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Abstract 

Background 

Carotid endarterectomy (CEA) and carotid artery stenting (CAS) are recommended for high 

stroke-risk patients with carotid artery stenosis to reduce ischemic events. However, we often 

face difficulty in determining the best treatment method. In this study, we aimed to develop an 

accurate post-CEA/CAS outcome prediction model using machine learning (ML) algorithms that 

will serve as a basis for a new decision support tool for patient-specific treatment planning. 

Methods 

Retrospectively collected data from 165 consecutive patients with carotid stenosis underwent 

CEA or CAS were divided into training and test samples. The following six ML algorithms were 

tuned and their predictive performance evaluated by comparison with surgeon predictions: an 

artificial neural network, logistic regression, support vector machine, Gaussian naïve Bayes, 

random forest, and extreme gradient boosting (XGBoost). Seventeen clinical factors were 

introduced into the models, and outcome was defined as any ischemic stroke within 30 days after 
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treatment. 

Results 

The XGBoost model performed the best in the evaluation; its sensitivity, specificity, positive 

predictive value, and accuracy were 66.7%, 89.5%, 50.0%, and 86.4%, respectively. All 

statistical measures are comparable with those of surgeons. Internal carotid artery peak systolic 

velocity, low density lipoprotein cholesterol, and procedure (CEA or CAS) were the most 

contributing factors according to the XGBoost algorithm. 

Conclusion 

We were able to develop a post-procedural outcome prediction model comparable to surgeons 

in performance. The accurate outcome prediction model will make it possible to make a more 

appropriate patient-specific selection of CEA or CAS for the treatment of carotid stenosis. 
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Introduction 

Carotid artery stenosis is a main cause of ischemic stroke, which remains a major public health 

problem worldwide.[1] To reduce the risk of ischemic stroke, carotid endarterectomy (CEA) and 

carotid artery stenting (CAS) are recommended for patients at high stroke risk with carotid artery 

stenosis. Based on the evidence that there are no significant differences in long-term outcomes 

after CEA and CAS,[2-4] there are general guidelines for patient selection for CEA and 

CAS.[4-6] However, we often face difficulty in determining the best treatment method. 

Therefore, it is necessary to develop a useful decision support tool to identify an appropriate 

patient-specific treatment for carotid artery stenosis. Recently, artificial intelligence (AI) has 

been used widely in medical fields because of tremendous advances in computer technology 

including robust machine learning (ML) algorithms for successful prediction or diagnosis.[7] 

However, no studies have investigated the effects of modern ML models on any prediction or 

assessment for carotid artery stenosis. 

In this study, we aimed to develop an accurate ML model for outcome prediction within 30 

days after CEA or CAS with 17 clinical factors. The usefulness of the ML models was evaluated 

by comparing their predictions with those of surgeons. Because early periprocedural major and 

minor stroke has been known to affect outcomes at 1 year,[8] our post-procedural outcome 

prediction model can serve as the basis for an effective decision support tool for patient-specific 
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adaptation of CEA and CAS. Additionally, the relative importance of the clinical features was 

measured using an ML method. 

 

Methods 

The patient data that support the findings of this study are available from the corresponding 

author upon reasonable request. A subset of the program code generated for this study is 

available at GitHub and can be accessed at 

https://gist.github.com/kkmatsuo/54baea963568d184f347400a486eba45. We conducted and 

reported this study in compliance with the TRIPOD statement for multivariate prediction 

models.[9] 

 

Study population 

We enrolled 170 consecutive cases of carotid stenosis treated with CEA or CAS at a single 

institution in Japan between January 2013 and December 2018. Patient information was 

retrospectively collected from the hospital carotid stenosis database and complemented by 

individual search of medical records. The names of the patients and their hospital admission 

numbers were anonymized before analysis. This retrospective study was approved by the Ethical 

Committee of Kobe University Graduate School of Medicine (approval no. B200444). Written 
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informed consent was obtained from all patients before treatment. We excluded patients with 

arterial dissection and those who could not undergo an MRI because of pacemaker implantation. 

