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Abstract:  

Increasing testing capacities plays a substantial role in safely reopening the economy and 

avoiding a new wave of COVID-19. Pooled testing can expand testing capabilities by pooling 

multiple individual samples, but it also raises accuracy concerns. In this study, we propose a 

flexible testing strategy that adopts pooled testing or individual testing according to epidemic 

dynamics. We identify the prevalence threshold between individual and pooled testing by 

modeling the expected number of tests per confirmed case. Incorporating an epidemic model, we 

show pooled testing is more effective in containing epidemic outbreaks and can generate more 

reliable test results than individual testing because the reliability of test results is relevant to both 

testing methods and prevalence. Our study is the first to evaluate the interplay between pooled 

testing and a rapidly evolving outbreak to the best of our knowledge. Our results allay accuracy 

concerns about pooled testing and provide theoretical supports to empirical studies. 

 

Introduction  

Testing plays a critical role in containing the COVID-19 outbreak and lifting containment 

measures, which have caused enormous economic losses and posed health risks, particularly 

among disadvantaged populations. However, increasing the testing capability to meet the 

demand and improving the reliability of test results remains to be challenging tasks. 
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Pooled testing is to test samples drawn from multiple individuals as a pooled sample, also called 

a pool1. If a pool tests negative, everyone in this pool is considered negative. If the result is 

positive, which indicates that at least one individual in this pool is infected, then all the samples 

need to be retested individually. Prevalence, test accuracy, and pool size all have great impacts 

on pooled testing. When a large proportion of pools test negative, pooled testing can clear groups 

of patients using fewer assays. Conversely, if most pools yield positive results, pooled testing 

may sacrifice accuracy to improve efficiency. 

Although pooled testing provides an alternative to expand the testing capability, policymakers 

have remained conservative about pooled testing, such as mandating a small pool size when the 

positive result rate is low. For example, the Indian Council of Medical Research suggested 

pooling five specimens for COVID-19 testing in communities where the positive rate was less 

than 5%2. The U.S. Food and Drug Administration (FDA) has approved only one COVID-19 

diagnostic test for pooling up to four individual samples3. However, recent empirical studies 

have shown that the pool size could be expanded to 32 nasopharyngeal swabs while maintaining 

acceptable test accuracy4, and pools of 20 saliva samples help control the epidemic when the 

prevalence is less than 1%5. 

Recent studies mainly focused on investigating efficiency gains and the accuracy losses of 

different pooled algorithms4-17, such as multi-stages and multi-dimensions procedures. In this 

study, we focus on Dorfman's classic two-stage procedure because it is the most utilized 

algorithm in practice. Previous research mainly focuses on improving efficiency, i.e., minimizing 

the expected number of tests per subject or the total number of tests. Aprahamian, Bish, and Bish 

are the first to incorporate testing accuracy into pooled testing18,19. Moreover, Aprahamian, Bish, 

and Bish analytically characterize key structural properties and derive the threshold policy of 

optimal Dorfman's pool size for the first time19. Their results show that pooled testing is always 

better than individual testing when the test sensitivity is imperfect. However, when the 

prevalence is higher than the threshold, the efficiency gains of pooled testing mainly come from 

the false negative results in first the round of testing, which avoid the second round of testing. 

During a pandemic, flexible testing should choose individual or pooled testing by trading off 

efficiency and accuracy. Moreover, during a pandemic, the interplay between testing and fast-

changing prevalence remains unclear. The insufficient testing capacity and inaccurate testing 

technologies weaken the mitigation effects of testing and the reliability of test results.  
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We aim to provide a broad picture of testing in the pandemic from a public health policy 

perspective. We propose a flexible testing strategy that adopts pooled testing and individual 

testing according to epidemic dynamics. Based on previous research of optimal pooled testing19, 

we model the expected number of tests per confirmed cases and identify the prevalence threshold 

to determine when testing strategies must be changed. We use an epidemic model to compare 

flexible and individual testing in population screening. Our results contradict the common belief 

that pooled testing is less accurate than individual testing and that only highly accurate tests 

facilitate the safe reopening of the economy. We show that flexible testing is more cost-effective 

for containing the outbreaks and can generate more reliable results than individual testing. The 

higher capacity and frequency achieved by appropriately adopting a pooled testing strategy or 

newly developed tests ease the containment measures and prevent infections, even if tests have a 

low ability to detect the virus.  

