. Panel (D) shows that for a given time window, a spectrum (right panel) can be 

 obtained through a fast Fourier transform (FFT) which represents the magnitude of the 

 frequencies in the signal with peaks (formants F1–F3) due to vocal tract filtering of the 

 source signal produced by the vocal folds. The spectrogram (left panel) is a 

 representation of the spectrum as it varies over time and can be obtained through a 

 short-term Fourier transform (STFT). The approximate location of the F0 and first 

 formants are displayed. Finally, (E) It is possible to separate source and filter 

 components by computing the inverse FFT of the log of the magnitude of the spectrum, 

 called the cepstrum (right panel). The peak in the cepstrum reflects the periodic glottal 

 fold vibration while lower quefrency components reflect properties of the resonatory 

 subsystem. For speech recognition, Mel filters are applied to the spectrum to better 

 approximate human hearing. A conversion of the Mel-spectrum to a cepstrum using a 

 Discrete Cosine Transform (DCT) generates mel-frequency cepstral coefficients 

 (MFCCs). Similar to the cepstrum, lower MFCCs track vocal-tract filter information. 
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 Figure 1. Schematic of speech production and the process of extracting certain acoustic features 
 from an audio signal. 
 (A) Speech production, (B) recording characteristics, (C) waveform of audio signal with fundamental 
 frequency (f0), (D) spectrogram with formants F1-F3 and intensity, (E) mel-frequency cepstral coefficients 
 (MFCCs). Full description in the main text. 

 Furthermore, while machine learning (ML) can be a powerful and successful approach 

 for diagnostics, they are often treated as "black-boxes". It can be difficult to determine 

 how the model is making a decision, that is, how it is combining input features from a 

 given patient to generate a prediction. This is particularly worrisome given ML 

 algorithms can detect and associate unintended or clinically irrelevant relationships and 

 introduce bias that may be difficult to anticipate. Explainable ML refers to a series of 

 methods and quantitative analyses for uncovering and "explaining" the rationale behind 

 the decision made by complex algorithms, which is particularly critical in the high-stake 

 decisions of medicine to increase trust among clinicians and patients  (4)  . 

 There are many challenges for applying acoustic analysis to detect specific disorders. 

 Voice characteristics are highly varied and change over time. Laryngeal pathology, age, 
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 8 

 gender, size, weight, general state of health, smoking/vaping, and medications can 

 impact vocal acoustic characteristics. Diseases in the larynx and phonatory system (i.e., 

 larynx, resonating structures, lungs) and/or neurological system, will also affect voice. 

 Compensatory production strategies and environmental conditions can also change the 

 vocal signal. Furthermore, because hoarseness is such a frequent occurrence and 

 specialty voice centers are rare, vocal fold disorders are often undiagnosed, 

 under-reported, or misdiagnosed  (5)  . 

 We chose vocal fold paralysis as the study cohort for several reasons. First, it is 

 clinically important. UVFP can have detrimental effects on voice and quality of life with 

 resultant morbidity related to respiration, swallowing and aspiration  (6)  . Vocal fold 

 paralysis may occur due to iatrogenic injury, malignancy, idiopathic, and neurological 

 disease  (7)  . Overall, surgical iatrogenic injury accounts  for 46% of all UVFP in adults 

 and thyroid and parathyroid surgeries are responsible for 32% of postsurgical UVFP  (8)  . 

 There is a significant need for a screening tool for the diagnosis and tracking of UVFP 

 because of the high impact of this condition on productivity and quality of life. Screening 

 could be done remotely and frequently, especially when surgical specialists and 

 laryngeal exams are not readily accessible due to geographical, financial, and other 

 barriers  (9)  . Using an explainable ML model as a screening  tool for UVFP can provide 

 greater clarity as to who most needs laryngoscopy and provides insight in the key voice 

 characteristics related to the pathophysiology  (10–14)  .  The costs associated with UVFP 

 not only relate to patient morbidity and diminished quality of life but also to the economic 

 burden placed on our healthcare system. Greater lengths of hospitalization and 
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 increased hospital costs have been associated with postsurgical VFP  (15,16)  . Access to 

 specialists for diagnosis is limited and early detection and management of UVFP appear 

 to improve length of stay and surgical outcomes  (17)  .  Special consideration should be 

 given to what the model can actually classify: a model that generalizes well in 

 classifying UVFP from controls may not be able to screen for UVFP out of other voice 

 disorders, but could be used to monitor UVFP patients remotely and affordably during 

 treatment or detect risk for UVFP when it is the most likely cause such as dysphonia 

 after thyroid surgery. 

 Furthermore, UVFP is an ideal model for demonstrating the explainability of ML. UVFP 

 occurs when the mobility of a single vocal fold is impaired as a consequence of 

 neurological injury and diagnosis is consistently verified through routine laryngoscopy; 

 therefore, ground truth labels are available. Second, the clinical signs of UVFP are 

 well-described. These characteristics include a weak, breathy voice quality, early vocal 

 fatigue, reduced cough strength, and aspiration with thin liquids  (18,19)  . Therefore, the 

 acoustic differences between UVFP patients and healthy controls can be interpreted 

 with regards to perceptual symptoms and a well-understood pathophysiology. In 

 contrast, explaining important variables to predict a disorder which is hard to diagnose 

 (e.g., has low inter-rater reliability) and has an unclear pathophysiology would ironically 

 result in a poor explanation, because it would be puzzling how or even if the disorder 

 could modulate the important acoustic variables. Of course, machine learning models 

 can also offer novel explanations into a disorder by characterizing novel characteristics. 

 However, if these models use high-dimensional feature vectors, they are more likely to 
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 10 

 overfit when using small datasets  (20,21)  , which should lead to more skepticism of 

 these novel explanations. 

 There have been several studies detecting unilateral vocal fold paralysis (UVFP) using 

 machine learning  (22–30)  ; however, most have included  the disorder among a set of 

 voice disorders to be predicted. Limitations of these prior studies could be seen to fall 

 into one of following types: not reporting the performance when classifying the subset of 

 participants with UVFP out of the participants with dysphonia they were trying to detect; 

 small sample sizes given most studies contained 10 participants with UVFP or fewer 

 with one study containing 50 participants  (31)  ; a  lack of algorithmic explanations: they 

 either do not report on the relative importance of each acoustic variable; use input data 

 such as a spectrogram in a black-box deep learning model which could make attempts 

 at algorithmic explanations on images such as saliency maps more opaque than results 

 from feature importance of handcrafted features; use a black-box model such as neural 

 network without attempting to explain its predictions with deep learning explainability 

 methods  (32)  ; use a single type of model which may  pick up on certain types of patterns 

 but miss others leading to incomplete conclusions on feature importance; use only a few 

 features which may impede better predictive performance by not capturing certain 

 relevant information; and/or not publicly share models or data to help test their 

 generalizability to new data. 