The missing values were imputed by the k-nearest-neighbours (kNN) method.[10] We used the 

clinical data of patients until March 2018 as training data to optimize the hyperparameters and 

train the ML models, and used the data of more recent patients, from April to December 2018, as 

test data to evaluate the predictive performance of each model. The sample size was determined 

by previous research investigating the appropriate sample size for efficient ML model 

development.[11] 

 

Treatments 

Therapeutic approach was in accordance with the guidelines [5, 6] based on stenosis degree 

assessed by NASCET criteria.[12] Basically, CAS was performed for CEA high-risk patients 

according to the inclusion criteria in the SAPPHIRE study.[4] The final treatment strategy was 

made by a multidisciplinary team. CEA was performed under general anaesthesia by three 

surgeons (K.H., H.K., K.T.). Continuous neurophysiological monitoring was performed by 

neurophysiologists during surgery with a multimodality protocol involving 

electroencephalogram (EEG), median nerve somatosensory evoked potentials (SSEP), and 

bilateral regional cerebral oximetry (rSO2). Shunt placement was determined by the onset of 
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alarm criteria, which were reported previously,[13] for either EEG, SSEP, or rSO2. CAS was 

performed under local anaesthesia by four surgeons (A.F., T.I., T.I., J.T.). The rSO2 was 

monitored during the procedure. Each patient treated with CAS was administered 100 mg aspirin 

and 75 mg clopidogrel daily for at least 7 days before and 90 days after the CAS. The protection 

methods (proximal protection, or filter- or balloon-based distal protection), the size and type of 

stents, and the size of the pre- and post-balloon were determined by the interventional team. 

 

Clinical parameters 

A total of 17 clinical parameters were used for the ML model development based on their 

known or expected influence on the outcome. These parameters consisted of age,[14] 

pretreatment modified Rankin scale (mRS),[15] hypertension,[15] diabetes mellitus,[16-18] 

medical history of arteriosclerotic disease,[19] serum low-density lipoprotein (LDL) cholesterol 

value (mg/dL),[16] internal carotid artery peak systolic velocity (ICA-PSV, cm/sec), 

symptomatic,[14, 16] crescendo transient ischemic attack (TIA) or stroke in evolution,[17] 

previous neck irradiation,[20] type III aorta,[16] contralateral carotid occlusion,[18] stenosis at a 

high position, mobile plaque, plaque ulceration,[16,17] vulnerable plaque, and procedure (CEA 

or CAS).[8, 21, 22] History of arteriosclerotic disease was defined as a history of acute coronary 

syndrome or peripheral artery disease requiring treatment. The most recent LDL-cholesterol 
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value was used. Crescendo TIA was defined as at least two similar TIAs in one week. 

Contralateral carotid occlusion, stenosis at a high position, and type III aorta were assessed using 

MRA, CTA, or angiography. Stenosis at a high position was defined as carotid stenosis that 

extends distally to the height of the vertebral body of C2. The ICA-PSV, mobile plaque, and 

plaque ulceration were assessed using echocardiogram. A vulnerable plaque was defined as a 

plaque that presents a hyperintense signal on an MRI time-of-flight image. 

 

Outcomes 

Outcome was defined as minor or major ischemic stroke including asymptomatic diffusion 

weighted imaging (DWI) hyperintense lesions within 30 days after CEA or CAS. Postprocedural 

MRI was performed the day after the procedure for CAS and less than one week afterwards for 

CEA. Additional MRI was performed if any neurological deficit was observed. 

 

Development of machine learning models 

The following six ML models were applied: artificial neural network (ANN), logistic 

regression, random forest, support vector machine (SVM), Gaussian naïve Bayes, and extreme 

gradient boosting (XGBoost).[23] The logistic regression, random forest, and SVM were 

implemented using scikit-learn, which is a free ML library for Python.[24] The ANN model was 
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implemented using the Keras library with a TensorFlow backend.[25] All the ML models were 

developed using Python version 3.7.7, Scikit-learn version 0.22.1, and TensorFlow version 2.2.0. 

First, we performed hyperparameter tuning of all models except for ANN using a grid-search 

algorithm with a log loss as the objective function on the training data. All numerical variables 

were standardized using centring and scaling before splitting the data into training and test sets. 

