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Summary  
Late-onset Alzheimer’s disease is a prevalent age-related polygenic disease that 

accounts for 50-70% of dementia cases1. Late-onset Alzheimer’s disease is caused by a 
combination of many genetic variants with small effect sizes and environmental influences. 
Currently, only a fraction of the genetic variants underlying Alzheimer’s disease have been 
identified2,3. Here we show that increased sample sizes allowed for identification of seven 
novel genetic loci contributing to Alzheimer’s disease. We highlighted eight potentially causal 
genes where gene expression changes are likely to explain the association. Human 
microglia were found as the only cell type where the gene expression pattern was 
significantly associated with the Alzheimer’s disease association signal. Gene set analysis 
identified four independent pathways for associated variants to influence disease pathology. 
Our results support the importance of microglia, amyloid and tau aggregation, and immune 
response in Alzheimer’s disease. We anticipate that through collaboration the results from 
this study can be included in larger meta-analyses of Alzheimer’s disease to identify further 
genetic variants which contribute to Alzheimer’s pathology. Furthermore, the increased 
understanding of the mechanisms that mediate the effect of genetic variants on disease 
progression will help identify potential pathways and gene-sets as targets for drug 
development. 

Main text 
Dementia has an age- and sex- standardised prevalence of ~7.1% in Europeans4, 

with Alzheimer’s disease (AD) being the most common form of dementia (50-70% of 
cases)1. AD is pathologically characterized by the presence of amyloid-beta plaques and tau 
neurofibrillary tangles in the brain5. Most patients are diagnosed with AD after the age of 65, 
termed late onset AD (LOAD), while only 1% of the AD cases have an early onset (before 
the age of 65)5. Based on twin studies, the heritability of LOAD is estimated to be ~60-
80%6,7, suggesting that a large proportion of individual differences in LOAD risk is driven by 
genetics. The heritability of LOAD is spread across many genetic variants; however, Zhang 
et al. (2020)2 suggested that LOAD is more of an oligogenic than polygenic disorder due to 
the large effects of APOE variants. According to Zhang et al. (2020) and Holland et al. 
(2020)3 there are predicted to be ~100-1000 causal variants contributing to LOAD and only a 
fraction have been identified. Increasing the sample size of GWAS studies will improve the 
statistical power to identify the missing causal variants and may highlight novel disease 
mechanisms. 
 

The largest previous GWAS of LOAD, performed in 2019, identified 29 risk loci from 
71,880 (46,613 proxy) cases and 383,378 (318,246 proxy) controls8. Our current study 
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expands this to include 90,338 (46,613 proxy) cases and 1,036,225 (318,246 proxy) 
controls. The recruitment of LOAD cases can be difficult due to the late age of onset so 
proxy cases can allow for the inclusion of younger individuals by estimating their risk of 
LOAD using parental status. In the current study, we identified 38 loci, including seven loci 
that have not been reported previously. Extensive functional follow-up analyses 
implicated tissues, cell types, and genes of interest through tissue and cell type enrichment, 
colocalization, and statistical fine-mapping. This study highlights microglia, immune cells, 
and protein catabolism as relevant to LOAD while identifying novel genes of potential 
interest. 

Genome-wide inferences 

 We meta-analyzed data from 13 cohorts, totaling 1,126,563 individuals 
(Supplementary Table 1). Proxy cases and controls were defined based on known parental 
LOAD status weighted by parental age (Online Methods). The meta-analysis identified 
3915 significant (P< 5x10-8) variants across 38 independent loci (Table 1, Figure 1). Of 
those 38 loci, seven have not shown associations with LOAD in previous GWAS, and five of 
those novel loci have not been associated with any form of dementia. Three of the seven 
novel loci are inconclusive due to low support from surrounding variants (Supplementary 
Results). In comparison to our previous meta-analysis8, we failed to replicate the 
association of ADAMTS4, HESX1, CNTNAP2, KAT8, SCIMP, ALPK2, and AC074212.3 in 
the current study.  
 

One novel locus (NTN5 locus) was relatively close to the APOE locus (within 2.7Mb) 
and thus could be influenced by the strong association signal of APOE. However, we used 
GCTA-COJO9 to identify independently associated variants and found the NTN5 region to be 
unaffected when conditioning on the APOE region (Supplementary Results), suggesting 
this NTN5 locus is a LOAD risk factor independent from APOE. 
 

