










18 F. Hatami and others

Fig. 1: Comparison of the performance of the LJCR, k-means for longitudinal data, clustering and
then running LMM on each cluster (Clustering+LMM), and baseline methods on simulated data
when varying the number of features (top row), and sample size (bottom row). The boxplots
represent the estimates of RMSE obtained from 10 independent simulated datasets. Missing
boxplots for Clustering+LMM indicate situations where the dimensionality was too high to apply
this method. Also note that the baseline method will not return an estimate for the βk, and kml
will not return an estimate for σk or Dk.
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Fig. 2: (a) The number of times the hyperparameter (λ) is selected by a 10-fold cross validation.
The x-axis represents the proportion of sparse betas (everything below the 0.01 threshold) in
the initial vector β that is used to simulate the data. (b) ROC curves of the estimated β̂ and
associated AUC values for different hyperparameter values.
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Next we perform a sensitivity analysis of the LJCR model to look at the effect of different

values of hyperparameters λ in eq. (2.6). We define a set of hyperparameters λ ∈ {0.1, 1, 10, 100}

and allow the LJCR model to pick up the best value via 10-fold cross-validation. Figure 2a shows

which hyperparameter values are chosen for different degrees of sparsity of the initial vector β.

Here we have p = 7000, M = 400 and ni = 10 for all i. The test is performed for 10 simulated

datasets. The size of each circle represents the number of times each value of λ is selected in a

simulation run. As expected, when having highly sparse β, then a large hyperparameter is chosen

by the model. Figure 2b shows the relative ROC curve for different values of λ under the highly

sparse scenario where 6500 out of 7000 values are near zero (93% sparsity). While high values of

the hyperparameter naturally result in larger areas under the ROC curve (AUC) values, we note

that even for misspecified λ values, the drop in AUC is modest.

3.2 ALS PRO-ACT Data

PRO-ACT (Pooled Resource Open-Access ALS Clinical Trials) is a publicly available database

containing industry and academic clinical trials of patients with ALS disease (Amyotrophic Lat-

eral Sclerosis) (Atassi et al. [2014]). It is a longitudinal dataset including records of each individual

across repeated visits to clinic. PRO-ACT is the largest ALS clinical trials database ever created,

with more than 8500 patient records, including demographic and laboratory data, medical histo-

ries and functional scores.

In our study, we have used a subset of PRO-ACT collected longitudinally at different observa-

tion time-points. The response variable (yi) is the ALSFRS (ALS Function Rating Scale) score.

This score captures the overall state of the disease and can be considered as a progression score for

people living with ALS. The ALSFRS scale is a list of 10 different assessments of motor function

(such as the ability to move an object, the ability to eat with cutlery, the ability to handwrite,

etc.), with each measure ranging from 0 to 4, with 4 being the highest (normal function) and 0
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being no function. The score for the individual questions are then summed together to generate

the total ALSFRS score, which ranges between 0− 40.

First of all, we have discarded all patients with single observation (one visit to the clinic). Then

to deal with the missing values we interpolate using inter-subject sectional linear interpolation;

i.e. we look at each individual i and replace every missing value with the average value between its

previous and next observations/datapoints. We are then left with a cohort of M = 4821 patients

and p = 55 observed features (covariates).

Supplementary table S1 shows all the p = 55 features used in the PRO-ACT dataset (Atassi

et al. [2014]).

We have applied the LJCR algorithm to find the underlying latent subtypes.

Figure 3 shows that using the elbow technique (Joshi and Nalwade [2013]), K = 9 latent

subtypes (groups or clusters) represents the optimal number of groups when applying the LJCR

to the PRO-ACT dataset. The idea behind the elbow technique is to choose a number of clusters

so that adding another cluster does not result in better model to fit to the data. More precisely,

we look at the relative change of the values in each pair of consecutive clusters (gradient slope)

and then compare the differences.

Figure 4a shows that there are 4 groups labels which contain most of the population size (k =

{1, 5, 7, 9}). Figure 4b demonstrates that in the pre-mentioned group labels men are susceptible

to be diagnosed with ALS disease earlier in age than women (about 2− 5 years).

Figure 5 shows the estimated effect size (βk) for each feature in group k ∈ {1, 5, 7, 9}. As

an interesting result, we observe that the effect of Mean Corpuscular Hemoglobin Concentration

(MCHC) has a positive effect size in group label 7, unlike in the other groups. Similarly, Absolute

Basophil Count has a negative effect size in group label 7 which is in contrary to all other group

labels.