 

Results 

Flexible testing strategy. The objective of testing during a pandemic is to identify and remove 

infected patients from the transmission chain as soon as possible. Based on the performance 

measures derived by Aprahamian, Bish, and Bish18,19, we measure the overall efficiency and 

effectiveness of testing by the expected number of tests required to identify an infected patient, 

defined as the cost-performance ratio (CPR). Pool size 1n   represents individual testing. 1n   

represents pooled testing. CPR depends on the prevalence p , pool size n , test sensitivity eS  

(true positive rate), and specificity pS  (true negative rate) as follows (see methods for details on 

the derivation of the CPR): 

 
  2

1
, 1,

1 1
1 1 , otherwise.

e

n

e e p
e

n
S p

CPR n

S S S p
S p n

  
         

                                                  (1) 

We derive the flexible testing strategy that adopt individual or pooled testing according to 

epidemic dynamics, based on the threshold policy of the optimal pooled testing19(see more 
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details in Methods section and Supplementary Material). During the pandemic, the flexible 

testing strategy with an optimal pool size *n  that minimizes the CPR follows: 

*

0 ,

1, ,

,

p p
n

n p p

  
                                                                                                                        (2) 
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    

 

 have been derived in previous 

research on optimal pooled testing in terms of the expected number of tests per subject19. 0 ( )W   is 

the principal branch of Lambert W function20.  

Compared with previous research on optimal pooled testing19, our research focuses on 

comparing individual and pooled testing, in terms of ( )CPR n . If the prevalence is lower than the 

threshold, pooled testing with pool size 0n  is preferred19. Otherwise, individual testing ( * 1n  ) 

is the optimal strategy.  

Moreover, *n ,  *CPR n , and p  have the simple monotonicity that offers clear directions for 

decision-makers to modify testing strategies to identify an infected patient with minimum tests. 

The results are as follows (see proof in supplementary material): 

1) The prevalence threshold increases in sensitivity and specificity, as shown in Figure 1A. If 

the testing sensitivity and specificity are 70% and 95%, the prevalence threshold between 

individual and pooled testing is 21.2%. If tests were perfect, the prevalence threshold is up to 

30%, and we can apply pooled testing in areas with higher prevalence. 

2) The optimal pool size monotonically decreases with the increasing prevalence, sensitivity, 

and specificity19, as shown in Figure 1B, D. The optimal pool size varies more with 

prevalence than with test sensitivity and specificity, especially when prevalence is lower than 

1%. When the prevalence is higher than 1%, the optimal pool size changes no more than one 

sample for a 10% fluctuation of sensitivity or specificity.  
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3) The CPR of optimal pool size decreases with increasing prevalence, sensitivity, and 

specificity, as shown in Figure 1C, E. As more people get infected, or we have more accurate 

testing technology, we can identify infected patients with fewer tests. 

 

Figure 1. Monotonicity of the prevalence threshold, optimal pool size, and CPR.  

(A): The prevalence threshold is monotonically increasing in sensitivity and specificity. (B) and (C): the optimal 

pool size and the corresponding CPR is monotonically decreasing in prevalence and sensitivity, assuming the 

specificity is 90%. (D) and (E): the optimal pool size and the corresponding CPR is monotonically decreasing in 

prevalence and specificity, assuming the sensitivity is 90%. The prevalence ranges from 0.15%–30%. 