The liability-scale SNP heritability was estimated by linkage disequilibrium score 
(LDSC) regression10 to be 0.025 (SE=0.0043) given a population prevalence of 0.05 (APOE 
region excluded). This estimate is low but similar to the estimate obtained in a previous 
GWAS meta-analysis (h2l=0.055,SE=0.0099)8. The genetic correlation11 between proxy 
LOAD and case-control LOAD was estimated at 0.83 (SE=0.21, P=6.61x10-5). Separate 
Manhattan plots for the LOAD proxy data and the case-control LOAD data are available in 
the Supplementary Results (Supplementary Figures 1 & 2). Across 855 external 
phenotypes in LDhub12, two significant genetic correlations with the meta-analysis results 
were observed (Supplementary Table 2). The strongest correlation was with a previous 
LOAD study conducted by Lambert et al. (2013)13 (rg=1.18, SE=0.19, PBonferroni=2.42x10-7). 
The other significant correlation was with the UK Biobank (UKB)14 trait “Illnesses of mother: 
Alzheimer's disease/dementia” (rg=0.80, SE=0.11, PBonferroni=6.38x10-10). The current study 
included individuals which are also included in Lambert et al. (2013)13 and the UKB. 

 

Tissue type, cell type, and gene set enrichment 
 

MAGMA tissue specificity analysis15 identified spleen (Pbonferroni=0.034) as the GTEx 
tissue where expression of the significant MAGMA genes was enriched (Supplementary 
Figure 2, Supplementary Table 3). Spleen was also significant in the previous MAGMA 
tissue specificity analysis performed in Jansen et al. (2019)8 and is a known contributor to 
immune function. To investigate enrichment at the cell type level, FUMA cell type analysis16 
was performed with a collection of cell types in mouse brain, human brain, and human blood 
tissue, resulting in 6 single-cell (scRNA-seq) datasets significantly associated, after multiple 
testing correction (P<5.39x10-5), with the expression of LOAD-associated genes 
(Supplementary Figure 4, Supplementary Table 4). The only significant cell type in all six 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.20.20235275doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.20.20235275


 5 

independent scRNA datasets was microglia. Human microglia have not been previously 
identified in cell type analysis for LOAD. A combination of the cell type and tissue specificity 
results identifies microglia and immune tissues as potential experimental models for 
identifying the contribution of LOAD-associated genes towards LOAD pathogenesis. 
MAGMA gene set analysis15 identified 25 Gene Ontology biological process 
(Supplementary Table 5) that were significantly enriched, after multiple testing correction 
(P<3.23x10-6), for LOAD-associated variants. Subsequent conditional gene set analyses 
confirmed independent association of four out of these 25 gene-sets, reflecting the role of 
LOAD-associated genes in amyloid and tau plaque formation, protein catabolism of plaques, 
immune cell recruitment, and glial cells (Supplementary Table 5). 

Implicated Genes 

Functional mapping of variants to genes based on position and expression 
quantitative trait loci (eQTL) information from brain and immune tissues/cells identified 989 
genes mapped to one of the 38 genomic risk loci (Supplementary Table 6). Although the 
causal gene is not certain (see Supplementary Results), one of the positionally mapped 
genes (ITGA2B) within a novel locus (locus 28) is a potential drug target for LOAD 
treatment. The protein encoded by ITGA2B is a target for Abciximab, an antibody which 
inhibits platelet aggregation and is used to estimate concentrations of coated-platelets17. In 
patients with mild cognitive impairments, elevated coated-platelet levels are linked to 
increased risk of LOAD progression, and might constitute a relevant target for the mitigation 
of LOAD development.  
 

Due to linkage disequilibrium (LD) and the inability to distinguish true causal variants 
from variants in LD, many of the mapped genes may be functionally irrelevant to LOAD. In 
order to highlight potentially relevant genes, eQTL data from immune tissues, brain, and 
microglia were colocalized with the genomic risk loci using Coloc18. We found 16 successful 
colocalizations for eight genes: MADD, APH1B, GRN, AC004687.2, ACE, NTN5, CD33, and 
CASS4 (Supplementary Table 7). One notable borderline result was the colocalization of 
microglia eQTL data for BIN1 with locus 4 with a posterior probability of 0.78. This result is 
notable because BIN1 is a well-established LOAD risk gene19 and microglia appear to be 
enriched with expression of LOAD genes. 

