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ABSTRACT 13 

We conducted a systematic review of hygiene intervention effectiveness against SARS-CoV-2, including 14 

developing inclusion criteria, conducting the search, selecting articles for inclusion, and summarizing 15 

included articles. We reviewed 104,735 articles, and 109 articles meeting inclusion criteria were 16 

identified, with 33 additional articles identified from reference chaining. Herein, we describe results from 17 

58 mask disinfection and reuse studies, where the majority of data were collected using N95 masks. 18 

Please note, no disinfection method consistently removed >3 log of virus irrespective of concentration, 19 

contact time, temperature, and humidity. However, results show it is possible to achieve >3 log reduction 20 

of SARS-CoV-2 using appropriate concentrations and contact times of chemical (ethanol, hydrogen 21 

peroxide, peracetic acid), radiation (PX-UV, UVGI), and thermal (autoclaving, heat) disinfection on N95 22 

masks. N95 mask reuse and failure data indicate that hydrogen peroxide, heat, and UV-GI are promising 23 

for mask reuse, peracetic acid and PX-UV need more data, and autoclaving and ethanol lead to mask 24 

durability failures. Data on other mask types is limited. We thus recommend focusing guidelines and 25 

further research on the use of heat, hydrogen peroxide, and UVGI for N95 mask disinfection/reuse. All of 26 

these disinfection options could be investigated for use in LMIC and humanitarian contexts.  27 

 28 

 29 

 30 

 31 
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 33 
Synopsis: In resource-limited contexts, N95s are reused. We recommend using heat, hydrogen 34 

peroxide, or UVGI to disinfect and reuse N95 masks.  35 
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Introduction 36 

In December 2019, novel coronavirus SARS-CoV-2 emerged into the human population, leading to a 37 

worldwide pandemic.1 Due to lack of medical counter-measures, measures to prevent SARS-CoV-2 38 

transmission include physical distancing, masking, hand hygiene, and surface disinfection.2  39 

While SARS-CoV-2 has global impact, people living in low- and middle-income countries (LMIC) and 40 

humanitarian contexts are particularly impacted by COVID-19.3 SARS-CoV-2 transmission is enabled in 41 

areas with overcrowded living situations, poor hygiene conditions, and lack of access to personal 42 

protective equipment (PPE).4 Moreover, refugees, displaced persons, and people in informal settlements 43 

in LMIC are particularly vulnerable populations, due to living in crowded conditions with weakened 44 

health systems and poor water and sanitation infrastructure.5, 6 45 

One hygiene intervention increasingly being used in SARS-CoV-2 contexts is cleaning and/or 46 

disinfecting masks for reuse in resource-limited contexts.7 Since December 2019, there has been an 47 

explosion of research articles related to SARS-CoV-2. The aim of this systematic review was to identify 48 

and summarize information on mask disinfection and reuse, in order to develop evidence-based 49 

recommendations that are both generally applicable, and specifically applicable to LMIC and 50 

humanitarian contexts. 51 

METHODS 52 

We conducted a previously described systematic review to identify and summarize WASH intervention 53 

effectiveness at interrupting SARS-CoV-2 transmission routes.8 The review was developed based on the 54 

guidelines for the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 9 and for mask 55 

disinfection and reuse included: 1) a search strategy; 2) inclusion criteria; 3) a selection and data 56 

extraction strategy; 4) a framework for appraising risk of bias; and, 5) an analysis plan. Each of these 57 

steps is briefly described below (for more information see 8).  58 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.20229880doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.11.20229880
http://creativecommons.org/licenses/by-nd/4.0/


Search Strategy. The primary databases searched were the NIH COVID-19 Portfolio 59 

(https://icite.od.nih.gov/covid19/help/data-sources) and the CDC COVID-19 Research Articles 60 

Downloadable Database 61 

(https://www.cdc.gov/library/researchguides/2019novelcoronavirus/researcharticles.html).  62 

The first download was on June 10, 2020, including every article published from database creation on 63 

January 22, 2020 until June 10, 2020. The second download occurred on July 10, 2020, and included 64 

every article included in the databases from June 10th to July 10th, 2020. References were stored in 65 

