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Summary

Large-scale longitudinal data are often heterogeneous, spanning latent subgroups such as dis-

ease subtypes. In this paper, we present an approach called longitudinal joint cluster regression

(LJCR) for penalized mixed modelling in the latent group setting. LJCR captures latent group

structure via a mixture model that includes both the multivariate distribution of the covariates

and a regression model for the response. The longitudinal dynamics of each individual are mod-

eled using a random effect intercept and slope model. Inference is done via a profile likelihood

approach that can handle high-dimensional covariates via ridge penalization. LJCR is motivated

by questions in neurodegenerative disease research, where latent subgroups may reflect hetero-

geneity with respect to disease presentation, progression and diverse subject-specific factors. We
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study the performance of LJCR in the context of two longitudinal datasets: a simulation study

and a study of amyotrophic lateral sclerosis (ALS). LJCR allows prediction of progression as well

as identification of subgroups and subgroup-specific model parameters.

Key words: neurodegenerative disease, heterogeneity, longitudinal data, fixed-random effect models, clus-

tering, latent group structure

1. Introduction

Longitudinal designs play a key role in biomedical research. In these studies, repeated measure-

ments of the same quantities enable the study of temporal processes such as disease progression.

Contemporary large-scale longitudinal datasets may include large numbers of observed variables,

and are often heterogeneous, spanning multiple data subgroups such as disease subtypes. This

leads to a subgroup structure that is often latent. In this situation, classical longitudinal models

may be confounded by the latent group structure, or may simply be inapplicable due to the

number of covariates.

In this paper, we propose an approach called longitudinal joint cluster regression (LJCR) for

the heterogeneous data case that extends classical mixed modelling via a regularised mixture

framework. In summary our approach posits models specific to latent subgroups indexed by k,

i.e.:
yijk = αk + Λik(tijk) + εijk,

Λik(t) = xi(t)
Tβk + zi(t)

Tbik,

(1.1)

where yijk is the response for subject i at measurement j in subgroup k, αk is the subgroup-

specific intercept, εijk are the (usually Gaussian-distributed) residuals. The term Λik(t) captures

the time-dependent dynamics, with xi(t) the vector of covariates, βk the group-specific fixed

effects, zi(t) the time-dependent covariates and bik the subject-specific random effects.

The subgroup-specific model parameters are a key feature of our model, which allows both
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Penalized longitudinal mixed models 3

the temporal dynamics, such as rate of progression, as well as the regression parameters βk to

differ between subgroups. LJCR estimates K models of the form (1.1). The subgroup labels are

treated as latent, which allows us to cope with the situation where the subgroup structure is

entirely unknown at the outset.

LJCR is thus a joint modelling approach aimed at capturing heterogeneous longitudinal dy-

namics of disease progression by combining clustering, regression and linear mixed modelling. As

described in detail below, LJCR considers both the distribution of Y|X and the distribution of

X. This is done within a mixture framework, extending recent work by Perrakis et al. [2019] to

the mixed model setting. Like Perrakis et al. [2019], we employ a joint cluster regression approach

with regularization, allowing for group/cluster-specific regression parameters via a latent variable

model. To deal with longitudinal dynamics, we incorporate a linear mixed effects intercept and

slope model, and we develop a combination of L1 and L2 penalization and an efficient inference

method to deal with small n and moderate-to-large p scenarios. Our method treats both the

outcome variable and the explanatory variables as random quantities whose covariance matrix

can be estimated. To find the optimal number of latent clusters within a given range, we employ

a heuristic based on the elbow technique [Joshi and Nalwade, 2013].