Credible causal variants 

Some loci were large and contained numerous genes, complicating identification of 
the causal variants and genes. Statistical fine-mapping with FINEMAP20 and SusieR21 
narrowed down the signal to a smaller number of variants with the greatest probability to 
explain the association signal. Across the 36 fine-mapped loci (APOE and HLA-DRB1 
(MHC) loci were excluded due to complex LD) there were 386,521 variants; after fine-
mapping there were 3822 unique variants across the FINEMAP20 95% confidence set and 
the SusieR21 credible sets (hereafter “credible causal variants”). The median number of 
credible causal variants per locus was 74 and the median number of variants per locus that 
were included in the fine-mapping analysis was 11046. This represents a large reduction in 
the number of variants within a region. Full results of the fine-mapping are available in 
Supplementary Table 8.  

Active chromatin enrichment 

All the variants included in the fine-mapping analyses (hereafter “mapping region”) 
were annotated as being in active or inactive chromatin across 127 cell types based on the 
ROADMAP Core 15-state model22. In all cell types, the credible causal variants were 
significantly enriched in active chromatin compared to the other variants included in the 
mapping region (Supplementary Table 9). As these analyses make comparisons amongst 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.20.20235275doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.20.20235275


 6 

variants within genomic risk loci, which were shown to be enriched in active chromatin 
regions (Supplementary Results), this shows that credible causal variants harbor even 
greater potential for functional consequences. Cell types with credible causal variants most 
enriched for active chromatin included immune cells, brain tissue, and induced pluripotent 
cells derived from fibroblasts (iPS DF 19.11) (Supplementary Figure 5). The inclusion of 
immune cells in the top enriched cell types supports the findings from the genomic risk loci 
enrichment and again highlights immune genetics as important for LOAD.  

eQTL enrichment 

The variants within the mapping region were annotated with eQTL information from 
46 GTEx v8 tissues. All tissue types were significantly enriched with eQTLs in credible 
causal variants compared to the mapping region (ORs 3.70-28.60) (Supplementary Table 
10). The large proportion and enrichment of eQTLs across all tissues in the credible causal 
variants compared to the mapping region highlights eQTLs as possible agents in driving the 
association signal. The pattern of enrichment did not appear to highlight any specific tissues 
of interest; rather it reflected the proportion of eQTLs within the credible causal variants. The 
cell types with the highest proportion of eQTLs in the credible causal variants tend to have 
the lowest enrichments and vice versa. 

Functional consequence enrichment 

The variants within the mapping region were annotated for functional consequence 
as well as an estimate of deleteriousness (CADD score23) to determine whether the credible 
causal variants were enriched for an effect on genes (Supplementary Table 11). All 
annotations which imply proximity to genes were significantly enriched, except TF binding 
site and 5’ UTR (Figure 2). The only annotation which implies distance to genes (intergenic 
variants) was significantly depleted (OR=0.32, Prop=0.12, PBonferroni=7.54x10-152). The most 
enriched variant annotation was synonymous variants (OR=2.36, Prop=0.018, 
PBonferroni=1.14x10-8). Missense variants were slightly enriched (OR=1.51, Prop=0.016, 
PBonferroni=0.037) and variants with CADD score > 15 were not significantly enriched. Of the 
54 significant missense variants within the genomic risk loci, 29 were included in the fine-
mapping region, however only 9 were identified in the fine-mapping credible sets. The 
relative lack of missense variant and CADD score (>15) enrichment combined with the high 
proportion and enrichment of eQTLs within the credible causal variants suggests that the 
association signal in the current study is largely driven through gene expression modulation 
rather than protein coding changes. This could be due to a true causal effect of eQTLs on 
LOAD pathology or due our focus on common variants which are less likely to be highly 
deleterious missense variants. 

Discussion 

We performed the largest GWAS for LOAD to date, including 1,126,563 individuals, 
and identified 38 LOAD-associated loci, including seven novel loci. The data included both 
clinical cases and proxy cases, defined based on parental LOAD status, a strategy that was 
validated previously by us8 and others24. Through gene set analysis, tissue and single cell 
specificity analysis, colocalization, fine-mapping, and enrichment analyses, this study 
highlighted novel biological routes that connect genetic variants to LOAD pathology. These 
functional analyses all implicated immune cells and microglia as cells of interest which 
provided genetic support to the current understanding of LOAD pathology25. The seven 
novel loci were functionally annotated and fine-mapped to narrow down candidate causal 
genes (Supplementary Results). The functions of these candidate genes broadly align with 
the categories identified in the gene set analysis, with the addition of brain function, adult 
neurogenesis, protein-lipid interactions, and lipid efflux. Two of the novel loci have been 
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previously associated with frontotemporal dementia (FTD)26. This signal is not driven by the 
non-medically verified LOAD cases in the UKB proxy LOAD data (Supplementary Results), 
which suggests that this region is pleiotropic for FTD or contains separate causal variants 
within the same LD blocks. In one of these novel loci (locus 28), ITGA2B mapped to the 
LOAD-associated region based on six significant variants in high LD (R2>0.9) with the lead 
variant in locus 28 (rs708382). One of the significant variants within ITGA2B was a high 
CADD score (19.8) exonic variant (rs5911). ITGA2B is a target of an existing drug 
(Abciximab) and may be a potential target for drug repurposing. However, more evidence 
supports GRN as the causal gene for locus 28; the association signal colocalized with an 
eQTL for GRN in brain tissue and GRN is a known FTD gene27. Further replication and fine-
mapping will be beneficial in understanding which gene is driving the association in locus 28. 
For all LOAD-associated loci, we used genomic position and eQTLs in relevant tissues to 
map variants to genes and we then identified drugs which target those genes 
(Supplementary Table 6). Such work can form the basis for identification of novel drug 
targets, supporting the efforts from the pharmaceutical industry to develop effective LOAD 
treatment. 

