Abstract
The COVID-19 pandemic has presented multiple healthcare challenges, one of which is adequately meeting the need for large-scale diagnostic testing. The most commonly used assays for detection of SARS-CoV-2, including those recommended by the Center for Disease Control and Prevention (CDC), rely on a consistent set of core reagents. This has put a serious strain on the reagent supply chain, resulting in insufficient testing. It has also led to restricted animal testing, even though there are now multiple reports of animals, particularly cats, ferrets and minks, contracting the disease. We aimed to address the diagnostic bottleneck by developing a PCR-based SARS-CoV-2 detection assay for cats (and, potentially, other animals) which avoids the use of most common reagents, such as collection kits optimized for RNA stabilization, RNA isolation kits and TaqMan-based RT-PCR reagents. We demonstrated that an inexpensive solid-phase reversible immobilization (SPRI) method can be used for RNA extraction from feline samples collected with DNAGenotek’s ORAcollect RNA OR-100 and PERFORMAgene DNA PG-100 sample collection kits, optimized for RNA or DNA stabilization, respectively. We developed a dual method SARS-CoV-2 detection assay relying on SYBR RT-PCR and Sanger sequencing, using the same set of custom synthesized oligo primers. We validated our test’s specificity with a commercially available SARS-CoV-2 plasmid positive control, as well as two in-house positive control RNA samples. Our assay’s sensitivity was determined to be 10 viral copies per reaction. Our results suggest that a simple SPRI-dependent RNA extraction protocol and certain sample collection kits not specifically optimized for RNA stabilization could potentially be used in cases where reagent shortages are hindering adequate COVID-19 testing. These ‘alternative’ reagents could be used in combination with our COVID-19 testing method, which relies on inexpensive and readily available SYBR RT-PCR and non-fluorescent PCR reagents. Depending on the detection goals and the laboratory setup available, the SYBR RT-PCR method and the Sanger sequencing based method can be used alone or in conjunction, for improved accuracy. Although the test is intended for animal use, it is, in theory, possible to use it with human samples, especially those with higher viral loads.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The work was supported by internal Basepaws funding. No external funding was utilized.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The authors confirm that the data supporting the findings of this study are available within the article.