 

Application of flexible testing strategy. We illustrate the application of flexible testing using 

testing data from the United States. Figure 2 shows the seven-day average positive rate, the 

optimal pool sizes, and the CPRs of different testing strategies for 50 U.S. states and 

Washington, D.C. Based on testing data from the COVID Tracking Project 

https://covidtracking.com/, between October 28–November 2, 2020, five states reported a seven-

day average positive rate higher than 20%, namely, South Dakota (50.6%), Iowa (37.4%), 

Kansas(36.0%), Idaho (33.4%), and Wyoming(30.4%) (figure 2A). Note that positive rates are 

higher than prevalence rates where testing capacity is limited because hospitals prioritize testing 

individuals with symptoms or a higher risk of infection. For simplicity, we use test positive rates 

to represent the prevalance in the tested population. 
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Figure 2: COVID-19 testing in the United States. 

(A) The seven-day average positive rate of 50 U.S. states and Washington, D.C., between October 28–November 2, 

2020. (B) The optimal pool size of the flexible testing strategy. (C) The CPRs of the flexible and individual testing 

strategy. We assume that sensitivity and specificity are 70% and 95%, respectively. 

If the test sensitivity is 70% and specificity is 95%, which are reasonable estimates of main 

diagnostic test accuracy (involving a nasopharyngeal swab)21, 45 states and Washington, D.C., 

where positive rates are lower than 21.2%, can apply pooled testing to increase testing 

capabilities. The maximum pool size approved by the U.S. FDA is four individual samples, 

which is the optimal pool size for five states where positive rates are 12.5%–21.2%. 40 states and 

Washington, D.C., with lower than 12.5% positive rates, can implement larger pool sizes than 

four to increase testing capabilities further. The current limitation on the maximum pool size is 

too conservative and restraints the effectiveness of pooled testing. When the prevalence is less 

than 1%, flexible testing saves more than 70% tests to identify an infected patient than individual 

testing. Taking Vermont as an example, the positive rate is 0.5%. Flexible testing with the pool 

size of 18 takes 66 tests to identify an infected patient, while individual testing takes 286 tests. 

Flexible testing can alleviate the current shortage of coronavirus tests. 
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Comparison of individual and flexible testing strategies. A flexible testing strategy should 1 

consider the prevalence rate, which changes over time among different groups. In practice, we 2 

can implement targeted testing tactics by categorizing people into different risk groups based on 3 

their local prevalence rates, symptoms, and exposure histories. In this study, we focus on the 4 

change of the prevalence rate over time. We use a susceptible–infected–removed (SIR) model to 5 

compare individual and flexible testing strategies in population screening considering different 6 

containment measures, test sensitivities, specificities, and capacities. 7 

In baseline scenarios, the initial prevalence is 1%. The testing sensitivity and specificity are 8 

73.3% and 98.6%, respectively. Limited testing capacity allows individually test all population 9 

within 100 days. Containment measures suppress the reproductive number to 1.5. As shown in 10 

Figures 3A and 3B, the total infection rate increases exponentially without testing and more 11 

drastic containment measures. Individual testing only flattens the curve. Flexible testing contains 12 

the outbreak more effectively and causes fewer infections than individual testing.  13 

Because the prevalence is lower than the threshold, flexible testing adopts pooled testing to 14 

increase testing capabilities. As the prevalence in pooled testing decreases (Figure 2B), the 15 

optimal pool size increases until it reaches the upper limit (Figure 2C). Pooled testing increases 16 

testing capabilities make it possible to test people more frequently. In baseline scenarios, pooled 17 

testing tests all population five times within the initial 100 days, while individual testing only 18 

tests all population once. Although pooled testing provides more results than individual testing 19 