 The objectives of our study were: to detect UVFP using ML; to evaluate the 

 effectiveness of different models in differentiating the acoustic signals between patients 
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 with UVFP and patients with normal functioning vocal folds (i.e., controls); to explain 

 which features are most important to the diagnostic models and examine the 

 pathophysiological relevance; and to compare performance to human clinicians 

 evaluating audio recordings. To achieve these objectives, we evaluated four different 

 classes of machine learning algorithms to assess classification performance, obtained 

 the minimal set of features necessary for detection, and identified the most important 

 acoustic features for model construction after removing redundant features. Ultimately, 

 we wanted to see if the most important features identified by the machine learning 

 models matched clinically-known relevant acoustic changes. 

 MATERIALS AND METHODS 

 This study was approved by the Institutional Review Board at Massachusetts Eye and 

 Ear Infirmary and Partners Healthcare (IRB 2019002711). 

 Participants and voice samples 

 Through retrospective chart analysis from 2009 to 2019, a total of 1043 patient charts 

 were reviewed from a tertiary care laryngology practice who underwent endoscopic 

 evaluation and voice testing. Of those, 53 patients with confirmed UVFP were identified. 

 They had documented vocal fold paralysis by endoscopic examination and had 

 undergone acoustic analysis as part of routine clinical care. Each patient had four 
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 acoustic recordings. These included three sustained vocalizations of the "a" vowel 

 sound (  ɑ in the International Phonetic Alphabet)  and a reading of the introductory 

 paragraph of the rainbow passage  (33)  . The acoustic  recordings were all taken in an 

 acoustically shielded room. For each of these 53 patients, a board-certified 

 otolaryngologist reviewed their clinical history, video laryngoscopy as well as their audio 

 samples to confirm that they were correctly classified to have UVFP. Voice samples 

 from an additional 24 patients were collected prospectively using a mobile software, 

 OperaVOX  TM  on an iPad, who were being treated for  UVFP. These patients also had 

 the same four acoustic recordings as the patients from retrospective chart review. This 

 combination of data collection yielded a total of 77 UVFP patients for analysis, of which 

 48 had left UVFP and 29 right UVFP. 

 All of the patients were then matched with control samples from a database of patients 

 without UVFP who had also undergone acoustic analysis. Each control was the same 

 sex and had the same smoking status as the UVFP patient and within three years of 

 age, and had documented laryngeal examinations that verified the absence of vocal fold 

 mucosal pathology. The controls were excluded if they had established laryngeal 

 surgery, vocal fold lesions, radiation, head and neck cancer, or neurological disease. 

 The controls had recorded the same four acoustic recordings as the retrospectively 

 gathered UVFP group. A board-certified otolaryngologist confirmed that the voice 

 recordings and video laryngoscopies of these controls matched normal expectancies. 

 The reading samples were divided in thirds to match the amount of vowel production 

 samples, resulting in 6 samples for most participants. Reading recordings were not 
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 available for three patients and three patient vowel samples were removed due to 

 containing multiple vowel productions or a cough. The final dataset that was analyzed is 

 described in Table 1. Reading+vowel refers to including all samples (i.e., ~6 samples) 

 from the same participant with the goal of either obtaining higher performance or 

 discovering features that show variation in relation to diagnosis consistently across 

 tasks. Mean (SD) audio lengths were 6.81s (5.47) for reading samples and 3.95s (1.00) 

 for vowel samples.  The audio samples were processed  using OpenSmile with the 

 eGeMAPS configuration file (article  (34)  , source  code  (35)  ) which applies different 

 summarization statistics to the time series depending on the feature resulting in 88 

 features per sample covering information related to the vocal folds (F0, jitter, shimmer), 

 intensity (loudness, HNR), vocal tract (F1–3 frequency, bandwidth, amplitude), spectral 

 balance (alpha ratio, Hammamberg index, spectral slope, MFCC 1–4, spectral flux), and 

 prosody (voice and unvoiced segments, loudness peaks per second). See section 

 "eGeMAPS features" in Sup. Mat. for full list. 

 Table 1. Sample sizes and demographic information 

 UVFP  Controls  Total 

 N  77  77  154 

 Mean age (SD)  56.4 (18.7)  56.6 (18.8)  56.5 (18.7) 

 Sex (F/M)  39/38  39/38  78/76 

 Reading  222  231  453 

 Vowel  227  231  458 

 Reading+vowel (total)  449  462  911 

 SD: standard deviation; F: female; M: male. 
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 Machine learning models of increasing complexity 

 With the goal of classifying voices recording into either UVFP or controls, we used four 

 machine learning algorithms of increasing complexity from the  scikit-learn  (v0.21.3) 

 using the  pydra-ml  (v0.3.1) toolbox  (36)  (default  parameters were used unless 

 otherwise specified). By complexity we mean models are more complex if they are 

 harder to simulate, that is, harder to take the input data and model parameters and step 

 through every calculation required to produce a prediction in a reasonable time which 

 increases with the amount of parameters and interactions  (37)  . 

 (1) Logistic Regression: a simple linear model that is constrained to use few features 

 due to an L1 penalty making it the simplest model (“liblinear” solver was used which is 

 ideal for smaller datasets). 

 (2) Stochastic Gradient Descent (SGD) Classifier: we used a log loss which implements 

 a logistic regression; therefore, it is also a linear model but tends to use more features 

 due to an elastic net penalty, making it slightly more complex (the max_iter parameter 

 was set to 5000 and early_stopping was set to True). 

 (3) Random Forest: it is an algorithm that uses simpler decision trees (i.e., weak 

 learners) on feature subsets "but then takes the majority of the votes of the decision 

 trees' predictions to create a stronger learner, making it harder to interpret which 

 features are important across trees. 
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 (4) Multi-Layer Perceptron: it is a neural network classifier which incorporates, in our 

 case, 100 instances of perceptrons (artificial neurons), which are connected to each 

 input feature through weights with a ReLU activation function to capture nonlinear 

 relationships in the data. It is not possible to know exactly how the hundreds of internal 

 weights interact to determine feature importance, making the model difficult to interpret 

 directly from its parameters (the max_iter parameter was set to 1000; alpha or the L2 

 penalty parameter was set to 1). 