Future work focusing on fine-mapping, generating larger QTL databases in more 
specific cells types, and incorporating other ancestries will improve the interpretability of 
associated loci. Our fine-mapping was able to successfully narrow down associated loci to 
sets of causal variants; however, regional interpretation was limited due to the reliance on a 
well matched but not perfectly matched reference panel. Our colocalisation analysis 
identified a candidate causal gene in 8 of the 38 loci and we expect that larger and more 
specific QTL datasets will improve the number of successful colocalization. Yao et al. 
(2020)28 highlighted a need for higher sample size eQTL discovery and suggested that 
genes with smaller effect eQTLs are more likely to be causal for common traits. The 
identification of microglia, but not bulk brain tissue, as a cell/tissue type of interest in this 
study supported a finding in a recent single-cell epigenomic study29, which determined that 
investigating individual cell types will be more fruitful than bulk brain tissue for understanding 
the route from variant to LOAD pathology.  

One important goal for LOAD GWAS is the identification of medically actionable 
information that can help in diagnosis or treatment in all populations. This study was limited 
in the ability to identify causal genes and in the applicability to non-European populations. 
Further study in non-European populations will improve the equity of genetic information and 
also help with fine-mapping of associated regions. Larger sample sizes of GWAS, 
epigenomic studies, and eQTL studies in all populations will improve identification and 
explanation of novel LOAD loci while increasing the applicability of these findings to a larger 
group of individuals. This could be accomplished by a push for facilitating data-sharing and 
global collaboration within the field of Alzheimer’s disease genetics. The current work 
provided genetic support for the role of immune cells, microglia, and eQTLs in LOAD, 
identified novel LOAD-associated regions, and highlighted the importance of collaboration to 
discern the biological process that mediate LOAD pathology. 
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Figures 

 
Figure 1: A Manhattan plot of the meta-analysis results highlighting 38 loci, including 7 
novel regions. Only variants with a P< 0.0005 are displayed. The APOE region cannot be 
fully observed because the y-axis is limited to the top variant in the second most significant 
locus, -log10(1x10-60), in order to display the less significant variants. The red line represents 
genome wide significance (5x10-8). The novel loci are highlighted in green and indicated by 
the assigned gene name. 
 
Figure 2: The enrichment and depletion of functional consequence annotations within the 
credible causal variants compared to the mapping region identified 8 significant annotations. 
The y-axis represents the proportion of variants within the credible causal variants that can 
be given that annotation. The annotation proportions do not add up to 1 because one variant 
can have multiple annotations. The colour of the bars represents the odds ratio (OR) from a 
Fisher’s exact test comparing counts of annotations in the credible causal variants versus 
counts of annotations in the rest of the mapping region. The stars represent OR which are 
significantly different from 1. 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.20.20235275doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.20.20235275


 13 

Figure 1 
 

 

 
 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.20.20235275doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.20.20235275


 14 

Figure 2 
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Tables 

Table 1: The 38 genomic risk loci identified from 90,338 (46,613 proxy) cases and 1,036,225 
(318,246 proxy) controls. The novel loci are highlighted in bold. The genes were assigned 
based on colocalization results, fine-mapping results, and previous literature.  
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Table 1 

Genomic 
Locus 

Gene Position 
(GRCh37) 

