Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Estimating the cumulative incidence of SARS-CoV-2 infection and the infection fatality ratio in light of waning antibodies

View ORCID ProfileKayoko Shioda, Max SY Lau, Alicia NM Kraay, Kristin N Nelson, View ORCID ProfileAaron J Siegler, View ORCID ProfilePatrick S Sullivan, Matthew H Collins, View ORCID ProfileJoshua S Weitz, Benjamin A Lopman
doi: https://doi.org/10.1101/2020.11.13.20231266
Kayoko Shioda
1Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kayoko Shioda
  • For correspondence: kayoko.shioda@emory.edu kayoko.shioda@aya.yale.edu
Max SY Lau
2Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alicia NM Kraay
3Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristin N Nelson
3Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aaron J Siegler
3Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Aaron J Siegler
Patrick S Sullivan
3Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patrick S Sullivan
Matthew H Collins
4Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joshua S Weitz
5School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Joshua S Weitz
Benjamin A Lopman
3Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Serology tests can identify previous infections and facilitate estimation of the number of total infections. However, immunoglobulins targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported to wane below the detectable level of serological assays. We estimate the cumulative incidence of SARS-CoV-2 infection from serology studies, accounting for expected levels of antibody acquisition (seroconversion) and waning (seroreversion), and apply this framework using data from New York City (NYC) and Connecticut.

Methods We estimated time from seroconversion to seroreversion and infection fatality ratio (IFR) using mortality data from March-October 2020 and population-level cross-sectional seroprevalence data from April-August 2020 in NYC and Connecticut. We then estimated the daily seroprevalence and cumulative incidence of SARS-CoV-2 infection.

Findings The estimated average time from seroconversion to seroreversion was 3-4 months. The estimated IFR was 1.1% (95% credible interval: 1.0-1.2%) in NYC and 1.4% (1.1-1.7%) in Connecticut. The estimated daily seroprevalence declined after a peak in the spring. The estimated cumulative incidence reached 26.8% (24.2-29.7%) and 8.8% (7.1-11.3%) at the end of September in NYC and Connecticut, higher than maximum seroprevalence measures (22.1% and 6.1%), respectively.

Interpretation The cumulative incidence of SARS-CoV-2 infection is underestimated using cross-sectional serology data without adjustment for waning antibodies. Our approach can help quantify the magnitude of underestimation and adjust estimates for waning antibodies.

Funding This study was supported by the US National Science Foundation and the National Institute of Allergy and Infectious Diseases.

Competing Interest Statement

BAL reports personal fees from Takeda Pharmaceutical, personal fees from CDC Foundation, and personal fees from Hall Booth Smith, P.C., outside the submitted work. Other authors do not have conflicts of interest.

Funding Statement

This study was supported by the US National Science Foundation [grant 2032082 to JSW and grant 2032084 to BAL] and the US National Institute of Allergy and Infectious Diseases [3R01AI143875-02S1 to PSS and AJS].

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Georgia Department of Public Health Institutional Review Board

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

We used publicly available, deidentified, aggregate data downloaded from the government websites cited in the paper.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted November 16, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Estimating the cumulative incidence of SARS-CoV-2 infection and the infection fatality ratio in light of waning antibodies
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Estimating the cumulative incidence of SARS-CoV-2 infection and the infection fatality ratio in light of waning antibodies
Kayoko Shioda, Max SY Lau, Alicia NM Kraay, Kristin N Nelson, Aaron J Siegler, Patrick S Sullivan, Matthew H Collins, Joshua S Weitz, Benjamin A Lopman
medRxiv 2020.11.13.20231266; doi: https://doi.org/10.1101/2020.11.13.20231266
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Estimating the cumulative incidence of SARS-CoV-2 infection and the infection fatality ratio in light of waning antibodies
Kayoko Shioda, Max SY Lau, Alicia NM Kraay, Kristin N Nelson, Aaron J Siegler, Patrick S Sullivan, Matthew H Collins, Joshua S Weitz, Benjamin A Lopman
medRxiv 2020.11.13.20231266; doi: https://doi.org/10.1101/2020.11.13.20231266

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (495)
  • Anesthesia (106)
  • Cardiovascular Medicine (1096)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (502)
  • Epidemiology (9772)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2313)
  • Geriatric Medicine (223)
  • Health Economics (462)
  • Health Informatics (1561)
  • Health Policy (736)
  • Health Systems and Quality Improvement (603)
  • Hematology (238)
  • HIV/AIDS (504)
  • Infectious Diseases (except HIV/AIDS) (11650)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (238)
  • Medical Ethics (67)
  • Nephrology (257)
  • Neurology (2144)
  • Nursing (134)
  • Nutrition (337)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (518)
  • Oncology (1180)
  • Ophthalmology (364)
  • Orthopedics (128)
  • Otolaryngology (220)
  • Pain Medicine (146)
  • Palliative Medicine (50)
  • Pathology (311)
  • Pediatrics (695)
  • Pharmacology and Therapeutics (300)
  • Primary Care Research (267)
  • Psychiatry and Clinical Psychology (2182)
  • Public and Global Health (4661)
  • Radiology and Imaging (778)
  • Rehabilitation Medicine and Physical Therapy (457)
  • Respiratory Medicine (624)
  • Rheumatology (274)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (210)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)