 To generate independent test and train data splits, a bootstrapped group shuffle split 

 sampling scheme was used. Bootstrapping is more optimal than cross-validation on 

 smaller datasets and provides a measure of uncertainty through a confidence interval 

 (38)  . For each iteration of bootstrapping, a random  selection of 20% of the participants, 

 balanced between the two groups, was used to create a held-out test set. The 

 remaining 80% of participants were used for training. This process was repeated 50 

 times, and the four classifiers were fitted and tested for each test/train split.. We used 

 the default of 50 bootstrapping splits from pydra-ml to reduce computational time. 

 Median ROC AUC stabilized to larger spit values at around 40 splits for logistic 

 regression models across tasks (see Sup. Mat. Figure S1) while reducing runtime 

 compared to larger split values. The Area Under the Receiver Operating Characteristic 

 Curve  (ROC AUC; perfect classification = 1; chance = 0.5) was computed to evaluate 

 the performance of the models on each bootstrapping iteration, resulting in a distribution 

 of 50 ROC AUC scores for each classifier. To ensure results were not due to choosing 

 scikit-learn's hyperparameter default settings, hyperparameter tuning was performed on 

 15 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2020.11.23.20235945doi: medRxiv preprint 

https://paperpile.com/c/lGEwoX/XCxBY
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 the main models using all features and achieved similar performance to non-fine-tuned 

 models (see Sup. Mat. Table S1). The focus of our study is identifying bias and not 

 achieving –in our case– a small increment in performance; therefore, given the large 

 number of models, analyses, and bootstrapping samples in our study which focuses on 

 identifying bias, we chose default parameters given the small changes in performance 

 we observed with hyperparameter tuning. Additionally, for each iteration, each classifier 

 was trained with randomized patient/control labelings to generate a null distribution of 

 ROC AUC scores (i.e., a permutation test). Each model's performance was statistically 

 compared to their null model's distribution  using an empirical p-value, a common and 

 effective measure for evaluating classifier performance (see Definition 1 in  (39)  ). The 

 significance level was set to alpha = 0.05. 

 Assessing feature importance 

 Kernel SHAP (SHapley Additive exPlanations) was used to determine which acoustic 

 features were most important for each model to detect UVFP. This method is model 

 agnostic in that it can take any trained target model (even “black box” neural networks) 

 and compute feature importance  (40)  . It does so by  performing regression with L1 

 penalty between different sets of input features and a single prediction made by the 

 target model. It then uses the coefficients of the additional regression model as a 

 measure of feature importance for a single prediction. We took the average of the 

 absolute SHAP values across all test predictions (positive and negative values are both 

 important for classification). We then weighted the average values by the model’s 
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 median performance since an important feature for a bad model could be a less 

 important feature for a good model and vice versa. Since we trained each model 50 

 times (i.e., one for each bootstrapping split), we computed the mean SHAP values 

 across splits for each model. This pipeline (i.e., machine learning models, bootstrapping 

 scheme, SHAP analysis) was done using  pydra-ml  . 

 Reducing collinearity to do explainability analysis using 

 Independence Factor 

 Highly correlated features (i.e., collinearity) can influence model generation and 

 interpretation. Two models may obtain similar performance while using different features 

 or placing different weights on the same features (i.e., underspecification  (20,41)  ) . This 

 makes it difficult to compare algorithmic explanations across models. For instance, 

 mean F1 frequency may be less important to a given model because the model uses 

 mean F2 frequency which happens to capture very similar information in a particular 

 dataset (i.e., has a high correlation), whereas a different model may use F1 instead of 

 F2 or use both but assign less importance to each and still obtain the same 

 performance. To enforce models to use the same features that capture very similar 

 information and be able to compare feature importance across models, we kept a single 

 feature out of the sets of features that share similar information above a given threshold. 

 We used a custom algorithm we call Independence Factor whereby for each 

 feature in alphabetical (i.e., arbitrary) order, we removed features that show strong 
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 dependence above a given threshold. The step was repeated for remaining features. 

 We use distance correlation from the Python  dcor  package  (v0.4) because, unlike 

 Pearson  r  or Spearman  rho  , it can capture non-monotonic  relationships  (42,43)  . We 

 have included several examples of non-monotonic associations between variables in 

 our dataset that would be captured better by dcor (see Sup. Mat. Figure S2). We used 

 the following threshold values for the distance correlation [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 

 0.4, 0.3, 0.2] to compute the Independence Factor, which removed increasingly more 

 features (i.e., 1.0 keeps all features and 0.2 removes features that have a distance 

 correlation above 0.2). We chose the feature size which contains at least one model 

 that scores within three percentage points of the performance using all features, with 

 the goal of obtaining a more parsimonious model for subsequent explanation while 

 maintaining high accuracy. Thus, removing redundant features makes the models 

 easier to interpret for clinical relevance. To visualize the original redundancy across 

 features, we computed clustermaps using  seaborn  package  (v0.10.1) performing 

 hierarchical clustering with the average-linkage method and Euclidean distance. This 

 was performed on the pairwise distance correlation, computed separately on data from 

 UVFP, controls, UVFP+controls and on reading, vowel, and reading+vowel. 

 Performance using most important and least important features 

 Studies tend to report and describe the top N features out of M features, but it is not 

 clear what performance the model would obtain when using only those top N features; 
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 perhaps it would perform substantially worse than the full model. We will report 

 performance using only top 5 features as well as performance without top 5 features to 

 provide a more realistic evaluation of their importance. 

 Performance using audio duration 

 Figure 2 indicates clear differences in the distributions of audio recording duration between 

 UVFP patients and controls. This is due to how recordings were processed and saved and not 

 necessarily due to an intrinsic property of UVFP (e.g., slower speech), which reveals a bias that 

 models can leverage but is not expected to generalize well under different audio processing 

 procedures. Therefore, we examine whether audio duration alone could perform well in 

 classification of UVFP. The mean (and standard deviation) for the audio duration for reading 

 task is 3.5 s (0.00 s) for the controls and 10.25 s (6.17 s) for the UVFP patients and the audio 

 duration for sustained vowel task is 4.11 s (0.07 s) for the controls and 3.74 s (1.3 s) for the 

 UVFP patients. 

 Figure 2. Distribution of audio duration for reading and vowel tasks split by group reveals 
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 a dataset bias.  The mode of the audio durations for the controls is 3.5 s for reading samples 

 and 4.11 s for vowel samples. 

 Performance using cepstral peak prominence 

 To evaluate whether results are sensitive to choice of features, we use a different set of 

 features derived from cepstral peak prominence (CPP) given it has been shown to be a 

 good measure of breathiness and dysphonia  (44,45)  .  We match the summary statistics 

 across the audio recording that eGeMAPS uses: CPP mean, CPP coefficient of 

 variation (standard deviation normalized by the mean), CPP 20th percentile and CPP 

 80th percentile. We use our custom Python implementation which matches MatLab's 

 COVAREP output  (46)  . 