Microsoft Excel (Redmond, WA, USA) and Endnote (Philadelphia, PA, USA), and duplicates were 66 

deleted. Reference chaining was completed using reference sections of previous systematic reviews 67 

identified. 68 

Inclusion Criteria:  Inclusion criteria were defined according to the populations, interventions, 69 

comparisons, outcomes, and study type (PICOS) framework, a model recommended by the Cochrane 70 

Library to structure rigorous reviews on health-related questions 10. Populations included must have been 71 

affected by COVID-19. Thus, all age, gender, and socioeconomic populations globally were included. 72 

Studies were eligible for inclusion if they included mask disinfection and reuse interventions. Specific 73 

comparisons were not required for inclusion. Studies were eligible for inclusion if they reported outcome-74 

level results related to the mask disinfection and reuse. Both published and pre-print studies were 75 

included if they contained primary data on mask disinfection and reuse. Modeling and prediction studies 76 

were not included due to the rapidly changing nature of the COVID-19 pandemic. Only studies in English 77 

were included. 78 

Selection and Data Extraction. Studies were screened by two independent authors in Title, Abstract, and 79 

Full Text Screening step for meeting the aforementioned PICOS criteria were excluded. Discrepancies 80 

between reviewers were resolved through discussion and consensus. 81 
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Relevant data were extracted from each article according to the framework in Waddington et al 11 82 

including author and publication details, experimental design, and outcomes relevant to mask disinfection 83 

and reuse. Data were managed using coding sheets developed in Excel and Google Sheets 84 

(Mountainview, CA, USA). Two independent reviewers extracted, discussed, and came to consensus on 85 

all data. 86 

Bias. Because a large number of articles have been published rapidly on SARS-CoV-2 and mask 87 

disinfection this review includes both published and pre-print research up to July 10, 2020. Given the data 88 

available, it was not possible to systematically assess bias; as such, we divided papers into “published and 89 

peer-reviewed” or “pre-print”. 90 

Analysis: Data were managed and analyzed in Excel and Sheets. All extracted data were tabulated and 91 

grouped. Where possible, units were converted to enable data comparability, and missing data were 92 

requested from authors.  93 

  94 
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RESULTS 95 

From the two downloads of the two databases, a total of 104,735 articles were retrieved. After removal of 96 

8,467 duplicates, 96,268 were title screened. A total of 365 articles passed title and abstract screening, 97 

and 109 passed full text screening in addition to 33 articles reference chained from previous systematic 98 

reviews. Thus, data were extracted from a total of 142 articles, including 58 articles identified on mask 99 

disinfection and reuse.  100 

Of the 58 7, 12-68 mask disinfection and reuse articles, ten were reference chained including nine59-67 from 101 

three systematic reviews69-71, and one68 from another article15. Of these 58 articles, 30 (52%) were 102 

preprints at the time of download12-16, 23-27, 33, 39-45, 49, 50, 55-63, 66, and one (2%) was data generated by an FDA 103 

contractor with no indication of peer review68. 104 

Overall, 16 studies measured disinfection and durability12, 15, 19, 20, 22, 27-30, 33, 36, 47, 49, 51, 62, 64, 16 studies 105 

measured only disinfection 13, 18, 23, 24, 31, 38, 40, 41, 43, 44, 48, 56, 63, 65-67 and 26 studies measured only durability7, 106 

14, 16, 17, 21, 25, 26, 32, 34, 35, 37, 39, 42, 45, 46, 50, 52-55, 57-61, 68. Thus, 32 studies measured disinfection and 42 measured 107 

durability.  108 

  109 
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Mask Disinfection  110 

In total, 92 individual mask disinfection tests were conducted across 32 studies12, 13, 15, 18-20, 22-24, 27-31, 33, 36, 111 

38, 40, 41, 43, 44, 47-49, 51, 56, 62-67. The masks tested included: 75 tests with N95s (82%), 5 (5%) with cloth masks, 112 

4 (4%) with surgical masks, three (3%) with KN95s, three (3%) with Tyvek, and 1 (1%) with a plastic 113 

face shield and 1 (1%) unspecified. Please note 78 (85%) are considered respirators (N95s and KN95s).    114 