Lead variant A1 A1 frequency BETA SE P N  

1 AGRN 1:985377 rs113020870 T 0.0041 0.069 0.013 3.83x10-8 776379 

2 CR1 1:207750568 rs679515 C 0.82 -0.022 0.0021 2.42x10-25 762176 

3 FHL2 2:106235428 rs115186657 C 0.0035 0.080 0.014 1.33x10-8 727537 

4 BIN1 2:127891427 rs4663105 C 0.41 0.022 0.0014 3.92x10-58 1078540 

5 INPPD5 2:234082577 rs7597763 C 0.45 0.0092 0.0016 4.65x10-9 819541 

6 CLNK 4:11014822 rs4504245 G 0.79 -0.012 0.0017 5.23x10-12 1080458 

7 TNIP1 5:150432388 rs871269 T 0.32 -0.0088 0.0014 1.37x10-9 1089904 

8 HAVCR2 5:156526331 rs6891966 G 0.77 0.0099 0.0016 7.91x10-10 1089230 

9 HLA-DRB1 6:32583813 rs1846190 A 0.30 -0.013 0.0018 2.66x10-14 754040 

10 TREM2 6:40942196 rs187370608 G 0.997 -0.16 0.015 1.26x10-25 791668 

11 CD2AP 6:47552180 rs9369716 T 0.27 0.013 0.0016 1.70x10-17 1052285 

12 TMEM106B 7:12268758 rs5011436 C 0.41 -0.0081 0.0014 2.70x10-9 1123678 

13 ZCWPW1 7:99932049 rs7384878 T 0.69 0.012 0.0015 9.41x10-16 1084138 

14 EPHA1 7:143104331 rs3935067 G 0.62 -0.0091 0.0014 4.69x10-11 1117025 

15 CLU 8:27466315 rs1532278 T 0.39 -0.013 0.0014 1.57x10-22 1126563 

16 SHARPIN 8:145108151 rs61732533 G 0.95 -0.018 0.0031 3.14x10-9 1122653 

17 ECHDC3 10:11718713 rs7912495 G 0.46 0.010 0.0013 7.68x10-15 1120367 

18 CCDC6 10:61738152 rs7902657 T 0.54 0.0074 0.0013 3.68x10-8 1126388 

19 MADD 11:47380340 rs3740688 T 0.54 0.0077 0.0013 8.78x10-9 1123185 

20 MS4A6A 11:60021948 rs1582763 G 0.62 0.016 0.0014 3.40x10-33 1125804 

21 PICALM 11:85800279 rs561655 G 0.35 -0.015 0.0014 1.24x10-26 1126563 

22 SORL1 11:121435587 rs11218343 T 0.96 0.027 0.0036 1.33x10-13 1125100 

23 FERMT2 14:53298853 rs7146179 G 0.89 -0.014 0.0022 6.99x10-11 1089904 

24 SLC24A4 14:92938855 rs12590654 G 0.67 0.012 0.0014 6.63x10-17 1116967 

25 ADAM10 15:59057023 rs602602 T 0.70 0.011 0.0015 6.22x10-15 1124268 

26 APH1B 15:63569902 rs117618017 T 0.13 0.015 0.0022 7.00x10-12 889854 

27 CHRNE 17:4969940 rs7209200 T 0.33 0.0078 0.0014 3.18x10-8 1125637 

28 GRN 17:42442344 rs708382 T 0.61 -0.0082 0.0014 1.98x10-9 1125622 

29 ABI3 17:47450775 rs28394864 G 0.54 -0.0085 0.0014 4.90x10-10 1084218 

30 AC004687.2 17:56409089 rs2632516 G 0.54 0.0084 0.0014 7.46x10-10 1082451 

31 ACE 17:61545779 rs6504163 T 0.61 0.0085 0.0014 1.23x10-9 1083145 
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32 ABCA7 19:1050874 rs12151021 G 0.68 -0.011 0.0015 2.81x10-15 1082434 

33 APOE 19:45410444 rs769450 G 0.60 0.049 0.0014 1.02x10-289 1126563 

34 NTN5 19:49213504 rs2452170 G 0.47 -0.0077 0.0014 1.72x10-8 1088626 

35 CD33 19:51737991 rs1354106 G 0.37 -0.011 0.0017 2.21x10-10 716038 

36 KIR3DL2 19:54825174 rs1761461 C 0.49 0.0081 0.0013 1.56x10-9 1116336 

37 CASS4 20:54995699 rs6069737 T 0.083 -0.020 0.0025 6.73x10-16 1087703 

38 APP 21:27520931 rs2154482 T 0.44 -0.0083 0.0013 7.66x10-10 1124606 
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Online Methods 