 Clinician ratings 

 In order to corroborate whether there are unintended recording differences between 

 UVFP patients and controls that may lead to bias, one otorhinolaryngologist and two 

 speech-language pathologists rated each audio recording of the reading task (one per 

 participant, not split in three) for the following variables (and possible responses), in 

 order: background noise (None, Some, High); UVFP (yes, no), CAPE-V severity (0 to 
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 100), CAPE-V roughness (0 to 100), CAPE-V breathiness (0 to 100), CAPE-V strain (0 

 to 100), CAPE-V pitch (0 to 100), CAPE-V loudness (0 to 100; estimated loudness as if 

 the rater were in the recording room), recording loudness (low, medium, high; loudness 

 of the recording). Inter-rater agreement was assessed using intra-class correlation for 

 all numerical variables and Light's k for the binary presence of UVFP  (47)  using the R 

 package  irr (v  0.84.1)  (48)  . The entire reading task  was provided instead of the task split 

 in three to make assignment easier for clinicians. The reading task was chosen over the 

 sustained vowel because we expected it to be easier for clinicians to detect UVFP. 

 RESULTS 

 Performance of models using acoustic features 

 In Table 2, we report performance for models using all features, models after removing 

 redundant features, models using only top 5 features (to understand their unique role in 

 performance), models using all 88 features without 5 features (to understand whether 

 the top 5 features are necessary for high performance), models using audio duration 

 length, and models using a different feature set based on CPP. Performance was found 

 to be high across most models except CPP-based models. Some of the models just 

 using audio duration length were able to achieve close to the highest performance, 

 which reflects the expected effect of the difference in the dataset. Given dependent 

 features provide similar information (see Supplementary Figures S1, S2, S3, S4, S5, 

 S6, S7, S8, and S9) and distort feature importance analyses, we then tested 
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 performance after removing redundant features using the Independence Factor method 

 previously described. Supplementary Figure S12 shows performance for different 

 feature set sizes with increasing amounts of redundant features. From this analysis, we 

 selected the feature-set size that resulted in best performance using the least amount of 

 features for subsequent analyses: 39 features (reading), 13 (vowel), 19 

 (reading+vowel). After removing related features (i.e., reducing collinearity) from the 

 original 88 features, similar performance was obtained (median ROC AUC = 0.84–0.87) 

 using fewer features. Supplementary Materials "Feature selection" section describes an 

 analysis of how this method compares to removing features across each train set (see 

 Sup. Mat. Table S1). 
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 Table 2. Model performance 

 Features  LogisticRegression  MLP  RandomForest  SGDClassifier 

 Reading  88  .87 (.78–.93; .50)  .87 (.80–.93; .50)  .87 (.76–.91; .49)  .83 (.76–.89; .50) 

 Vowel  88  .84 (.77–.89; .50)  .86 (.79–.91; .50)  .86 (.79–.91; .51)  .80 (.72–.87; .50) 

 Reading+Vowel  88  .84 (.76–.91; .50)  .86 (.74–.92; .48)  .85 (.77–.92; .49)  .79 (.72–.86; .51) 

 Reading  39  .84 (.76–.92; .50)  .83 (.76–.91; .50)  .87 (.77–.91; .51)  .78 (.71–.86; .51) 

 Vowel  13  .80 (.70–.90; .50)  .81 (.74–.91; .50)  .84 (.75–.90; .52)  .74 (.58–.87; .51) 

 Reading+Vowel  19  .79 (.70–.84; .50)  .82 (.75–.88; .51)  .84 (.77–.91; .51)  .70 (.61–.77; .52) 

 Reading  Top 5  .81 (.73–.89; .50)  .86 (.78–.92; .47)  .85 (.77–.90; .50)  .75 (.56–.87; .57) 

 Vowel  Top 5  .78 (.67–.87; .50)  .82 (.74–.92; .53)  .81 (.72–.87; .50)  .72 (.57–.82; .49) 

 Reading+Vowel  Top 5  .80 (.70–.86; .50)  .82 (.74–.88; .50)  .81 (.74–.89; .53)  .72 (.55–.83; .52) 

 Reading  88 - Top 5  .85 (.76–.92; .50)  .87 (.77–.92; .49)  .85 (.77–.90; .52)  .82 (.71–.89; .51) 

 Vowel  88 - Top 5  .84 (.75–.93; .50)  .86 (.72–.93; .51)  .84 (.74–.94; .52)  .80 (.70–.90; .48) 

 Reading+Vowel  88 - Top 5  .84 (.74–.89; .50)  .85 (.76–.91; .50)  .85 (.76–.91; .50)  .79 (.71–.87; .50) 

 Reading  Duration 1  .81 (.73–.88; .50)  .81 (.73–.88; .50)  .85 (.77–.93; .50)  .76 (.50–.88; .50) 

 Vowel  Duration 1  .70 (.61–.77; .50)  .80 (.70–.91; .51)  .86 (.76–.94; .52)  .50 (.31–.68; .51) 

 Reading+Vowel  Duration 1  .70 (.64–.76; .50)  .76 (.67–.84; .50)  .86 (.73–.92; .50)  .64 (.45–.70; .50) 

 Reading  CPP 4  .76 (.64–.84; .50)  .76 (.64–.84; .46)  .71 (.64–.78; .55)  .74 (.60–.84; .50) 

 Vowel  CPP 4  .82 (.73–.90; .50)  .82 (.71–.90; .53)  .77 (.65–.85; .50)  .77 (.40–.86; .49) 

 Reading+Vowel  CPP 4  .72 (.65–.80; .50)  .74 (.68–.84; .53)  .72 (.65–.78; .50)  .68 (.44–.78; .49) 

 Performance of models using either all 88 features, non-redundant features (39, 13, 19), top five most 
 important features, all 88 features minus top 5 most important features using eGeMAPS features. We 
 then compared this to using just audio duration as well as a different feature set based on CPP. Median 
 ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model 
 trained on permuted labels which should be at .50 if at chance). For full distributions of scores see Figure 

 23 

 409 

 410 

 411 

 412 

 413 

 414 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2020.11.23.20235945doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 S11 in Supplementary Materials. Removing features is a post-hoc analysis because features were 
 selected based on observing performance on the test sets, and therefore performance might be slightly 
 overly optimistic and would need to be tested on an independent test set for further validation. MLP: 
 Multi-Layer Perceptron; SGD: Stochastic Gradient Descent Classifier; CPP: Cepstral Peak Prominence. 

 The bootstrapped ROC AUC distributions and permutation tests for the reduced 

 (parsimonious) models using the non-redundant feature set are shown in Figure 3. 