Many of these factors have been previously associated with the rate of ALSFRS decline
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Fig. 3: Performance of the LJCR model on the PRO-ACT ALS data when varying the number of
latent subtypes (groups). The LJCR model is executed five times (shown in different colors) each
time with different initial values for the parameters βk, σk, and Dk. The number of latent groups
varies with K ∈ {2, . . . , 70}). For each K (x-axis), the y-axis represents the mean prediction error
for the ALSFRS scores across the groups. We calculate the error between the predicted response
values (ALSFRS) (after running the LJCR and assigning the group membership) and the true
ALSFRS values on the whole ALS PRO-ACT samples (training set). The black curve represents
the mean of the colored curves. The elbow method (Joshi and Nalwade [2013]) is then used to
identify K = 9 as the optimal number of subtypes for this dataset.

including weight, FVC and age (Mandrioli et al. [2015]). Plasma creatinine has been previously

associated with outcome in ALS and may act as a marker of muscle reserve (Mitsumoto et al.

[2020]). The observation of different relative effect sizes between groups for cholesterol and weight

suggests that cholesterol is not acting only as a proxy for weight. Indeed there is evidence that

serum cholesterol may be an important marker of the extent to which a dysfunctioning motor

system is energy deficient (Dupuis et al. [2008]). The observation that serum cholesterol may have

a different relative effect in different patient groups is important because clearly hyperlipidaemia

can be harmful in certain contexts and lead to, for example, cardiovascular disease; therefore

it would be important to recommend dietary changes to boost cholesterol only when clinically
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Fig. 4: Application of the LJCR model to the PRO-ACT ALS study. (a) Pyramid plot showing
the mixture component sizes. (b) Box-plots showing the age at baseline distribution for the groups
with the largest population size k = {1, 5, 7, 9}, with the blue color standing for male and red for
female.
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Fig. 5: Application of the LJCR model to the PRO-ACT ALS dataset. The bar plots show the
estimated effect size (estimated βk parameters) for the group labels with largest population size
(k = {1, 5, 7, 9}). Note that MCHC stands for Mean Corpuscular Hemoglobin Concentration.
Time refers to time on the study (in days, but scaled here to make the effect sizes comparable).
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appropriate. The observation that MCHC and hematocrit are associated with outcome is a novel

finding. This could be interpreted in the context of resistance to respiratory failure however this

does not explain the different direction of effect in groups 9 and 1. Equally the finding that

absolute basophil count is a predictor of outcome is novel although peripheral immune cells have

been linked to CNS inflammation and disease progression (Butovsky et al. [2012]). Discovering

the differences in CNS inflammation between groups 9 and 5, where basophils have a positive

correlation, and groups 1 and 7 where there is no correlation or a negative correlation, could

guide personalised immunotherapy for ALS.
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Fig. 6: Performance of the LJCR model in detecting how well patients could be classified based
on their covariates alone (no ALSFRS), compared to the group label that they were assigned
when including both covariates and responses (ALSFRS) in the training of the mixture model.
We train the model 10 times with different randomly selected test sets containing 50 individuals.
The bar plots represent the percentage of group assignment error for each fold.

One potential issue with prediction of progression for new patients is that we only have access

to the covariates Xi for assigning the new subject to an existing mixture component. In order

to test whether this is sufficient, we perform an experiment where we first train the model on

the whole dataset (4821 individuals) to assign each individual a group label. Then we choose a

random set of 50 people as our test set and re-run the model on the remaining training set (4771
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people). Finally, for each individual in the test, we find the estimated assigned group label by

solving this problem: Find the group label with the highest probability of test individual i falling

into that group based on the mean and variance of distribution of the observed feature training

set (xik) for each group label k. Here we applied the graphical lasso [Friedman et al., 2008] to

calculate mean and covariance matrix components for each subgroups (Xk). We have repeat this

procedure 10 times. Figure 6 shows that the LJCR models performs reasonably well in detecting

the same group labels that would have been assigned when training on both the response and

the covariates.
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Fig. 7: Distribution of ALSFRS prediction for each individual i and observation time t in different
group labels ({1,5,7,9}).

Figure 7a shows the density plots for the ALSFRS prediction error of the different mixture

components. Note that group 1 is the largest, hence the MSE prediction error for the ALSFRS

total score should be lower, since more data is available to estimate the parameters. Figures 7b

shows a density plot where we have used the group labels inferred from the LJCR model, but then

refit for each group using the LME model (linear mixed effects model). We see that this re-fitting

after inference of the group memberships by the LJCR algorithm improves the prediction error.