Disinfection methods were grouped into three categories: chemical disinfection, radiation disinfection, 115 

and thermal disinfection. In total, 31 chemical disinfection tests were conducted (34% of tests), including 116 

15 tests with various forms of hydrogen peroxide (aerosolized, gas plasma, ionized, vapor), ozone gas 117 

(11), ethanol (2), peracetic acid with hydrogen peroxide (1), peracetic acid (1), and ethylene oxide (1). In 118 

total, 18 radiation disinfection tests were conducted, including 15 with ultraviolet germicidal irradiation 119 

(UVGI) and three with pulsed xenon UV (PX-UV). In total, 43 (47%) thermal disinfection tests were 120 

conducted, including moist heat (17 samples), dry heat (14), steaming (5), microwave generated steam 121 

(MGS) (5), autoclave (1), and heat (1). Please note disinfection efficacy was calculated using log 122 

reductions, or if not available, in a “complete inactivation” binary metric as reported by study authors. 123 

Of the 92 total tests, 21 were conducted with MS-2, 15 with SARS-CoV-2, 12 with IAV, 8 with Phi6, 8 124 

with H1N1, 6 with PCRV, 6 with a mixture (MS2, Phi6, IAV, MHV), 3 with MHV, 3 with H5N1, 2 with 125 

P22, and 1 each with Tulane virus, TGEV, Rotavirus, PPV, HCoV-229E, Canine parvovirus, BVDV, and 126 

adenovirus.  127 

As can be seen, while the majority of data were collected on N95s, there was high variability in the 128 

number of disinfectants tested against SARS-CoV-2 and surrogates used for testing. Limiting the results 129 

to N95 masks only, there were 15 tests using SARS-CoV-2, 18 using MS2, eight using Phi6, eight using 130 

H1N1, and six using IAV.  131 

In the 15 SARS-CoV-2 N95 mask samples, eight were chemical (hydrogen peroxide15, 29, 30, 36, 48, ethanol15, 132 

29, peracetic acid30), four were radiation (PX-UV13, UVGI 15, 29, 31), and three were thermal (autoclave30, 133 
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dry heat29, 49). All applications of hydrogen peroxide (10-210 minute exposure), ethanol (spraying, 134 

saturation), and 10% peracetic acid (60 minute exposure) achieved SARS-CoV-2 inactivation or >3 log 135 

reduction. PX-UV and UVGI achieved >3 log reduction with ≥5 minute contact time. Dry 70°C heat for 136 

50 minutes and autoclaving at 121°C for 15 minutes led to >5 and >6 log reduction, respectively. Please 137 

note all methods tested achieved inactivation (binary) or >3 log reduction except for UVGI at 2 minutes 138 

contact time.   139 

In the 18 MS2 results22, 23, 44, 56, 64, 66, 72, UVGI for 1-10 minutes did not achieve >3 log reduction, nor did 140 

70°C dry heat for 15-30 minutes. Steam for 10 seconds - 15 minutes did achieve >3 log reduction. Moist 141 

heat at 72-82°C for 30 minutes did achieve >6 log reductions when humidity was >25% or >50%. The 142 

results from the eight H1N1 results33, 38, 63, 65 were presented in log reduction ranges, not specific log 143 

reductions, which precludes analysis herein. In the eight Phi6 results27, 40, 56, 72, moist heat at 72-82°C for 144 

30 minutes achieved <6 or >6 log reduction but inaccurate humidity readings occlude results, 7% 145 

aerosolized hydrogen peroxide had >6 log reductions with 30 minute exposure, and VHP at 16 146 

gram/minute had >4 log after 30-40 minute exposure time; please note UVGI for one minute had only 1.5 147 

log reduction.  In the six IAV samples41, 43, 56, 63, ozone removed 1-2 log after 40 minute exposure to 20 148 

ppm, and moist heat and MGS achieved >3 log reduction after 30 minutes exposure to 60-82C moist heat 149 

for 30 minutes and 2 minute exposure to MGS. 150 

Five tests were conducted on cloth masks23, 41, using ozone gas against IAV, and heat/steam against MS2. 151 