When applying grid-search, the value of the objective function was evaluated by stratified 5-fold 

cross validation. The hyperparameters of the ANN model were hand-tuned using the holdout 

method on the training data with cross-entropy as the objective function. The base ANN model 

consisted of three dense layers with two dropout layers. After identifying the optimal 

hyperparameters for every model that minimize the log loss value, we evaluated the predictive 

performance of each model using the stratified 5-fold cross validation method on the training 

data. We also created and evaluated an ensemble model using the four models with the highest 

accuracy on the training data. The usefulness of a multi-model ensemble was reported in a 

previous report.[26] Each model was ranked according to the sensitivity, specificity, positive 

prediction value (PPV), prediction accuracy, and area under the receiver operating characteristic 

curve (ROC-AUC). All models were then further analysed on the test data as external validation. 

Additional re-tuning of the hyperparameters was not permitted when the model was evaluated on 

the test data. 
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Test of machine learning models 

The data of 22 consecutive patients treated by CEA or CAS at the same institution from April 

to December 2018 were used as a test dataset. Their post-procedural outcomes were predicted 

using the trained ML models with the 17 factors. Using the same 17 factors, four surgeons 

(board-certified neurosurgeons who had at least 10 years of experience) also predicted the 

post-procedural outcomes for each patient based on the test data within 10 minutes. When 

surgeons performed the outcome prediction test, to ensure that other information was never 

leaked, a paper test with information on only the 17 clinical factors for each patient was used 

(Supplemental Figure 1). The average sensitivity, specificity, PPV, and prediction accuracy of the 

predictions of the four surgeons were compared with those of the ML models. 

 

Feature importance measurement 

The relative importance of the clinical features was measured by the total gain of the XGBoost 

algorithm. The gain is the relative contribution of a feature to the model, calculated by taking 

each feature's contribution to each tree in the gradient boosting decision tree model. Thus, the 

features with higher gain are more important for generating the prediction of the XGBoost 

model. 
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Statistics 

We used EZR version 1.38 (Saitama Medical Center, Jichi Medical University, Saitama, 

Japan) for statistical measurement. We performed a statistical comparison between training and 

test groups using Welch's t-test for numerical values, Fisher's exact test for categorical variables, 

and the Mann–Whitney U test for pretreatment mRS. Statistical significance was assumed if 

probability was measured at less than 0.05. 

One author (K.M.) had sufficient access to the data to verify the manuscript’s scientific 

integrity. 

 

Results 

Study participants 

The flow diagram of model development and validation is presented in Figure 1. Among the 

170 patients with carotid stenosis, five (2.9%) were excluded. Thus, the data of a total of 165 

patients with carotid stenosis were included for analysis and separated into training and test data. 

The baseline characteristics before missing value imputation are shown in Table 1. There were 

36 (22%) patients over 80 years of age, and 127 (77%) patients in good condition (mRS 0-1). 

Severe carotid stenosis, which was defined as an ICA-PSV of more than 200 cm/s, was observed 
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in 115 (70%) patients. CEA and CAS were performed on 95 (58%) and 70 (42%) patients, 

respectively. All missing values were imputed using the kNN method. No significant difference 

was found in the comparison before and after imputation of the missing values (data not shown). 

Although age and follow-up duration were significantly older and shorter, respectively, in the test 

data, there was no significant difference between the training and test data for the other factors 

that were used for analysis after imputation (Table 1). The test data tended to have more CAS 

and fewer outcomes, but there were no significant differences. 
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Table 1. Patient characteristics 

Variable 

Before 
imputation 

After imputation 
Comparison between train and 

test data 

Total 
(n=165) 

Training 
data 

(n=143) 

Test data 
(n=22) p value 

95% confidence 

interval 

Age, year (mean ±SD) 74.2 ± 7.61 73.8 ± 7.82 76.7 ± 5.62 0.04 0.15 5.69 

Sex, male, n (%) 141 (85%) 122 (85%) 19 (86%) 1.00 0.16 3.55 

pre-treatment mRS (median, IQR) 0 (0-1) 0 (0-1) 0.5 (0-1.75) 0.55 na na 

LDL-cholesterol, mg/dL (mean ±SD) 90.0 ± 29.5 90.4 ± 30.1 87.1 ± 23.3 0.56 -14.88 8.27 