Our work is motivated by challenges in longitudinal data analysis in the study of neurodegen-

erative diseases (NDDs). These diseases have complex underlying aetiology and display consid-

erable heterogeneity in presentation and progression. Furthermore, as for many complex diseases

in neurology and psychiatry, disease subtyping remains an open area of investigation. Hence one

cannot typically assume that all subjects in a given study follow the same distribution, nor that

subgroups are known at the outset. In general, NDD patients are characterized by heterogeneous

progression profiles, leading to very different disease trajectories and increases in impairment that

progress at different time-scales for each individual. This effect is particularly striking in motor

neurone disease, or amyotrophic lateral sclerosis (ALS), a disease targeting the voluntary motor
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neurons. Most people with ALS succumb to the disease within 2-4 years, but around 10% of

affected people survive more than 10 years [Swinnen and Robberecht, 2014]. The drivers behind

these differences in progression remain incompletely understood. It is therefore imperative to

develop computational methods that can infer underlying subgroup structure from observed data

and leverage this to predict long- and short-term progression.

Modelling heterogeneous data is an active area for statistical research. For example, Don-

delinger et al. [2020] used a joint penalized regression approach for estimation of high-dimensional

fixed effects in heterogeneous data, but their approach is for cross-sectional rather than longi-

tudinal data, and does not include random effects. Graphical models for heterogeneous data

have also been considered in the literature [Danaher et al., 2011]. Various statistical models

have been developed to infer both regression and group structures (latent variables); for exam-

ple using regularized or unregularized mixture models [McLachlan], such as in [Khalili and Chen,

2007, Städler et al., 2010] where regularized mixtures of regressions were employed. Alternatively,

[Xu et al., 2015] developed a multi-task approach using regularized LU-decomposition to map

individual-specific models from k latent base models, where each individual-specific model is a

linear combination of the base models. This approach, although flexible, is less convenient for

identifying well-defined groups. Suresh et al. [2018] developed a deep learning multi-task model

based on a LSTM (Long short-term memory) architecture. Patient groupings were first learned

by clustering the embeddings of an autoencoder with LSTM structure using a standard Gaussian

mixture model. Then a second neural net with a common LSTM layer and group-specific dense

hidden layers was used to produce predictions for each patient. As this model is highly non-linear,

interpreting the influence of specific variables becomes difficult.

An alternative approach is to extend conventional clustering approaches to the longitudinal

setting. For instance, the k-means method for longitudinal data [Genolini and Falissard, 2010] is

an implementation of k-means specifically designed to clustering longitudinal data. For a given
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number of clusters (K), the algorithm determines a clustering of individuals, where the progres-

sion scores yi = (yi(ti,1), ..., yi(ti,ni
))T at time points ti,1 to ti,ni

are treated as observations for

each individual, and the Euclidean distance with Gower correction is used to optimise the clus-

ter assignments. Note that this method does not take any covariates into account, and will not

work very well in cases where none of the observation times coincide across individuals. Another

consideration is how to detect the optimal number of clusters (subgroups or subtypes) using such

methods [Everitt et al., 2001]. Various efforts have been made, either using nonparametric [Ray

and Turi, 1999, Davies and Bouldin, 1979] or parametric approaches [Hurvich and Tsai, 1989,

Schwarz et al., 1978].

None of the models described above take the distribution of the features X into account.

Mixture regression models propose a mixture approach for the conditional distribution of Y|X

and hence solely deal with the relation between the response variable Y and feature matrix

X, disregarding any signal that would arise from the distribution of X itself. This would make

it difficult to predict the response value (for example progression of a disease) on new intakes

(patients) with new design matrix X∗, as we cannot assign these patients to a specific group,

and would have to average across all possible groups. Motivated by this gap, Perrakis et al.

[2019] extended the framework of mixture regressions to include the distribution of the features

in the estimation of the latent group membership variable. Our work builds on this to incorporate

longitudinal dynamics. Via a combination of the profile likelihood [Pinheiro and Bates, 2000] and

some simple linear algebra, we show how an efficient Expectation-Maximisation algorithm can

be developed, allowing for scaling to large p scenarios.