(Figure 2D), it generates fewer false positive results (Figure 2E), avoiding unnecessary 20 

treatments and isolations.  21 

We measure the reliability of the test results by positive predictive values (PPVs) and negative 22 

predictive values (NPVs). PPVs and NPVs incorporate information about the prevalence, pool 23 

size, test sensitivity, and specificity (see the supplementary material for details of the PPV, NPV, 24 

sensitivity, and specificity). High PPVs and NPVs correspond to reliable positive and negative 25 

results, respectively.  26 

Contrary to the common belief that pooled testing is less accurate than individual testing, we 27 

show that pooled testing can generate more reliable results because the reliability of test results is 28 

relevant to testing methods and prevalence. More precisely, pooled testing can be associated with 29 

higher PPVs during a pandemic (Figure 2F) because each positive sample is assayed twice, 30 
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include a pooled test and an individual retest. On the other hand, the NPVs of pooled testing are 31 

initially lower than those of individual testing, but they quickly increase and become higher than 32 

those of individual testing (Figure 2G) when the prevalence rate under pooled testing is 33 

significantly lower than that under individual testing (Figure 2B). However, research that 34 

assumes a fixed prevalence shows that pooled testing always leads to lower NPVs than those of 35 

individual testing 22.  36 

 37 

Figure 3: Epidemic dynamics and test performances of individual and flexible testing.  38 
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During the initial stage of the outbreak, we faced great challenges in designing, developing, and 39 

expanding the diagnostic tests. Drastic containment measures, such as a complete lockdown, 40 

effectively suppressed the total infection rate but halted most economic activities. Flexible 41 

testing offers an alternative to ramp up testing capabilities within a short time and accelerate the 42 

suppression of outbreaks (Figure 4A, B). With the lifting of containment measures (Figure 4C, 43 

D), the effect of flexible testing approaches that of individual testing, only mitigating the 44 

outbreak. If we let the virus spread with few containment measures, the total infection rate will 45 

increase exponentially and surpass 90%, and limited tests have little effect on containing the 46 

outbreak (Figure 4D). Containment measures and testing should be coordinated to reduce both 47 

infections and economic losses. To keep total infection rates lower than the same level, flexible 48 

testing requires less stringent containment measures than individual testing.  49 

  50 

Figure 4: Effects of testing under different containment measures.  51 

Smaller R  implies more stringent containment measures. The top and bottom show total infection rates and 52 

prevalence rates, respectively. 53 

 54 
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Test sensitivity and specificity affect epidemic dynamics differently under different testing 55 

strategies, as shown in Figure 5. Test sensitivity impacts epidemic dynamics and test 56 

performances for both individual and pooled testing. Higher test sensitivity reduces total 57 

infection rates (Figure 5A) and increases NPVs (Figure 5B), which imply more reliable negative 58 

results. 59 

Specificity has a negligible influence on epidemic dynamics under individual testing (Figure 5A 60 

top). However, we show that specificity is also important for pooled testing. Lower specificity 61 

causes more false positive results of pooled samples in the first stage and then leads to more 62 

unnecessary individual retests. Increasing testing sensitivity or specificity can dramatically 63 

strengthen the effectiveness of pooled testing on containing outbreaks (Figure 5A bottom). 64 

Moreover, higher test specificity reduces false positive results (Figure 5D) and increases PPVs 65 

(Figure 5C), which imply more reliable positive results.  66 

 67 

Figure 5: Comparison of different testing strategies and technologies.  68 

The top and bottom rows show individual testing (IT) and flexible testing (FT), respectively. Testing technologies 69 

vary in sensitivity eS  and specificity pS , as indicated. 70 
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The testing capacities achieved with different technologies vary significantly. In-home rapid tests 

enable the possibility of screening a population frequently. When the initial prevalence is 5% and 

there are few containment measures (R=3), individual testing twice a week can reverse the 

outbreak and keep the total infection rate no more than 20%, even using an inaccurate testing 

technology (sensitivity: 62.3% and specificity: 90%) (Figure 6A, B). This result contradicts the 

common belief that highly accurate tests are prerequisites to safely reopening the economy. As 

the testing frequency increases, inaccurate technologies reduce infections (Figure 6A, B); 

however, FPs rapidly increase because of the low specificity (Figure 6C). 