Prior medical histories 

HT, n (%) 136 (82%) 118 (83%) 18 (82%) 1.00 0.24 3.58 

DM, n (%) 58 (35%) 50 (35%) 8 (36%) 1.00 0.34 2.78 

ACS, n (%) 53 (32%) 42 (29%) 11 (50%) 0.08 0.15 1.15 

PAD, n (%) 28 (17%) 24 (17%) 4 (18%) 0.77 0.27 4.02 

Anatomical and pathophysiological features 

Contralateral occlusion, n (%) 14 (8.5%) 11 (7.7%) 3 (14%) 0.40 0.12 3.22 

Stenosis at a high position, n (%) 13 (7.9%) 12 (8.4%) 1 (4.5%) 1.00 0.26 86.07 

Type III Aorta, n (%) 64 (39%) 56 (39%) 8 (36%) 1.00 0.41 3.31 

ICA-PSV, cm/sec (mean ±SD) 276 ± 130 272 ± 126 291 ± 147 0.56 -48.58 87.34 

Mobile plaque, n (%) 19 (12%) 15 (10%) 4 (18%) 0.29 0.15 2.43 

Plaque ulceration, n (%) 39 (24%) 36 (25%) 3 (14%) 0.29 0.57 11.85 

Vulnerable plaque, n (%) 61 (37%) 54 (38%) 7 (32%) 0.64 0.46 4.01 

Previous neck irradiation, n (%) 15 (9.1%) 13 (9.1%) 2 (9.1%) 1.00 0.20 9.79 

Symptomatic, n (%) 64 (39%) 56 (39%) 8 (36%) 1.00 0.41 3.31 

Crescendo TIA or stroke in evolution, n (%) 10 (6.1%) 8 (5.6%) 2 (9.1%) 0.62 0.11 6.14 

Treatment, CEA, n (%) 95 (58%) 85 (59%) 10 (45%) 0.25 0.65 4.86 

Ischemic stroke within 30 days, n (%) 46 (28%) 43 (30%) 3 (14%) 0.13 0.74 15.04 

Follow-up duration, days (mean ±SD) 833 ± 565 921 ± 555 259 ± 259 <0.0001 -762 -561 

ACS, acute coronary syndrome; CEA, carotid endarterectomy; CAS, carotid artery stenting; IQR, interquartile 

range; LDL, low density lipoprotein; mRS, modified Rankin scale; na, not available; PAD, peripheral artery 

disease; ICA-PSV, internal carotid artery-peak systolic velocity; SD, standard deviation; TIA, transient 

ischemic attack. 
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Prediction of post-procedural outcomes on the training dataset 

To evaluate the predictive performance of each ML model for post CEA/CAS outcomes, 

stratified 5-fold cross-validation was first performed on the 143-patient training data. The 

prediction results showed that the ROC-AUC and sensitivity of naïve Bayes were highest at 

0.730 and 55.6%, respectively, and the specificity, PPV, and accuracy of random forest were 

highest at 99.0%, 80.0%, and 74.1%, respectively (Table 2). Then, an ensemble model of the 

logistic regression, random forest, XGBoost, and ANN models, which were the four most 

accurate models, was also created and evaluated. It yielded a sensitivity of 23.3%, specificity of 

97.0%, PPV of 65.0%, accuracy of 74.9%, and ROC-AUC of 0.704. Thus, the ensemble model 

obtained the highest accuracy scores on the training data. 
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Table 2. Prediction results on the training dataset evaluated by 5-fold cross validation and sorted 

by accuracy 

Model ROC-AUC 

mean (95%CI) 

Sensitivity (%) 

mean (95%CI) 

Specificity (%) 

mean (95%CI) 

PPV (%) 

mean (95%CI) 

Accuracy (%) 

mean (95%CI) 

Ensemble model * 0.704 

(0.593 - 0.816) 

23.3 

(0.8 - 47.4) 

97.0 

(93.6 - 100) 

65.0 

(13.1 - 100) 

74.9 

(66.0 - 83.7) 

Random forest 0.677 

(0.523 - 0.831) 

15.8 

(0.2 - 31.4) 

99.0 

(96.2 - 100) 

80.0 

(24.5 - 100) 

74.1 

(68.8 - 79.4) 

Logistic regression 0.678 

(0.551 - 0.805) 

27.8 

(1.1 - 54.5) 

92.0 

(82.6 - 100) 

54.6 

(7.1 - 100) 

72.8 

(61.2 - 84.4) 

XGBoost 0.706 

(0.634 - 0.778) 