 Models distribution were all significantly different than their null distribution after 

 correcting for multiple comparisons using a Benjamini-Hochberg procedure. 
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 Figure 3. Model performance comparison using a permutation test using non-redundant features. 
 Scores from models trained on true labels (blue) and trained on permuted labels (orange) over 
 bootstrapping splits. 
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 Given 24 UVFP patients were recorded with a different device, an iPad, we trained 

 models without their samples to make sure these differences in recordings were not 

 driving performance. There was a small drop in performance, which could be due to a 

 bias (the full, original model using information of the recording device), but could also be 

 due to removing training samples. The drop in performance is not large enough to 

 suspect that differences in recording are driving the full original model's performance 

 (see Sup. Mat. Table S2, Table S3, and analysis in Supplementary section 

 "Performance removing participants that used other recording system"). 

 Assessing feature importance 

 Figure 4 reports feature importance using SHAP for all models. For the reading-based 

 models, all models tend to use the same top 5 features except SGD, which also has the 

 lowest performance. For further description of features and the chosen classification of 

 features, see Eyben et al. (2015)  (34)  and Low et  al. (2020)  (2)  . When reviewing 

 important features, it is key to note that any of the features with which it is codependent 

 or associated could be a reasonable important feature (see clusters of redundant 

 features in Supplementary Figures S3-S11). The variance on feature importance rank is 

 evidence that models can use different feature information and still obtain similar high 

 –although not perfect– performance. We further display the distribution of each top 

 feature and its individual performance in Figure 5, which shows that no single feature is 

 enough to dissociate groups with high performance. This figure also revealed the bias: 

 the intensity-related feature equivalent sound level was counterintuitively higher for 
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 UVFP patients than controls. Figure 6 reports similarity between top 5 features and all 

 original 88 eGeMAPS features. Features that have a high dcor or distance correlation 

 (i.e., cluster) with top 5 features were not used in models to avoid redundancy, but still 

 share similar information and can therefore be considered important features as well. 

 Hierarchically-clustered heatmaps for other data types (vowel, reading, both) and 

 groups (UVFP patients, controls, both) are displayed in Supplementary Figures S1, S2, 

 S3, S4, S5, S6, S7, S8, and S9. Clustering tends to reflect pre-defined features types 

 such as those reflecting patterns from vocal folds, intensity, vocal tract, spectral 

 analyses, and prosody. 
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 Figure 4. Feature importance parallel coordinate plot.  Rank reads from bottom (most important) to top 
 (least important). Mean rank is weighted by performance of each model to avoid a lower performing model 
 biasing the mean rank. 
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 Figure 5. Distributions for top 5 features and corresponding performance for single features.  Logistic 
 Regression with L1 penalty was used.  No single feature  is enough to dissociate groups with high 
 performance. Null models' median performance was 0.5. 
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 Figure 6. Feature redundancy with top 5 features highlighted.  Top 5 features are highlighted in bold and 
 their rank is displayed. Squares are clusters of redundant features. Computed with all participants on the 
 reading task. 
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 Clinician ratings 

 The median ROC AUC for humans was 0.78 (min. = 0.74 to max. = 0.81) meaning the 

 machine learning models performed better than the highest performing clinician on the 

 limited available data, that is, the audio samples of the reading task. Interestingly, using 

 the average clinician's CAPE-V ratings within machine learning models was able to obtain 

 a maximum median ROC AUC of 0.84 (0.72–0.92) with the Random Forest model (Table 

 3). Using clinicians' perceptual ratings of background noise and recording loudness 

 achieved a maximum median ROC AUC of 0.77 (.63– .87). 

 Table 3. Performance using clinician ratings as variables for machine learning models 

 Features  LogisticRegression  MLP  RandomForest  SGD 

 CAPE-V  6  .80 (.69–.88;  .50  )  .81 (.71–.90; .50)  .84 (.72–.92; .49)  .77 (.45–.92; .51) 

 Noise+ 
 loudness  2  .76 (.59–.86; .50)  .77 (.63–.87; .50)  .73 (.62–.83; .52)  .64 (.45–.78; .50) 

 Median ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model 
 trained on permuted labels which should be at .50 if at chance). 

 In Figures 6 and 7 we report the inter-rater reliability (Flight's kappa and ICC) along with 

 the distribution of the ratings. Common cutoffs for inter-rater agreement are poor for values 

 less than .40, fair for values between .40 and .59, good for values between .60 and .74, 

 and excellent for values between .75 and 1.0  (49)  .  Background noise had poor reliability 

 across rater, UVFP and recording loudness had fair reliability (see Figure 7) and 

 CAPE-V-inspired ratings scored good to excellent except for pitch which was fair (see 

 Figure 8). 
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 Figure 7. Descriptive statistics and inter-rater reliability of clinician ratings for unilateral vocal fold 
 paralysis (UVFP), background noise, and recording loudness indicating likely bias  . Controls and UVFP 
 are ground truth diagnosis from the full clinical interview. Ratings are on brief reading samples. Bars indicate 
 maximum and minimum count across the three raters. The disproportionate amount of UVFP samples rated 
 as having high background noise and high loudness indicates likely bias, where the gain might have been 
 raised for some UVFP patients and they may have phonated more intensely. kappa: Light's kappa; ICC: 
 intra-class correlation coefficient. 

 32 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2024. ; https://doi.org/10.1101/2020.11.23.20235945doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

 Figure 8. How clinicians rate the audio recordings of read speech: descriptive statistics and 
 inter-rater reliability of average clinician ratings.  The average across raters was taken for each recording. 
 ICC: intra-class correlation coefficient. 

 Bias mitigation: matching audio duration and removing features associated to 

 intensity 

 We trimmed the longer UVFP samples so they were matched to control samples (all samples were 

 the same duration), removing the audio duration difference. Vowel samples could not be matched 

 by trimming as some UVFP samples were shorter and some were longer than control samples; 

 therefore we demonstrate an attempt at bias mitigation only with reading samples.  In Table 4, we 
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 show results on these samples after additionally removing all intensity features as well as variables 

 that have a distance correlation (dcor) with any of them >= 0.3 and 0.4 based on the reading 

 samples. Models have comparable performance to models with the original duration and 

 intensity-related biases. See section "Biased features" and Table S4 in Sup. Mat. for a list of the 44 

 features associated with audio duration and the 14 intensity related features. For distance 

 correlations between audio duration and features, see Sup. Mat. Table S6. 

 Table 4. Performance keeping features least associated with intensity features on samples 
 of equal audio length after trimming. 