Frequent testing, such as the twice-weekly testing, could enable the economy to reopen while 

maintaining the total infection rate much lower than the herd immunity level. Compared with the 

devastating economic cost of containment measures, increasing testing capacity is more cost-

effective in containing the outbreak. Our results are consistent with the findings of the previous 

study that increasing testing frequency contributes to a safer reopening, even if tests are 

inaccurate23. 

 

Figure 6: Comparison of different testing frequencies of individual testing.  

These scenarios show total infection rates (A), prevalence rates (B), and false positives (C) of individual testing with 

an initial prevalence of 5% using an inaccurate technology (62.3% sensitivity and 90% specificity). The 

reproductive number is 3. We compare the quarterly, monthly, weekly, and twice-weekly testing frequency. 

Discussion and conclusion 

Flexible testing is more cost-effective in containing the outbreaks and can generate more reliable 

results than individual testing during the pandemic. We identify the prevalence threshold 

between individual and pooled testing in terms of CPR. Simulation results show that increasing 

testing capability is a more feasible strategy to expedite identifying infected patients than 

improving testing sensitivity and specificity in short term. Moreover, pooled testing can increase 
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the reliability of negative results by lowering the prevalence and improve the reliability of 

positive results by testing positive samples twice. 

Our analysis also subjects to several limitations. First, we assume the prevalence is known, and 

then choose individual or pooled testing according to the prevalence. During the pandemic, 

developing methods to estimate the prevalence of COVID-19 is crucial for adjusting containment 

policies. Moreover, we use a well-mixed SIR model to capture the difference between individual 

and flexible testing. More detailed transmission models that consider the heterogeneous 

population and social contact patterns can provide a more specific testing performance 

evaluation. In addition, assessing the diagnostic accuracy of tests administered to pooled samples 

and asymptomatic individuals is also an urgent priority5,24. 

Flexible testing and the newly developed tests, which are low cost and noninvasive, make 

widespread and frequent testing accessible and help navigate uncertainty after the reopening. 

Compared with the painful containment measures, increasing testing frequency enables people to 

return to workplaces and students to go back to schools more safely. For example, the U.S. 

National Football League is individually testing all players and team personnel every day or 

every other day during the regular season except game day because false positives may cause the 

delay or cancellation of a game. The seven-day positive rate is only 0.017% between August 30– 

September 5, 202025. Pooled testing can save more than 95% of tests for the National Football 

League. Moreover, the University of Illinois Urbana-Champaign (UIUC) is testing students 

twice-weekly using rapid saliva tests26. Between July 6–November 14, 2020, the daily positive 

rate is no more than 2.86% (August 30, 2020). As these positive rates are much lower than the 

threshold, compared with individual testing, pooled testing can save substantial tests and reduce 

numerous false positives by testing each positive sample twice. For example, the University of 

Cambridge and the University of Nottingham are implementing pooled testing to keep campuses 

open. Meanwhile, healthcare providers should offer more information on interpreting test results 

and organize timely follow-up testing to rule out false positive and false negative results. 

Countries are striving to increase their testing capabilities to control the COVID-19 outbreak and 

safely reopen their economies. We suggest governments and agencies increase the testing 

capability and frequency by the approval of larger pool sizes and more fast test technologies. As 
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we learn more about the pandemic by testing more people and conducting more research, we will 

gain confidence and win the fight against COVID-19. 

Methods  

Flexible testing strategy. Containing the epidemic outbreak requires both high testing efficiency 

and accuracy. The faster the infected patients are removed from the transmission chain, the fewer 

people will become infected later. Although test sensitivity and specificity measure the intrinsic 

accuracy of a test in identifying patients with and without the disease, prevalence-dependent test 

performance measures are more practical in comparing testing strategies under different disease 

prevalences (0,1)p . Because the test is imperfect and healthy people have a higher probability 

of receiving negative test results than infected people, we assume 1 (0,1)e pS S   . 