20.8 

(4.2 - 37.5) 

94.0 

(83.8 - 100) 

60.0 

(6.0 - 100) 

72.1 

(62.6 - 81.6) 

Neural network 0.637 

(0.458 - 0.817) 

30.0 

(5.3 - 54.7) 

90.0 

(81.2 - 98.8) 

53.9 

(12.0 - 95.8) 

72.0 

(60.8 - 83.2) 

SVM 0.675 

(0.555 - 0.796) 

36.9 

(5.1 - 68.8) 

85.0 

(80.6 - 89.4) 

44.8 

(10.3 - 79.2) 

70.6 

(60.1 - 81.2) 

Naïve Bayes 0.730 

(0.604 - 0.856) 

55.6 

(22.0 - 89.1) 

68.0 

(30.0 - 100) 

48.7 

(26.0 - 71.4) 

64.5 

(39.2 - 89.7) 

 

* Ensemble model is created by using random forest, logistic regression, XGBoost, and neural 

network models. 

ROC-AUC, area under the receiver operating characteristic curve; PPV, positive predictive 

value; SVM, support vector machine; 95%CI, 95% confidence interval. 
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Prediction of post-procedural outcomes on the test dataset and comparison with surgeons 

Next, the post-CEA/CAS outcome prediction performances of the seven trained ML models 

including the ensemble model were further evaluated on the 22-patient test data. The results are 

shown in Table 3. XGBoost achieved the highest sensitivity, specificity, PPV, and accuracy 

scores, which were 66.7%, 89.5%, 50.0%, and 86.4%, respectively. The ensemble model, which 

obtained the highest accuracy on the training data, did not perform well on the test data. 

The average of the outcome predictions made by four surgeons had a sensitivity of 41.7%, 

specificity of 75.0%, PPV of 20.1%, and accuracy of 70.5%. Therefore, all of the current ML 

models trained with 143 cases and 17 factors outperformed the surgeons’ predictions in terms of 

specificity and accuracy. Only XGBoost outperformed the surgeons’ predictions in terms of 

sensitivity (Table 4). A statistical analysis was not performed on these results because of the 

small sample size. The tuned hyperparameters of these models are listed in Supplemental Table 

1. 
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Table 3. Prediction results on the test dataset sorted by accuracy 

Model Sensitivity (%) Specificity (%) PPV (%) Accuracy (%) 

XGBoost 66.7 89.5 50.0 86.4 

Random forest 33.3 84.2 25.0 77.3 

Naïve Bayes 33.3 84.2 25.0 77.3 

Ensemble model * 33.3 84.2 25.0 77.3 

Neural network 33.3 78.9 20.0 72.7 

SVM 33.3 78.9 20.0 72.7 

Logistic regression 33.3 78.9 20.0 72.7 

Surgeons ** 
41.7 

(-9.1 – 92.4) 

75.0 

(60.7 – 89.3) 

20.1 

(-2.5 – 42.8) 

70.5 

(57.9 – 83.0) 

 

* Ensemble model is created by using random forest, logistic regression, XGBoost, and neural 

network models. 

** The average of 4 surgeon’s prediction results with 95% confidence interval. 

PPV, positive predictive value; SVM, support vector machine. 

 

Table 4. Differences in surgeon and XGBoost model outcome predictions for the test dataset 

  XGBoost Surgeons * Difference 95%CI 

Sensitivity (%) 66.7 41.7 25.0 -52.2 102 

Specificity (%) 89.5 75.0 14.5 -9.4 38.3 

PPV (%) 50.0 20.1 29.9 -33.0 92.7 

Accuracy (%) 86.4 70.5 15.9 -7.9 39.8 

 

* The average of 4 surgeon’s prediction results. 

PPV, positive predictive value; 95%CI, 95% confidence interval. 
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Importance values of the clinical factors 

The feature importances were measured using a function of the XGBoost algorithm, which 

obtained the best predictive performance on the test data. The results reveal that ICA-PSV, serum 

LDL-cholesterol value, and procedure (CEA or CAS) are the most important in this order (Figure 

2). 

 

Discussion 

In this study, we identified two notable findings. First, using an appropriate model 

construction process with effective clinical factors, we were able to develop a post-CEA/CAS 

outcome prediction model that is comparable to surgeons in terms of sensitivity, specificity, PPV, 

and accuracy, although our models were developed with a relatively small number of patients. 