 Features  LogisticRegression  MLP  RandomForest  SGD 

 dcor<0.4  44  .88 (.80–.92; .50)  .87 (.81–.92; .47)  .87 (.78–.93; .45)  .83 (.76–.90; .48) 

 dcor<0.3  20  .84 (.78–.89; .50)  .83 (.76–.9; .49)  .85 (.78–.91; .53)  .79 (.66–.87; .51) 
 Median ROC AUC score from 50 bootstrapping splits (90% confidence interval; median score of null model 
 trained on permuted labels which should be at .50 if at chance). 

 Discussion 

 This study achieves high performance in detecting UVFP from healthy voices using a few 

 seconds of audio recordings and surpassing clinician evaluations even after mitigating the 

 biases we found in the dataset. As a result of performing the explainability analysis, we 

 discovered a likely bias: intensity features were higher for UVFP patients than controls on 

 average (Figure 5) when UVFP patients should have weaker voices. There are two likely 

 causes.  A first cause is that the software that had been used prompted users to speak 
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 louder if they had a weak voice in order to achieve an audible recording. A second cause 

 was supported by clinicians' ratings: clinicians rated UVFP patients as having louder 

 recordings and more background noise than controls on average –when they should have 

 similar levels–, which are proxies for microphone gain having been increased. This would 

 have helped models improve performance using characteristics stemming from the 

 recording idiosyncrasies instead of from pathophysiology. However, we removed features 

 correlating with the clearly biased features and still achieved high performance. 

 Our study expands on prior studies which have used pre-existing commercial databases, 

 smaller sample sizes, fewer features, and/or methods for model evaluation that can be 

 biased in small datasets given the test sets may not be representative (for a discussion on 

 bootstrapping for clinical datasets, see Figure 6  (2)  ). Critically, we provide a roadmap for 

 evaluating models more thoroughly including quantitatively explaining models and 

 checking the robustness of the models to different choices of speech-eliciting tasks, 

 algorithms, and feature sets. All of this should increase trust when no bias is found and 

 when explanations are robust across models and make sense to experts. Such a model 

 could fulfill several clinical needs: (1) postoperative screening for thyroid surgery-related 

 UVFP since after thyroid surgery, UVFP is common, occurring in up to 5 to 10% of cases  27  . 

 Furthermore, laryngoscopy  is not readily available to all postoperative populations and 

 symptomatic changes are notoriously variable. An ML-based screening could help identify 

 patients needing further workup and treatment, and earlier diagnosis is essential to 

 optimize long-term outcomes  28,29  . (2) Monitoring  voice during speech therapy and after 

 surgical treatment for confirmed UVFP to measure when and if the patient's voice is 
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 approximating a healthy voice. (3) Preoperative screening prior to surgeries that are at 

 high risk for developing UVFP such as thyroid, head and neck, cardiac, thoracic, 

 esophageal, and cervical spine operations. 

 In Table 5 we summarize several key recommendations to avoid bias when building and 

 explaining machine learning tools for laryngology, although more could be added, and we 

 expand upon how we dealt with some of these steps in the following sections. 
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 Table 5. Recommendations to avoid bias for explainable machine learning models that use 
 audio recordings for screening in laryngology 
 Recommendations  Description 
 Before data collection  - Pre-register hypotheses as to which variables should be important for 

 predicting the target group to question effects that are not anticipated by theory 
 (50) 

 During recording  - In a  controlled  recording setting: models could  use any unintended differences 
 between groups to improve classification (demonstrated in our study); therefore, 
 it is important to make sure microphone gain, background noise, instructions are 
 consistent across participants and reflect how recordings will be done once 
 deployed. 
 - In a  remote  setting: it is desirable that models  work on people's mobile devices 
 outside the clinic. Since we cannot fully control the recording procedure, we 
 should make sure there are no biases affecting one group more than another, 
 test pilot instructions, and collect much more data to weaken the effect of 
 individual recording idiosyncrasies. 
 - Perform pilot studies to do an initial quality control 
 - Collect representative samples so models generalize to different protected 
 groups (e.g., ages, genders, races) or provide appropriate warnings  (51)  . 
 - Providing instructions so participants do not overproject their voice and control 
 recording procedure so a minimum loudness threshold is not needed (as 
 demonstrated in our study) 

 Preprocessing and 
 exploratory data 
 analysis 

 - Quality control: remove non-natural outliers due to measurement errors, wrong 
 data collection, or wrong data entry (e.g., fixing mislabeled files, unexpected 
 silent recordings, recordings with extreme much background noise)  (52) 
 - Avoid or be cautious with preprocessing steps that might reduce the properties 
 associated with the disorder (e.g., denoising may remove breathiness 
 information which may be useful for prediction). 
 - Observe distribution of variables between groups (e.g., audio duration) to make 
 sure there are no differences that are not intrinsic to the disorder. Extra 
 inspection of the data should be taken with retrospective studies where recording 
 protocols were not controlled as in our study. 

 During training and 
 evaluation 

 - Train multiple machine learning models of different complexity: two models may 
 perform similarly but use input variables in different ways. If after training a 
 model we only explain one of them, we might have biased conclusions of what 
 variables characterize the disorder as we demonstrate. 
 - Avoid overfitting (i.e., finding patterns that do not generalize to new samples). 
 Simple held-out test sets (e..g, of 20%) may not be representative of the 
 population or the dataset, and therefore resampling methods (k-fold 
 cross-validation, bootstrapping) are better. If performing hyperparameter tuning, 
 nested resampling is needed to avoid overfitting  (2)  .  Avoid feature selection and 
 dimensionality reduction using information from the test set/s.  (38,53) 
 - Report performance on most and remaining important features as done in our 
 study 

 During explainability 
 analyses 

 - Choosing one of the variables that are highly dependent due to collinearity 
 (e.g.,  that correlate above 0.8 Spearman rho or dcor above a threshold that 
 does not reduce performance as we did in this study) or due to multicollinearity 
 (remove variables if variance inflation factor > 5 or 10)  (54)  ; grouping correlated 
 variables using leave-one-feature-out (LOFO); obtaining one variable from the 
 correlated variables through dimensionality reduction (without using the test set 
 which could lead to overfitting). 
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 - Make conclusions from the features that are robustly important  across  models; 
 here we take the average importance rank weighted by model performance. 
 - Evaluate potential bias: do important features match hypotheses? Do they 
 dissociate groups in the expected direction? Do certain recording conditions 
 perform better than others and were these done for only one group? Does the 
 model work worse for certain races or age groups? Several metrics can evaluate 
 this (e.g., see packages AIF360, fairlearn, and EqualityML). 
 - Use expert ratings to evaluate any potential sources of bias as done in our 
 study. 
 - Understandability: are the explanations understandable for the engineer, the 
 clinician, and/or the patient?  (55) 

 If bias is detected  - Use bias mitigation strategies either during pre-processing (removing variables 
 generating the bias along with variables correlated with these ones), training 
 (adversarial debiasing, prejudice remover), or evaluation (equalized odds, reject 
 option classification)  (56)  . See packages AIF360,  fairlearn, and EqualityML. 