Dataset Processing 

Participants 

The data from the participants in this study were obtained from freely available 
summary statistics (N=145,339) and from genotype level data (N=981,224). Seven new 
cohorts were obtained since our previous analysis1 (as well as an increased deCODE 
sample), these cohorts contain 12,968 new cases and 488,616 new controls. An overview of 
the cohorts is available in Supplementary Table 1. Full description of each dataset, the 
quality control (QC) procedures, and the analysis protocol are available in the 
Supplementary Methods. In short, each dataset underwent initial QC, imputation, 
logistic/linear regression, and post-regression QC of the summary statistics using EasyQC2. 
If necessary, the data were converted to build GRCh37 before QC using the UCSC LiftOver 
tool3. During post-regression QC, each dataset was matched to the HRC or 1KG reference 
panel and variants with absolute allele frequency differences > 0.2 compared to the 
reference panel were removed. Variants with an imputation quality score < 0.8, MAC < 6, N 
< 30, or absolute beta or SE > 10 were removed. Low minor allele frequency (MAF) variants 

were removed; low MAF4 was defined as <
1

√2×𝑁
. 

Meta-analysis 

All datasets were meta-analysed using mv-GWAMA, a sample size weighted method 
previously developed in Jansen et al. (2019)1. The option to account for overlapping 
individuals was not utilized because no datasets were expected to contain overlapping 
samples and the estimates of overlapping samples (genetic covariance intercepts) were 
unreliable due to low heritability of the datasets. The resulting Z-scores from the meta-
analysis were converted to effect estimates (BETA) and standard errors (SE) using these 
formulae5:   

𝐵𝐸𝑇𝐴 =
𝑍

√(2 ×𝑀𝐴𝐹 × (1 −𝑀𝐴𝐹)) × (𝑁 + 𝑍2)
 

𝑆𝐸 =
1

√(2 ×𝑀𝐴𝐹 × (1 − 𝑀𝐴𝐹)) × (𝑁 + 𝑍2)
 

For a few (31) extremely significant APOE region variants, Z-scores could not be 
estimated so BETA and SE were calculated from a weighted average of the datasets which 
included those variants. 

Genomic risk loci definition 

We used FUMA v1.3.66 to annotate and functionally map variants included in the 
meta-analysis. Genomic risk loci were defined around significant variants (<5x10 -8); the 
genomic risk loci included all variants correlated (R2>0.6) with the most significant variant. 
The correlation estimates were defined using 1KG European reference information. The 
1KG European reference panel was chosen over the UKB7 10K reference panel because the 
meta-analysis included individuals from a range of European ancestries and this diversity 
would be better reflected in the 1KG European sample than the primarily British UKB 
sample. Genomic risk loci within 250Kb of each other are incorporated into the same locus. 
 

Novel associated genomic risk loci are loci which do not overlap with variants 
identified as significant in previous studies of LOAD1,8–14. High and lower confidence novel 
loci are defined based on how well supported the lead variant is with other variants in LD. 
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Variants with very few (<5) supporting variants are described as lower confidence. The edge 
of one of the novel loci (locus 34) was located within 2.7Mb of the edge of the APOE locus; 
in order to determine whether this was an independent locus GCTA-COJO15 was used to 
identify the independently associated SNPs within the APOE locus. The UKB participants 
were used as a reference panel to determine LD in the GCTA-COJO analysis. The 
independently associated SNPs were then conditioned on in an association analysis of the 
joint regions. The lead variant of locus 34 (rs2452170; GRCh37: 19:49213504) was still 
significant after conditioning on all independently associated variants within the APOE region 
(19:45000000-47000000). 

Heritability and genetic correlation 

Linkage disequilibrium score (LDSC) regression16 was used to estimate the 
heritability of the combined LOAD and proxy LOAD meta-analysis. LDSC17 was also used to 
determine the genetic correlation between a meta-analysis of datasets with clinically-
diagnosed LOAD cases, and the UKB proxy LOAD dataset. Pre-calculated LD scores for 
LDSC were derived from the 1KG European reference population 
(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). Heritability 
estimates were converted to a liability scale using the LOAD population prevalence of 0.05 
and a sample prevalence of 0.0802. Heritability and genetic correlation estimates were 
calculated using HapMap3 variants only and the APOE region was excluded (GRCh37: 
19:42353608-47713504). Further genetic correlations were determined using LDhub18, 
where all 855 traits were tested using the HapMap3 variants 
(http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip). 

