Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Using Machine-Learning Techniques to Identify Responders vs. Non-responders in Randomized Clinical Trials

Vasiliki Nikolodimou, Paul Agapow
doi: https://doi.org/10.1101/2020.11.21.20232041
Vasiliki Nikolodimou
1Health Data Analytics & ML, Imperial College London
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: vnikolodimou@gmail.com
Paul Agapow
2Oncology R&D, ML&AI, AstraZeneca UK Ltd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Despite the expectation of heterogeneity in therapy outcomes, especially for complex diseases like cancer, analyzing differential response to experimental therapies in a randomized clinical trial (RCT) setting is typically done by dividing patients into responders and non-responders, usually based on a single endpoint. Given the existence of biological and patho-physiological differences among metastatic colorectal cancer (mCRC) patients, we hypothesized that a data-driven analysis of an RCT population outcomes can identify sub-types of patients founded on differential response to Panitumumab - a fully human monoclonal antibody directed against the epidermal growth factor receptor.

Outcome and response data of the RCT population were mined with heuristic, distance-based and model-based unsupervised clustering algorithms. The population sub-groups obtained by the best performing clustering approach were then examined in terms of molecular and clinical characteristics. The utility of this characterization was compared against that of the sub-groups obtained by the conventional responders analysis and then contrasted with aetiological evidence around mCRC heterogeneity and biological functioning.

The Partition around Medoids clustering method results into the identification of seven sub-types of patients, statistically distinct from each other in survival outcomes, prognostic biomarkers and genetic characteristics. Conventional responders analysis was proven inferior in uncovering relationships between physical, clinical history, genetic attributes and differential treatment resistance mechanisms.

Combined with improved characterization of the molecular subtypes of CRC, applying Machine Learning techniques, like unsupervised clustering, onto the wealth of data already collected by previous RCTs can support the design of further targeted, more efficient RCTs and better identification of patient groups who will respond to a given intervention.

Competing Interest Statement

The authors have declared no competing interest.

Clinical Trial

NCT00113763

Funding Statement

Not applicable.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

N/A

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The data used for the conduct of this research is available through DataSphere portal.

https://www.datasphere.online/en/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted November 23, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Using Machine-Learning Techniques to Identify Responders vs. Non-responders in Randomized Clinical Trials
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Using Machine-Learning Techniques to Identify Responders vs. Non-responders in Randomized Clinical Trials
Vasiliki Nikolodimou, Paul Agapow
medRxiv 2020.11.21.20232041; doi: https://doi.org/10.1101/2020.11.21.20232041
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Using Machine-Learning Techniques to Identify Responders vs. Non-responders in Randomized Clinical Trials
Vasiliki Nikolodimou, Paul Agapow
medRxiv 2020.11.21.20232041; doi: https://doi.org/10.1101/2020.11.21.20232041

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (495)
  • Anesthesia (106)
  • Cardiovascular Medicine (1101)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (502)
  • Epidemiology (9782)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2318)
  • Geriatric Medicine (223)
  • Health Economics (463)
  • Health Informatics (1563)
  • Health Policy (737)
  • Health Systems and Quality Improvement (606)
  • Hematology (238)
  • HIV/AIDS (507)
  • Infectious Diseases (except HIV/AIDS) (11656)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (240)
  • Medical Ethics (67)
  • Nephrology (258)
  • Neurology (2148)
  • Nursing (134)
  • Nutrition (338)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (518)
  • Oncology (1183)
  • Ophthalmology (366)
  • Orthopedics (129)
  • Otolaryngology (220)
  • Pain Medicine (148)
  • Palliative Medicine (50)
  • Pathology (313)
  • Pediatrics (698)
  • Pharmacology and Therapeutics (302)
  • Primary Care Research (267)
  • Psychiatry and Clinical Psychology (2188)
  • Public and Global Health (4673)
  • Radiology and Imaging (781)
  • Rehabilitation Medicine and Physical Therapy (457)
  • Respiratory Medicine (624)
  • Rheumatology (274)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (210)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)