 After deployment  - Continuous assessment: we need to review predictions and re-assess accuracy 
 once deployed as new environments and populations could change performance 
 (i.e., dataset shift  (57)  ). 

 Explaining acoustic features relevant to detecting vocal fold paralysis 

 Objective acoustic measurement changes associated with vocal fold paralysis have been 

 described and these changes include reduced loudness and maximum phonation time, 

 higher perturbation measurements such as jitter and shimmer, and increased signal to 

 noise ratio  (19,58,59)  ; however these were univariate  models, and we have demonstrated 

 that using single variables does not seem to provide high predictive performance. While 

 other multivariate machine learning models have been used, these used few features and 

 small or undefined samples and only report feature importance results for one model; 

 therefore it is not clear whether the important features reported would hold using larger 

 feature sets or how other models would perform. Using a much larger initial set of acoustic 

 features for analysis, we demonstrate that several machine learning algorithms of 

 increasing complexity (using more parameters) identify vocal fold paralysis from healthy 
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 voices. We also report that these models can use different features to achieve similar 

 performance. Different models emphasize different features not simply because of its 

 relevance to a disorder, but because of the mathematics associated with the model (e.g., 

 containing different degrees of interaction effects, regularization, or propensity to 

 underfitting or overfitting)  (60)  . The variability  of the ranking of features used by our 

 individual models also illustrates the potential danger of using the single highest 

 performing model, which is commonly seen in published literature. 

 Instead of simply reporting the important features from the highest performing model, we 

 analyzed the models to find common features. The most important features across models 

 were somewhat associated with intensity features (Sup. Mat. Table S5); therefore, even if 

 not strongly associated with intensity features, they could be important due to a 

 combination of intrinsic differences between UVFP and controls for which we provide 

 hypotheses or because of how intensity influences them; a new unbiased dataset would be 

 needed to confirm this. These top features were: intensity, especially equivalent sound 

 pressure level which was redundant with multiple loudness features and seems to be due 

 to some patients trying to use more breath for projection or being recorded with a higher 

 microphone gain; Mel Frequency Cepstral Coefficients (especially the first coefficient, 

 which captures spectral envelope or slope, which has be shown to be important for 

 predicting UVFP (  (29)  ); mean F0 semitones given F0  originates from vocal-fold oscillation, 

 a vocal-fold paralysis is expected to alter F0, and has been shown to help predict 

 pathological speech including UVFP  (28)  ;, mean F1  amplitude and frequency, influenced 

 by how the vocal tract filters F0 and the shape of the glottal pulse which would be affected 
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 by UVFP voiced and unvoiced segments (prosodic and speech articulation features which 

 may be altered due to changes in the periodicity of F0), and CPP features (which indicate 

 voice quality degradations that could include more breathiness, a typical feature of UVFP 

 (61)  ). Shimmer variability was important just for  reading, and it captures variability in glottal 

 pulses and pressure patterns which ultimately affect F0 and has been found to be 

 significantly different between UVFP and a control group  (62)  . When we removed the top 5 

 features from the full feature set, performance is practically equivalent to using 88 features, 

 as expected, since there are features that are redundant with the top 5 features. Therefore, 

 it is not that only these 5 specific features drive performance, but rather the information 

 they contain, which in this dataset is also captured by other features as shown in Figure 6. 

 These acoustic features would corroborate our clinical understanding of glottal 

 incompetence from UVFP and with common patient complaints of reduced loudness, vocal 

 instability, hoarseness, and rough voice; however, they could also be important due to their 

 associations with intensity features. Uncovering and understanding the basic mechanisms 

 and features that models use to generate predictions and outcomes are important as these 

 tools become part of the clinical decision making process. 

 Identifying and addressing bias 

 Equivalent Sound Level was higher in UVFP patients than controls. This is counter-intuitive 

 because UVFP patients are known to have softer voices as already described; however, 

 clinicians rated most UVFP samples as being louder than controls. The bias discovered 

 was likely due to increasing the gain on the microphone for some UVFP patients, which 
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 would explain the increased background noise in UVFP patients' recordings. A second 

 source of bias may have occurred from requesting UVFP patients to speak louder in order 

 to meet the minimum intensity threshold on the recording softwares Computerized Speech 

 Lab™ and OperaVOX, or patients could have tried this on their own knowing they were 

 being recorded. This behavioral compensation is likely to occur in biomarker research 

 when the participant has a soft voice, especially in retrospective studies like ours where 

 the study goal is not known at the time of recording or when certain software properties 

 lead individuals with weak voices to speak louder. Even though the current models perform 

 better than the clinicians, a systematic comparison would require more clinician and model 

 assessments across datasets. It is likely a model trained on a single dataset might learn 

 intrinsic characteristics of that dataset that do not generalize as well as clinical expertise 

 might. 

 Having said this, this line of research would help us understand the extent to which UVFP 

 detection is generalizable from acoustic data alone. Finding an objective measure of 

 hoarseness is important given a "normal voice" is a fundamentally subjective classification 

 that is not well defined  (63,64)  and varies with training  (65,66)  , which may result in low 

 reliability of evaluation of disordered voices among clinical rating scales  (67)  . 

 As a post hoc analysis, we address bias by trying to mitigate its effect: we removed 

 variables associated with intensity variables on samples matched on audio duration. After 

 removing these features, the models were able to obtain similar performance using a very 

 different set of features. It is possible that these remaining features better reflect 
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 pathophysiology or that the features extracted are still influenced by intensity, but further 

 studies should address their generalizability or their relation to intensity variation. 

 Evaluating the sensitivity to tasks, model complexity, and features used 

 In addition to getting a better understanding of features, we explored performance in the 

 context of different vocal tasks. Participants carried out two different tasks to elicit voice, 

 reading  , which captures more complex speech dynamics,  and  sustaining vowels  , which is 

 a simpler measure of vocalization and the respiratory subsystem. Overall, these dynamics 

 from the speech task may have improved model performance as was observed. 

 Comparing simpler and more complex models is important because simpler models such 

 as Logistic Regression could be preferred because they tend to generalize better given 

 they are less at risk for overfitting the training set and they are more interpretable and thus 

 biases can be assessed more directly  (68)  . 