Second, in our validation process, the XGBoost model had the highest predictive performance, 

and the factors that contributed most to the accurate model were ICA-PSV, serum 

LDL-cholesterol value, and procedure (CEA or CAS). 

 

ML and ICAS 

Using an appropriate model construction process with effective clinical factors, we were able 

to develop a post-CEA/CAS outcome prediction model that is comparable to surgeons in terms 
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of sensitivity, specificity, PPV, and accuracy, although the ML models were developed using 

relatively few patients. This is the first study to predict the outcome after treatment of carotid 

artery stenosis using ML models. Our model makes it possible to preoperatively calculate the 

post-CEA/CAS stroke risk as a concrete numeric value; for example, 10% with CEA and 15% 

with CAS for postprocedural stroke risk, which could contribute to better treatment and 

prevention designs. However, a problem of the current models is that sensitivity is relatively low. 

Because every surgeon chooses the best treatment strategy to avoid treatment-associated 

ischemic complications, it would be somewhat difficult for surgeons to predict the likelihood of 

complications before treatment. Therefore, a higher sensitivity will be required for the ML 

prediction model to be a good decision support tool. To increase the prediction sensitivity, we 

tuned the models with sensitivity as the objective function during model development. However, 

such sensitivity-oriented models showed a considerable decrease in accuracy, although 

sensitivity increased slightly (data not shown). Therefore, these sensitivity-oriented models were 

not adopted this time. To further improve the predictive performance of an ML model, it would 

be necessary to use big data and more dominant influential factors. 

The number of studies applying ML to neurosurgical decision support has increased rapidly 

over the past decade. The top three most frequently applied algorithms are ANN, logistic 

regression, and SVM.[27] Similarly, the number of studies on ML and stroke has increased.[28, 
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29] Most of these reports also use ANN, logistic regression, SVM, and random forest, which 

suggests that our model selection is appropriate. In our study, the predictive performance of the 

XGBoost was better than those of the ANN, logistic regression, SVM, and random forest. 

XGBoost is one of the major gradient boosting decision tree (GBDT) models. In a conventional 

GBDT algorithm, simple but weak predictive trees are repetitively generated and added to the 

predicting machine until the prediction is close to the ground truth. Although the superior 

performance of the GBDT model has been shown in many data-science contests in recent 

years,[30] there is still very little research on neurosurgery or stroke using the GBDT model.[30, 

31] The ensemble model, which had the highest accuracy on our training data, did not perform 

well on the test data, probably because of overfitting on the training data, which likely also 

happened with random forest and naïve Bayes. 

 

Feature Importance 

In our validation process, the XGBoost model showed the highest predictive performance, and 

the factors that contributed most to its accuracy were ICA-PSV, serum LDL-cholesterol value, 

and procedure (CEA or CAS). The procedure type, CEA or CAS, has previously been reported as 

a potential predictor of periprocedural stroke.[8, 15, 21, 22] Thus, it seems reasonable that the 

procedure type is the third most important factor in this study. However, no studies have 
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suggested that ICA-PSV or serum LDL-cholesterol value are effective predictors of 

postprocedural outcome. Although ICA-PSV should reflect the degree of stenosis, many studies 

have reported that the degree of stenosis is not associated with postprocedural outcome.[14, 16] 

ICA-PSV might be used in our model as a valid predictor in combination with other clinical 

factors. For LDL-cholesterol, a previous study showed that preprocedural statin therapy 

significantly reduced major adverse cardiac and cerebrovascular events after carotid 

revascularization.[32] However, its primary outcome was a 1-year composite risk including any 

stroke, and serum LDL-cholesterol value was not measured. In a study investigating the 

components of emboli captured by the filter-protection device during CAS, more postoperative 

DWI high intensity lesions were observed in patients whose main component of the emboli was 

cholesterol.[33] It may be inferred from such results that serum LDL-cholesterol might be related 

to post-procedural outcome because it should be possible for a higher serum LDL-cholesterol 

value to leads to a higher cholesterol content of the plaque, which produces emboli. 

There should be other important predictive factors that have not been adopted in our model. 