Figure 8 shows the performance of the LJCR model in ALSFRS prediction under two scenar-
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Fig. 8: Performance of the LJCR model on ALS PRO-ACT data in predicting value of ALSFRS
Total, when number of optimal groups is fixed and equal to Koptimal = 9. In each case, we compare
performance of the LJCR model without taking the random effect parameters into account (in
red), with the linear mixed effect model prediction (in blue). (a) Prediction for unseen individuals
over a test set of individuals of size n = 50. The black line represents the true values of ALSFRS
Total and the gray ribbon area shows the 95% confidence interval of the LJCR model when taking
the random effect parameters into account. (b) Prediction for new datapoints of seen individuals
over a test set of observation time-points of size 2. The test is executed on 5 randomly selected
individuals. The black line represents the true values of ALSFRS Total and error bars show
the 95% confidence interval of the LJCR model when taking the random effect parameters into
account.

ios; in the first scenario we test prediction for unseen individuals (Figure 8a) where we predict

ALSFRS value of a test set of 50 new individuals. In the second scenario we test prediction for

unseen time-points on individuals where the previous time points were included in the training

set (Figure 8b). Here we predict ALSFRS scores at two time-points for 5 randomly selected indi-

viduals. Both figures 8a and 8b show that the prediction performance using the random and fixed

effects are almost identical, indicating that the random effects are negligible for the prediction

task.
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4. Discussion

The aim of this article was to introduce longitudinal joint cluster regression (LJCR) to detect

latent group (cluster) structures within longitudinal data and predict personalised disease out-

comes informed by these latent structures. Latent group structure plays a key role in modern

data-intensive applications as it can strongly confound estimates and lead to practical difficulties

if ignored.

Latent group structures are modelled using a class of Gaussian mixture models that couple

together the multivariate distribution of the covariates and response. This is different from clas-

sical mixture regression approaches, which focus on the distribution of the dependent variable

only. Our approach could be further extended to the non-parametric realm using e.g. a Dirichlet

process formulation [Hannah et al., 2011, Liverani et al., 2015]. This would also remove the need

for determining the optimal number of clusters. To avoid excessive computational costs, we have

not pursued this approach here.

We model the longitudinal dynamics of each individual using a random effect intercept and

slope model. The inference is done via a profile likelihood approach that can handle high-

dimensional covariates by incorporating sparsity assumptions via ridge penalization. While l1

penalisation is possible in the mixed model paradigm [Schelldorfer et al., 2011], this comes with

computational disadvantages, and the benefit of additional sparsity obtained by setting some

parameters to zero is not clear; in previous work [Dondelinger et al., 2020], l2 penalisation led to

improved predictions in some settings.

We have compared the performance of the LJCR model with an alternative method based on

k-means [Genolini and Falissard, 2010] under a scenario where we vary the sample size and the

number of covariates. It was shown that the LJCR outperforms this method, both in prediction

error for the response variable (benefitting from modeling longitudinal dynamics via the random

effect parameters), and prediction error for the fixed effect parameters in the high-dimensional
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case (benefitting from incorporating ridge penalization).

An alternative method is the one described in Bruckers et al. [2016], which uses a latent

growth model for the longitudinal data. It is worth mentioning that Bruckers et al. [2016], like

most conventional mixture model approaches, only relies on conditional distribution of responses

Y |X, disregarding any signal arising from the distribution of feature matrix X itself. This is

one of the key differences between the LJCR method and the other standard models as we also

incorporate estimation of the distribution of X via a graphical lasso approach.

We applied LJCR to a cohort of patients with ALS disease to find the latent subtypes (groups)

within the study. Our approach detected 9 group labels in total, with 4 groups hosting the largest

population sizes. Note that we are not claiming this as a ground truth for the homogeneous groups

within the dataset, but rather an estimate based on our linear mixed model approach for the

dynamics within each mixture component. An interesting extension for our work would be to

consider non-linear dynamics for the longitudinal model.

We evaluated the prediction performance on our real-world dataset for each of the larger

groups, and found that post-inference refitting of a standard linear mixed model improves pre-

diction error. As we do not have a gold standard for group membership, we investigate the group

label assignments derived by the LJCR algorithm informally by looking at the group charac-

teristics and interpreting the clinical and biochemical variables identified as important via the

group-specific fixed effects. Further investigations should focus on confirmatory studies to estab-

lish whether these variables have a causal effect on disease progression in subsets of patients.
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