We first review the performance measures derived by Aprahamian, Bish, and Bish, including the 

per-subject expected number of tests  T n    and the per-subject expected number of false 

negatives  FN n   18,19; that is, 

    

1, 1,

1
1 1 , otherwise.

n

e e p

n
T n

S S S p
n


        

                                                               (3) 

 
 
 2

1 , 1,

1 , otherwise.

e

e

S p n
FN n

S p

      
                                                                                          (4) 

The per-subject expected number of true positives  TP n    is given by Equation (5), because 

   TP n FN n p         . 

  2

, 1,

, otherwise,
e

e

S p n
TP n

S p


   


                                                                                           (5) 

We extended previous research on optimal pooled testing19 by modeling the cost-performance 

ratio (CPR), the ratio of the per-subject expected number of tests to the per-subject expected 

number of true positives. CPR represents the number of tests per confirmed case, a commonly 

used statistic evaluating the overall performance of testing in the COVID-19 pandemic. CPR 

incorporates  TP n    to capture the accuracy concerns over false negative results, which 
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might give people a false sense of security to break the social distancing orders and lead to 

widespread transmission. 

   
    2

1
, 1,

= =
1 1

1 1 , otherwise,

e

n

e e p
e

n
S pT n

CPR n
TP n

S S S p
S p n

    


            




                        (6) 

Note that minimizing ( )CPR n  is the same as minimizing the expected number of tests per 

subject  T n    for pooled testing19.  Aprahamian, Bish, and Bish have proved the optimal 

pooled testing in terms of  T n   . Thus, we can prove the flexible testing strategy by 

comparing individual testing with optimal pooled testing (see supplementary material for more 

details). We further discuss the flexible testing strategy under the realistic scenario in the 

supplementary material.  

 

Epidemic Model. The SIR model captures the prevalence variation over time. Susceptible 

individuals tS  are infected through contact with unidentified infected individuals tI . The 

removed people tR  consist of recovered people and confirmed cases who are isolated until they 

pose no risk. Although it seems more natural to utilize population counts, we use fractions of the 

total population N  to simplify the discussion and calculation, so that 1t t tS I R   . Therefore, 

the prevalence is tI . The epidemic dynamics are described by the following system of ordinary 

differential equations: 

,t
t t

dS
S I

dt
   

0 ,
( )

t
t t t

t

dI C
S I

dt CPR n
I     

0 + ,
( )

t
t

t

dR C

dt CPR n
I                                                                                                              (2) 
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where   denotes the transmission rate, and   is the recovery rate. To prevent infections as 

many as possible, we assume that decision-makers make full use of daily testing capacity 0C . 

The number of infected individuals who are isolated after testing positive is 0 / ( )tC CPR n , where 

tn  is the pool size during time interval dt . For flexible testing strategy, the optimal pool size *
tn  

is chosen dynamically according to the prevalence tI  to minimize the ( )tCPR n . Individual 

testing test one sample per assay all the time (i.e., 1tn  ).  

 

Simulation Settings. We compare the epidemic dynamics and performances of individual and 

flexible testing strategies in a pandemic by simulating different containment measures, testing 

sensitivity, specificity, and capacity. The baseline values and the value ranges used for sensitivity 

analyses are listed in Table 1. We end the population screening when the prevalence is lower 

than 510 . 

 

Table 1. Model parameter values at baseline and the ranges used for sensitivity analyses.  

Parameter Baseline 

Value 

Range Details and references 

Maximum pool size 

M  

32  A recent study revealed that the COVID-19 real-time quantitative 

polymerase chain reaction (RT-qPCR) test sensitivity retained 

90% for a batch of up to 32 nasopharyngeal swabs4. 

Recovery time 1   14  The median recovery time for mild cases is approximately two 

weeks27. 

Reproductive number 

R  with containment 

measures  

1.5 1.2, 

1.5, 

2.0, 

3.0. 

The reproductive number can be thought of the expected number 

of new infections that are generated directly from one infected 

individual. We calculate   as R   . We use R  to capture 

the overall impact of containment measures. A smaller R  

corresponds to more stringent measures, which cause more 

economic losses. 