For example, the stenotic lesion length,[16] surgeon’s experience,[16, 34] centre’s experience,[14, 

19], or detailed surgical methods are potential predictive factors. Moreover, the accuracy of 

image classification and recognition using deep neural networks has recently remarkably 

increased. Therefore, it might be possible to improve our model performances by replacing some 
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clinical factors from radiological or echocardiogram findings with feature extraction using deep 

neural networks. However, because our XGBoost model gives importance to LDL-cholesterol, 

there must be important factors other than imaging findings that should be further explored. 

 

Comparison of clinician and AI performance 

Many studies have compared clinicians and AI with image interpretation or diagnostic 

performance on, for example, CT or gastroscopic images, and have shown that ML models are 

equivalent to or superior to specialists.[35, 36] However, it is difficult to find a study that 

compares the predictive performance of clinicians and AI as in this study. Although it is an 

unfamiliar task for surgeons to predict the post-procedural outcome by looking only at tabulated 

letters and numerals, the surgeons’ predictions were, surprisingly, not inadequate. The sensitivity 

of the surgeons’ prediction was higher than those of all ML models except XGBoost, presumably 

because the surgeons have experience of more than 143 patients, which comprise the dataset that 

our ML models learned. Therefore, instead of a difference in predictive ability, the number of 

experienced and learned cases might have influenced the results. The advantage of an ML model 

is that if only the question and answer are provided correctly, it can learn an enormous number of 

cases that one surgeon would not be able to experience. Therefore, in future, as the number of 

training cases increases, the predictive performance of the ML model should definitely improve. 
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Studies comparing the performance of AI with expert clinicians have been criticized because in 

most of them, adherence to reporting standards is suboptimal and code availability is 

lacking.[37] This study was conducted in accordance with the TRIPOD statement, and the main 

source code is provided. 

 

Limitations 

One of the main limitations of our study is the small sample size. Because big data generally 

makes ML models more accurate, a larger sample size would be needed for more accurate 

predictions. However, a previous report suggested that 80–560 samples are required for ML 

algorithms excluding deep neural networks, and the required sample size depends on the dataset 

and sampling method.[11] Furthermore, a systematic review of AI in neurosurgery has shown 

that the median number of patients in each study was 120.[27] Thus, the sample size might not 

be insufficient for our ML models (excepting the ANN model). Next, optimizing 

hyperparameters for neural network models is generally difficult because they have many 

hyperparameters that need to be adjusted. In addition to hyperparameters, the neural network 

architecture should be optimized for better performance.[38] In this study, because the ANN was 

hand-tuned by multiple trial-and-error sessions, a more effective hyperparameter set might be 

found by other, more sophisticated optimization methods. Finally, because the dataset was 
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collected retrospectively from a single institution, it is prone to selection bias, and the proposed 

ML models may not be applicable to other institutions where different treatment strategies or 

patient demographics might exist. Although internal validation was performed with 

cross-validation and additional validation was performed on test data from new patients, further 

external validation and prospective studies are required in other settings that differ in time or 

place to validate the performance of our models. 

 

Conclusion 

We were able to develop a post-CEA/CAS outcome prediction model with a performance 

comparable to that of surgeons. The XGBoost model showed the best predictive performance, 

and the factors that contributed most to model building were ICA-PSV, serum LDL-cholesterol 

value, and procedure (CEA or CAS). Larger datasets and analysis of potential prognostic factors 

would be necessary to further improve the predictive performance of the ML models, which will 

enable a more appropriate patient-specific selection of CEA or CAS for the treatment of carotid 

stenosis. 
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Figure legends 

Figure 1. Flow diagram describing the general framework of the study. Models were built using 
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the training dataset. The test dataset was used for measuring the predictive performance and 

comparison with the surgeons. CAS, carotid artery stenting; CEA, carotid endarterectomy; 

ICA-PSV, internal carotid artery peak systolic velocity; kNN, k-nearest-neighbours; LDL, low 

density lipoprotein; PPV, positive predictive value. 

 

Figure 2. Importance values of the clinical factors measured using the total gain of the XGBoost 

algorithm. CAS, carotid artery stenting; CEA carotid endarterectomy; DM, diabetes mellitus; 

ICA-PSV, internal carotid artery peak systolic velocity; LDL, low density lipoprotein; mRS, 

modified Rankin scale. 
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