Steaming for 15 minutes achieved >15 log reduction (the only method to achieve >3). Four tests were 152 

conducted on surgical masks24, 64, using UVGI for 2 minutes, dry heat at 102°C for 60 minutes, VHP for 153 

20 minutes, and MGS for 30 minutes; all achieved >3 log reduction. In three tests on Tyvek41, ozone gas 154 

at 20 ppm for 40 minutes led to ~1-2 log reductions of IAV. On one face shield67, PX-UV reduced canine 155 

parvovirus by >4 log with 5 minute exposure time. Studies noted radiation disinfection did not deactivate 156 

viruses in a uniform manner due to the complex shapes of masks, thus masks should not be stacked if UV 157 

disinfection is used. 158 
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Please note no disinfection method consistently removed >3 log reduction of virus irrespective of 159 

concentration, contact time, temperature, and humidity. However, results did show that it is possible to 160 

achieve >3 log reduction of SARS-CoV-2 using appropriate concentrations and contact times of chemical 161 

(ethanol, hydrogen peroxide, peracetic acid), radiation (PX-UV, UVGI), and thermal (autoclaving, heat) 162 

disinfection.  163 

 164 

  165 
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Mask reuse 166 

Mask durability was assessed based on four criteria: filtration, fit, fiber resilience, and strap performance. 167 

Disinfection cycles were also noted, and the maximum amount of cycles was determined when a failure 168 

was recorded in any of the four criteria.  169 

In total, 159 individual mask reuse tests were conducted in 42 studies 7, 12, 14-17, 19-22, 25-30, 32-37, 39, 42, 45-47, 49-55, 170 

57-62, 64, 68. The masks tested included: 114 tests with N95s (72%), an additional four tests with KN95s 171 

(2.5%), seven tests with folded or molded or HKYZ N95s (4.4%), four tests with FFPs (2.5%), and two 172 

tests with respirator fabric (1%). Thus a total of 131 tests (82%) were conducted with respirators. 173 

Additionally, 11 tests were conducted with surgical masks (7%), five with nanofiber filter masks (3.1%), 174 

four with procedure masks (2.5%), three with sterilization wrap (2%) and EX101 masks (2%), and one 175 

(1%) with a cloth mask, and one (1%) unspecified.  176 

Disinfection methods were grouped into three categories: chemical disinfection, radiation disinfection, 177 

and thermal disinfection. In total, 65 chemical reuse tests were conducted (41% of tests), including 20 178 

tests with forms of hydrogen peroxide, ethanol (20), isopropyl alcohol (7), bleach (5), ethylene oxide (5), 179 

soap and water (3), ozone gas (3), peracetic acid (1), and household detergent (1). In total, 24 radiation 180 

reuse tests were conducted (15%), including 15 with ultraviolet germicidal irradiation (UVGI), five with 181 

gamma radiation, three with microwaves, and one with pulsed xenon UV (PX-UV). In total, 70 (44%) 182 

thermal reuse tests were conducted, including dry heat (23 samples), autoclave (16), steam (10), moist 183 

heat (9), microwave generated steam (6), heat (3), hot water soak (2), and boiling (1).   184 

The majority of data were collected on N95s. Given the wide differences in test conditions, results are 185 

summarized by disinfection agent for N95s only, for agents with >5 samples or those agents identified in 186 

the disinfection efficacy section as achieving >3 log reduction of SARS-CoV-2, including ethanol, 187 

hydrogen peroxide, peracetic acid, PX-UV, UVGI, autoclaving, and heat.  188 
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Autoclaving (n=14)14, 30, 34, 42, 45, 55, 57, 59 and ethanol disinfection (n=14)15-17, 29, 42, 45, 53, 58 led to failures 189 

within two disinfection cycles in 12 and 13 tests, respectively. This indicates these methods cannot be 190 

utilized for N95 reuse.    191 

Steam (n=5)16, 26, 42, 52 and moist heat (n=9)7, 19, 28, 32, 45, 61, 62 had mixed results, with 3 failures in 1-5 cycles 192 

(but two tests that lasted up to 1-10 cycles), 4 failures in 0-4 cycles (and four tests with no failure in 1-10 193 

cycles and one not recorded), respectively. More research is indicated to understand these results.  194 