Sensitivity eS  0.733 0.623, 

0.972. 

The test accuracy varies because of human error and variability in 

specimens. We use the nasopharyngeal swab PCR test as the 
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Specificity pS  0.986 0.900, 

0.986. 

baseline. We analyze the main range of sensitivity and specificity 

of PCR tests (involving the nasopharyngeal swab, saliva, and 

sputum samples) based on a systematic review of COVID-19 test 

accuracy28. 

Testing capacity 

0 /C N  

0.010 0.011, 

0.033, 

0.143, 

0.286. 

Testing capacity 0 0 01C N   represents that we can 

individually test N  people within 100 days. Sensitivity analysis 

compare the quarterly, monthly, weekly, and twice-weekly testing 

frequency under individual testing. 

Initial prevalence 0I  1% 5% The initial prevalence is 1% of people are infected with COVID-

19 but not removed from the transmission chain. 
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Supplementary Methods 

Proof of Flexible Testing Strategy 

Flexible testing strategy points out the prevalence threshold of individual and pooled testing. 

Figure 1 shows the ( )CPR n  curve and flexible testing strategy under different prevalence ranges.  

 

Figure 1: CPR curve and flexible testing strategy under different prevalence ranges. The 

red star shows the flexible testing strategy and corresponding CPR. To summarize all cases, we 

have: if p p , the global minimizer of ( )CPR n  is *
0n n ; if p p , the global minimizer of 

( )CPR n  is * 1n  , i.e., flexible testing should choose individual testing. 

 

The proof of flexible testing strategy is based on the optimal pooled testing. We refer interested 

readers to reference 1. Aprahamian, Bish, and Bish are the first to derive the closed form solution 

of optimal pooled size *
dn , as shown in Equation (1), by minimizing per-subject expected number 

of tests  T n   1.  

*

0 ,

, ,

.d

p p
n

n p p

   
                                                                                                                  (1) 

The optimal pooled testing, in terms of  T n   , follows a threshold policy: if the prevalence is 

higher than the threshold p , the optimal pool size should be as large as possible; otherwise, the 

optimal pool size is 0n 1. 

 

If we only consider pooled testing, ( )CPR n  and  T n    have the same optimal pool size 

because   2= eTP n S p    is independent with pool size n . Thus, we can prove the flexible 

testing strategy by comparing individual testing with optimal pooled testing in terms of ( )CPR n .   
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Step 1: Compare lim ( )
n

CPR n


 with 
1

( 1)
e

CPR n
S p

  . 

Reference 1 has approved  lim en
T n S 


    which represents  lim

n
T n


    approaches eS  

from above1. Thus, we have: 

 
 
  2

lim 1
lim ( ) ( 1)n e

n
e e

T n S
CPR n CPR n

S p S pTP n






    
         


 .  

As 
1

lim ( ) (1)
n

e

CPR n CPR
S p





 
  

 
, individual testing can always have a lower CPR than pooled 

testing with an infinitely large pool size.  

 

Step 2: Compare 0( )CPR n  with 
1

( 1)
e

CPR n
S p

  . 

When p p , Aprahamian, Bish, and Bish have already proved that  0 eT n S   and 0n e 1. 

Based on their results, when p p , we have that: 

 0 eT n S     

   0

0

1
1 1

n

e e p eS S S p S
n
        

0

2 2
0

11 1 1 1
(1 )( )e p n

e e e e

S S
p

S p n S p S p S p

 
      

0( ) ( 1)CPR n CPR n   

Thus, when p p , pooled testing with pool size 0n  has lower CPR than individual testing. 

When p p , we have 0( ) ( 1)CPR n CPR n  . In this scenario, we suggest individual testing 

which is simpler than pooled testing. Moreover, the integer pool size in practice leads to a 

smaller CPR. We will discuss the flexible testing strategy considering realistic scenarios at the 

end of the supplementary material.  