Gene-based and gene set analyses 

Genome-wide gene association analysis was performed using MAGMA v1.0819. All 
variants in the GWAS outside of the MHC region (GRCh37: 6:28,477,797-33,448,354) that 
positionally map within one of the 19,019 protein coding genes were included to estimate the 
significance value of that gene. MAGMA gene set analysis was performed where variants 
map to 15,496 gene-sets from the MSigDB v7.0 database20. Forward selection of 
significantly associated gene-sets was performed using MAGMA v1.08 conditional 
analysis21. Initially the most significant gene-set was selected as a covariate and the 
remaining 24 gene-sets were analysed. The most significant gene-set from this conditional 
analysis was added as a covariate in addition to the previous gene-set and a new analysis 
was run. This process was repeated until no gene-set met the significance threshold 
(P<3.23x10-6). MAGMA tissue specificity analysis was performed in FUMA using 30 general 
tissue type gene expression profiles (from GTEx v8).  

 
FUMA cell type specificity analysis22 utilises the MAGMA gene association results to 

identify cell types enriched in expression of trait associated genes. We focused on brain and 
immune related cell types with the inclusion of pancreas as a control, therefore selecting the 
following scRNA-seq datasets: Allen_Human_LGN_level123, Allen_Human_LGN_level223, 
Allen_Human_MTG_level123, Allen_Human_MTG_level223, DroNc_Human_Hippocampus24, 
DroNc_Mouse_Hippocampus24, GSE104276_Human_Prefrontal_cortex_all_ages25, 
GSE67835_Human_Cortex26, GSE81547_Human_Pancreas27, 
Linnarsson_GSE101601_Human_Temporal_cortex28, MouseCellAtlas_all29, 
PBMC_10x_68k30, and PsychENCODE_Adult31. Within-dataset conditional analyses results 
were reported to indicate which single cells are most likely to be disease relevant. 
 

Gene mapping 
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The individual genomic risk loci were mapped to genes using FUMA v1.3.66 using 
positional mapping and eQTL mapping. For positional mapping, all variants within 10Kb of a 
gene in the genomic risk locus were assigned to that gene. For eQTL mapping, variants 
were mapped to genes based on significant eQTL interactions in a collection of immune and 
brain tissues. Brain tissue eQTLs were used due to importance of brain tissue in LOAD 
pathology and immune tissue/cell eQTLs were used for gene mapping because MAGMA 
tissue specificity analysis highlighted immune tissues as tissues of interest. The brain and 
immune tissues eQTLs used for mapping were: Alasoo naive macrophage32, BLUEPRINT 
monocyte33, BLUEPRINT neutrophil33, BLUEPRINT T-cell33, BrainSeq Brain34, CEDAR B-
cell35, CEDAR monocyte, CEDAR neutrophil35, CEDAR T-cell35, Fairfax B-cell36, Fairfax 
naive monocyte37, GENCORD T-cell38, Kasela CD4 T-cell39, Kasela CD8 T-cell39, Lepik 
Blood40, Naranbhai neutrophil41, Nedelec macrophage42, Quach monocyte43, 
Schwartzentruber sensory neuron44, TwinsUK blood45, PsychENCODE brain31, eQTLGen 
blood cis and trans46, BloodeQTL blood47, BIOS Blood48, xQTLServer blood49, CommonMind 
Consortium brain50, BRAINEAC brain51, GTEX v8 lymphocytes, brain, spleen, and whole 
blood. FUMA was also used to identify potential drug targets from the 989 mapped genes 
using Drugbank52. 

Colocalization 

All variants within 1.5Mb of the lead variant of each genomic risk loci were used in 
the colocalization analysis. The GWAS data and eQTL data were trimmed so that all 
variants overlap. Colocalization was performed per gene using coloc.abf from the Coloc R 
package53. Default priors were used for prior probability of association with the GWAS data 
and eQTL data. The prior probability of colocalization was set as 1x10-6 as recommended54. 
In all analyses BETA, SE2 (variance), case prevalence, and sample size from the GWAS 
data were used. In colocalization analyses with all tissues except microglia, nominal P, 
sample size, and minor allele frequency from the eQTL data were used. BETA, SE2 
(variance), MAF, and sample size from the microglia eQTL data were used for 
colocalization. Colocalizations with a posterior probability > 0.8 were considered successful 
colocalizations. eQTL data from all tissues except microglia were obtained from the eQTL 
catalogue55. The microglia data was obtained from Young et al. (2019)56. 