Hydrogen peroxide disinfection (n=20)15, 19, 27, 29, 30, 36, 45, 51, 57, 59-61, 68, dry heat (n=19)12, 16, 19, 21, 29, 33-35, 42, 45, 195 

49, 50, 52, 54, UVGI (n=13)15, 16, 29, 35, 42, 45, 46, 52, 59-62, and ethylene oxide (n=5)19, 59-61 all had promising results.  196 

With hydrogen peroxide, no failures were seen in the course of the study in 14 tests (1-14 cycles), two 197 

failed at 14 and 29 cycles, and – using HPGP and HPAH, there were failures at 1-4 and 9 cycles, 198 

respectively. In dry heat tests, 15 masks lasted the maximum number of times tested (1-20 cycles), and 199 

four failed with 0-3 disinfection cycles. In UVGI tests, 10 masks lasted the number of times tested (1-20 200 

cycles), and three failed within 2 disinfection cycles. In ethylene oxide tests, none failed within the testing 201 

(1-3 cycles). Please note peracetic acid and PX-UV had one test each, with no failures in the 10 cycles 202 

tested.  203 

  204 
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Summary 205 

Our overall goal was to complete a systematic review of transmission pathways of SARS-CoV-2 that 206 

could be interrupted with WASH interventions, with a focus on LMIC and humanitarian contexts. After 207 

completing title, abstract, and full-text review of 104,735 articles, 109 articles meeting inclusion criteria 208 

were identified, with 33 additional articles identified from reference chaining. Information on surface 209 

disinfection has been published separately8; herein we described results from 58 mask disinfection and 210 

reuse summaries.  211 

We identified a large amount of data on mask disinfection and reuse, although much was not comparable 212 

as many studies lacked specificity on methods, and tested a wide range of conditions on a small number 213 

of samples. This led to data from multiple articles summarized to generate themes. Overall, when 214 

comparing the list of efficacious disinfectants (ethanol, hydrogen peroxide, peracetic acid, PX-UV, 215 

UVGI, autoclaving, and heat) with the reuse information (hydrogen peroxide, heat, and UV-GI promising, 216 

peracetic acid and PX-UV need more information, and autoclaving and ethanol lead to failures), it is 217 

recommended to focus guidelines and future research on the use of heat, hydrogen peroxide, and UVGI. 218 

For radiation, non-uniform distribution across N95 masks was noted, when can be managed by rotation 219 

and ensuring no shadowing by straps/other masks16. All of these options could be investigated for use in 220 

LMIC and humanitarian contexts. Further research is recommended on non-N95 masks, as there is a lack 221 

of research on cloth masks in particular. 222 

Limitations to this work include that pre-prints were included in review, bias was not assessed beyond 223 

noting pre-print percentage, and after completing the review we (based on information available) 224 

determined to focus this sub-paper on mask disinfection and reuse. Additionally, there is likely more 225 

relevant data published after the final download date of July 10, 2020. We plan to update this review for a 226 

second publication in early-mid 2021. We do not feel these limitations impact the results presented 227 

herein. Please note all extracted data is available in an Excel file in Supplementary Information for open-228 

access use.  229 
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In summary, while SARS-CoV-2 has had a global impact, people living in LMIC are disproportionately 230 

impacted due to inability to adapt recommended safety measures, lack of resources, and underlying health 231 

conditions. We identified that no disinfection method consistently removed >3 log reduction of SARS-232 

CoV-2 virus irrespective of concentration, contact time, temperature, and humidity. However, results did 233 

show that it is possible to achieve >3 log reduction of SARS-CoV-2 using appropriate concentrations and 234 

contact times of chemical (ethanol, hydrogen peroxide, peracetic acid), radiation (PX-UV, UVGI), and 235 

thermal (autoclaving, heat) disinfection, and that hydrogen peroxide, heat, and UV-GI have promise to 236 

allow mask reuse without mask failures. Further research on mask disinfection and reuse – on a range of 237 

masks – is needed to develop evidence-based recommendations to protect people by ensuring safety of 238 

PPE in contexts where masks are re-used.   239 

  240 
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SUPPLEMENTAL INFORMATION 249 

 250 

Table S1. Mask disinfection and reuse table 251 
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