 By removing redundant features, we can concentrate on finding the most useful features 

 for further analysis. Performance decreased only slightly while we made models more 

 parsimonious and explainable. This approach is key given the curse of dimensionality in 

 machine learning that may make models unnecessarily complex and harder to generalize 

 (20)  . 

 Often studies will report the top N features but not how predictive they are in isolation. In 

 our study we ran models on the top 5 features together (Table 2). The lower performance 

 of these top 5 features relative to a richer feature set helps demonstrate that model 
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 performance is dependent on interactions across multiple additional features (with the 

 exception of samples from the reading task which obtained an AUC of 0.86 using just the 5 

 features). We also ran models without top 5 features to demonstrate that leaving features 

 that are redundant with these top features results in almost equivalent high performance to 

 using all 88 features since the redundant features share information. Furthermore, when 

 training models on the individual features from within these top 5 one at a time, the 

 performance was reduced considerably with scores from 0.55 to 0.71. This indicates the 

 need for these models to combine multiple features to achieve high performance and any 

 model evaluation should not focus on only the common or top features without testing their 

 predictive performance. 

 Limitations and future directions 

 We cannot determine how the bias will affect the model's performance on future samples, 

 but it will likely underperform in samples where length was not different between groups, 

 where gain cannot be changed, and where participants are instructed to not overproject 

 their voice; however, it is possible the model could underperform for other reasons 

 including dataset shift (e.g., the distribution of voice characteristics or demographics is 

 different in a new sample). 

 The classification using just duration itself varied across models and clinicians who 

 listened to the reading passage in its entirety did not achieve as good a classification as 

 the best performing models. Duration itself was not included as a feature in the 

 eGeMaps-based models and has a complex effect on both machines and humans.  For 
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 example, duration could have affected eGeMAPS features (e.g, introduce more variability 

 to the functionals that are computed over sliding time windows) and duration of vowels 

 varied extensively across the UVFP group thus cannot itself be tied to underlying 

 pathophysiology. Therefore, important future work should analyze how duration may affect 

 these features, should address the intrinsic variability in durations of UVFP patients in 

 responding to speech items, and should incorporate models of production that include a 

 consideration of respiratory capabilities, articulation changes, and vocal fold 

 pathophysiology. 

 It is not clear whether these models could detect UVFP from other voice disorders or just 

 healthier voices; however, a model that generalizes well in classifying UVFP from controls 

 could be used to monitor UVFP patients remotely and affordably during treatment or detect 

 risk for UVFP when it is the most likely cause (e.g., dysphonia after thyroid surgery). 

 Larger sample sizes with curated examinations can help increase diverse representation 

 across voice quality and thereby potentially reduce bias in classifier performance. We did 

 not analyze potential racial bias given this data was not extracted from the chart review. 

 Our choice of a standardized feature set worked well in this setting, but may fail to work for 

 differential voice disorder diagnosis or when generalizing to larger datasets, which may 

 bring in additional sources of variance unaccounted for in this dataset. With the availability 

 of more data, additional features could be extracted that better capture changes in 

 coordination (e.g., XCORR  (69)  ). 

 Furthermore, while our feature importance evaluation method, SHAP, shows a certain 

 amount of robustness across models, alternative model-agnostic feature-importance 
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 methods (e.g., LOFO, permutation importance) as well as model-specific methods 

 (coefficient values for linear models, mean decrease in impurity for Random Forest) could 

 be compared. Model understandability –how easily are the explanations understood by a 

 speech scientist or a clinician– could be assessed rigorously  (55)  . 

 Finally, debiasing the models by removing features correlated with the biased ones was 

 attempted although it is not clear how exactly intensity may influence certain features; we 

 assume if intensity is influencing a variable, it generally should create some considerable 

 association which we discarded using dcor. Therefore, the effect of the bias can be 

 assessed by testing the model's generalizability to new unbiased datasets. Therefore, we 

 are not promoting our final debiased models as completely unbiased or ready to use, it is 

 possible our debiasing strategies are only partially effective, additional biases remain, 

 and/or additional ways of debiasing have not been considered. 

 We tested how well a model using only the top 5 features performed independently of the 

 model with all features; it is possible to also test how well the incremental set of top 

 features performs (1st, 1st and 2nd, 1st–3rd, etc.), which would be useful in order to 

 compare different models' performance as a function of which features are being used. 

 Conclusion 

 Using one of the largest UVFP datasets to date, our study demonstrates the importance of 

 checking for biases using explainable machine learning and clinician perceptual ratings. In 

 order to first explain models, we tackle collinearity (i.e., redundant or highly correlated 

 independent variables), which biases feature importance, using a custom method called 
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 Independence Factor that selects one out of a set of associated features without losing 

 predictive performance. We then compare how results change across different 

 speech-eliciting tasks, training algorithms, features, features set sizes, and highest and 

 lowest performing features to better understand the process that models use to predict 

 vocal changes associated with laryngeal disease, since analyzing a single model will result 

 in a biased view of how predictions are achieved. During this process, we discovered there 

 was a difference in audio duration between groups clearly not related to intrinsic 

 differences in UVFP speech rate, but in cropping all control recordings to a certain length 

 during audio storage. We also discovered that sound equivalent level was 

 counterintuitively higher in UVFP patients, a likely bias resulting from the weak or 

 underprojected voice that characterizes many UVFP patients: patients were prompted by 

 the recording software to speak louder and the microphone gain was likely raised 

 selectively for these patients with weaker voices, possibly generating higher background 

 noise which was detected through clinician's ratings; therefore the models picked up on 

 the acoustic correlates of this increased intensity, which would impede generalization 

 under different recording procedures and natural audio durations. This is more likely to 

 occur in laryngology datasets when patients have a softer voice. 

 Interestingly, we found that matching audio duration between groups and removing all 

 variables that were clearly related to intensity (e.g., bias mitigation) resulted in similar high 

 performance. In this case, the model may be using information more related to 

 pathophysiology, which would need to be further confirmed by future unbiased samples. 

 Machine learning models tended to surpass clinician's evaluation of the same audio 
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 recordings. Interestingly, using clinician's voice quality ratings on the recordings in machine 

 learning models performed better than their binary evaluation on whether recordings 

 contained a sample of UVFP voice or not. 

 We hope to promote moving beyond using a single model and only reporting top features 

 to a better explanation of how these models work as well as being able to understand 

 variance across modeling and evaluation choices. We believe these are all aspects of 

 machine learning that clinicians need to understand prior to using such applications. 

 With these considerations along with the recommendations we make, machine learning 

 applications could aid in laryngology screening, allowing for the potential development of 

 in-home screening assessments and continuous pre- and post-treatment monitoring. 
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