Fine-mapping 

Fine-mapping was performed with SusieR v0.9.157 and FINEMAP v1.458 on all 
variants within 1.5Mb of the lead variant of each genomic risk loci. The APOE and HLA-
DRB1 (MHC) regions were excluded from fine-mapping due to the complicated LD structure. 
Chromosome 6 was excluded from fine-mapping because no associations outside of the 
HLA-DRB1 region existed and the two loci on chromosome 19 between 19:2550874-
47713504 (GRCh37) were also excluded because they were within the APOE locus. Both 
SusieR and FINEMAP were used because it is recommended to use multiple fine-mapping 
methods in order to find consensus and increase the robustness of the results59. The sample 
size of the fine-mapping reference panel should be proportional to the sample size of the 
data being fine-mapped. A good-sized reference panel is 10% to 20% the sample size of the 
data60. UKB data was used as a reference panel for the fine-mapping because it had the 
largest sample size of the available reference panels and was the only available European 
reference panel to fulfill the criteria for a good-sized reference panel. In the SusieR analysis 
the reference panel was ~10% the size of the GWAS data. In the FINEMAP analysis the 
reference panel was ~40% the size of the GWAS data. The difference in size is due to 
FINEMAP allowing for individuals who have some genotypes missing to be included in the 
LD calculations from the reference panel. For FINEMAP, an LD matrix was generated using 
LDSTORE v2.060 using 387,533 individuals included in the UKB. For SusieR, an LD matrix 
was generated using 100,000 individuals in R v3.4.361. The 100,000 individuals were chosen 
for each locus as the top 100,000 people with the most genotyped variants in the locus in 
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order to maintain the highest number of variants in the fine-mapping. Only the top 100,000 
were chosen for computational feasibility and in order to maintain as many variants as 
possible while having a large reference panel. In both SusieR and FINEMAP, the meta-
analysis data was trimmed to match the variants included in the LD reference. The 
maximum number of causal variants in the region was set to 10 in both methods. To 
generate the 95% FINEMAP confidence set, the variants included in the top N models in the 
configuration file were aggregated until the summed probability of the models reached 0.95. 
The SusieR 95% credible sets were generated by SusieR using default settings. The allele 
frequency in the UKB data and meta-analysis data of all the variants in the fine-mapping 
analyses were compared to identify outliers. No variants included in the confidence set or 
credible set had an allele frequency difference > 0.2. 

 

Functional enrichment of significant association signals 

All enrichment analyses were performed using a Fisher’s exact test (fisher.test) 
implemented in R 4.0.161. For enrichment of genomic risk loci, all variants within the genomic 
risk loci were compared to all other variants present in the meta-analysis. For enrichment of 
the credible causal variants, all variants present in the 95% confidence set from FINEMAP 
and all variants in the credible set from successful SusieR analyses were compared to all 
other variants included in the mapping region. 

 
Enrichment of active chromatin was performed using ROADMAP Core 15-state 

model annotation62 obtained from 
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/c
oreMarks/jointModel/final/all.mnemonics.bedFiles.tgz. For each of the 127 cell types, all 
variants within the analysis were annotated with one of the 15 states using the R package 
Genomic Ranges63. All variants annotated with a state < 8 were defined as being within 
active chromatin. The enrichment of active chromatin within the specified region was 
performed for each of the cell types and the resulting P-values were corrected for 127 tests 
using Bonferroni correction. 
 

Enrichment of eQTLs was performed using all tissues in the GTEx v8 dataset. 
Significant variant-gene pairs were downloaded from 
https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8
_eQTL.tar. The significant eQTL variants were overlapped with the variants included in the 
enrichment analysis and eQTL counts within and outside the specified regions were 
generated for Fisher's exact tests. The resulting P-values were corrected for the inclusion of 
47 tissues from the GTEx v8 dataset using Bonferroni correction. The enrichment plots were 
generated using the R package ggplot264. 
 

Enrichment of functional consequences was performed using VEP65 and 
ANNOVAR66. All of the variants outside of the MHC region (GRCh37: 6:28,477,797-
33,448,354) in the meta-analysis and the genomic risk loci variants were annotated using 
ANNOVAR and FASTA sequences for all annotated transcripts in RefSeq Gene67. The 
counts of each functional consequence in the genomic risk loci were compared to all 
variants outside of the loci. The significance threshold for the annotation enrichment was 
adjusted for the 11 tests performed (P < 0.0045). The mapping regions from the fine-
mapping analysis were annotated using VEP to identify functional consequences and CADD 
score68 for exonic variants. The counts of each functional consequence in the credible 
causal variants were compared to the variants in the mapping region. Exonic variants were 
annotated with a CADD score and counts of credible causal variants with a CADD score >15 
were compared to all other variants in the mapping region. The CADD score threshold was 
chosen because 15 was the median CADD score for the median value for all possible 
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canonical splice site changes and non-synonymous variants in CADD v1.0. The significance 
threshold was adjusted for the 12 tests performed for the annotation enrichment (P < 
0.0042).  
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