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 9, 2021. ; https://doi.org/10.1101/2020.11.17.20233577doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.17.20233577
http://creativecommons.org/licenses/by-nc/4.0/


 
 

2 
 

To summarize the threshold policy of individual and pooled testing in terms of CPR: if p p , 

pooled testing with optimal pool size 0n  is better than individual testing; if p p , individual 

testing outperforms pooled testing. 

 

Monotonicity  

In this part, we derive and prove the monotonicity properties of prevalence threshold, optimal 

pool size, and CPR.  

 

Property 1: The prevalence threshold p  between individual and pooled testing is increasing in 

eS  and pS . 

Proof of Property 1: 

The first order derivatives of prevalence threshold in eS  and pS  are: 

 

1

1

( 1)

( 1)

,

.

e p

e p

S S e

e

S S e

p

p
e

S

p
e

S





  

  










  

Because 0
e

p

S





 and 0

p

p

S





, p  is increasing in eS  and pS . 

 

Property 2: *n  is non-increasing in p , eS , and pS . 

Property 2 has been proved by Aprahamian, Bish, and Bish, when p p 1. When p p , 

flexible testing adopts individual testing, i.e., * 1n  . As 0 1n e  1, Property 3 holds for all 

prevalence rate. 

 

Property 3: *( )CPR n  is decreasing in p , eS , and pS . 

Proof of Property 3: 

1). Defining 
1

2

1
ln( )

1 1
2 1
( )

e p

p
x

S S
 

 
, the derivative of *( )CPR n  with respect to p  is given by: 
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0 0

1
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ln(1 )(1 2 ( ))1 2
4 , .
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e
e

p p
S pCPR n

p W xpp
S p p

S p p W x W x
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When p p , 0

1
( ) ( ,0)

2
W x   1. We have  

0

2
0

(1 )( ( ) 1)

p

p W x


 
 and 0

2
0

ln(1 )(1 2 ( ))
0

( )

p W x

W x

  
 . 

Then, we have 
*( )

0
CPR n

p





. Therefore, *( )CPR n  is decreasing in p . 

 

2). The derivative of *( )CPR n  with respect to eS  is given by: 

 
0 0

2*

2 ( ) ( 2 ( ))
0

3

1
, ,

( )

( ( 1) 4 ( )( 1) 2(1 ))
, .

e

W x W x
e e p pe

e

p p
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e S e W x S S SS
p p

S p



 
          

 

When p p , 0

1
( ) ( ,0)

2
W x   1. 0 02 ( ) (1 ) 1W x ne p   ,  and ( 1) (0,1)e pS S   .  We have 

02 ( ) 0W xe  , 0( 2 ( ))( 1) 0W x
eS e    , 04 ( )( 1) 0e pW x S S    , and 2(1 ) 0pS  . 

Thus, we have
*( )

0
e

CPR n

S





. Therefore, *( )CPR n  is decreasing in eS . 

 

3). The derivative of *( )CPR n  with respect to  pS  is given by: 

  0

*

2 ( )

2

0, ,
( )

- , .
W x

p

e

p p
CPR n

e
S p p

S p


   



 

Because 
*( )

0
p

CPR n

S





, *( )CPR n  is non-increasing in pS . 

 

Flexible testing under realistic scenarios  

Using the same assumptions for realistic scenarios as in the previous research of optimal pooled 

testing, the pooled testing has an upper limit on pool size M   to confine dilution effect1. We 
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can ignore dilution effect if pool size is lower than M . Moreover, pool size should be an integer 

in practice. Corollary 1 shows the flexible testing under realistic scenarios. 

 

Corollary 1: The flexible testing strategy under realistic scenario follows: 

1). If p p  , * 1n  . 

2). If p p  , *
0 0min{ ,arg min{ ( )), ( ), (1)}}

n
n M CPR n CPR n CPR        . 

According to Corollary 1, we can find the optimal integer pool size with negligible dilution 

effect. It should be stressed here that all monotonicity we discussed above holds for the realistic 

scenario. We use the realistic optimal pool size to derive all the results and conclusions. 
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