The remainder of the paper is organised as follows. We first present the methodological frame-

work of our method, before describing the results of an in-depth simulation study to characterise

its performance. We then apply our method to a real-world dataset of ALS patients, and analyse

both the predictive performance of our model, as well as the properties of the inferred groups
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and the main features associated with longitudinal progression

2. Methodology

Our model consists of a joint mixture regression model similar to the one described in Perrakis

et al. [2019], but where the fixed effects regression model is replaced with a mixed effects model

with a random intercept and slope term, as first explored in Laird and Ware [1982], to represent

the longitudinal dynamics. In order to deal with small subgroup sizes, we apply l2 regularisation

to the fixed effects, which requires the development of an efficient inference algorithm based on

the profile likelihood [Pinheiro and Bates, 2006]. For ease of exposition, we first describe the linear

mixed model and inference in Subsection 2.1 for the case where the subgroups are known. We

then describe the mixture model in Subsection 2.2 and present the full expectation-maximization

(EM) algorithm for inference in the combined model in Subsection 2.3.

We haveM observational units (usually patients or study subjects). Suppose yi = (yi(ti,1), ..., yi(ti,ni))
T

denotes an ni-dimensional vector of responses at time points ti, and Xi denotes an ni× p matrix

of observed covariates for observational unit i ∈ {1, . . . ,M}. Let k ∈ {1, . . . ,K} denote the group

label and zi ∈ {1, . . . ,K} represent the true (latent) group label indicator for the sample (yi,Xi)

with p(zi = k) = τk. Let y be the stacked response vector of length N =
∑M
i ni collecting

the yi, and let X be the stacked design matrix collecting the Xi. Define θXk and θYk to be the

group-specific parameters; respectively parameterizing the marginal distribution of X and the

regression model of y on X.

2.1 Linear mixed effects model for longitudinal dynamics

We model the longitudinal dynamics of the outcome variable yi with a mixed effects model:

p
(
yi|θYk ,Xi, zi = k

)
≡ p (yi|αk,βk,Vi,Xi, zi = k) = N (yi|αk + Xiβk,Vi) (2.2)
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In other words, we introduce a dependency between longitudinal observations of patient i via the

covariance matrix Vi. If Vi is diagonal with diagonal elements σ2
k then a fixed effects model is

recovered.

We define Vi using a standard longitudinal mixed model approach with random effects for the

intercept and slope (Laird and Ware [1982]). Conceptually, we model yi|Xi,θ
Y
k , zi = k as

yi = αk + Xiβk + b1,i + b2,iti + εi, (2.3)

where bi = (b1,i, b2,i)
T ∼ N (0,Dk) and εi ∼ N (0, Ini

σ2
k). Here Ini

is the ni× ni identity matrix.

Note that bi implicitly depends on zi = k; we chose not to make this explicit in the notation to

avoid a redundant subscript. It follows that

Vi = ZiDkZ
T
i + σ2

kIni
, (2.4)

where Zi = (1, ti) is the ni×2 design matrix of random effect covariates (in our case, an intercept

and the observation time variable). The notation introduced in eqs. (2.2-2.4) differs slightly from

the more standard notation for longitudinal models in eq. (1.1), but will simplify exposition in

what follows.

Our method needs to be robust to low sample sizes and large numbers of covariates. We

use L2 penalization to regularize the model and allow for efficient estimation of the fixed effect

parameters. In the following, we drop the latent group indicator zi = k and assume that the

group labels are known.

The linear model for the response yi can then be written as:

yi = Xiβ + Zibi + εi such that

p∑
j=1

β2
j 6 τ . (2.5)

In general, our model will include an intercept term, as in eq. (2.3); to simplify notation we

assume that this has been integrated into the design matrix as an additional column of ones. The

corresponding objective function takes the form:

(y −Xβ − Zibi)
T (y −Xβ − Zibi) + λ||β||22. (2.6)
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Straightforward optimization of this objective function would involve inverting M p× p matrices

(where M is the number of patients). For large M and p this is not computationally feasible.

Instead, we describe a more computationally efficient approach using the QR decomposition.

We follow Pinheiro and Bates [2000] in augmenting the vectors yi and design matrices Xi

and Zi using a pseudo-data approach. First, note that the likelihood has the form

L
(
β,D, σ2|y

)
= p

(
β|τ2

) M∏
i=1

p
(
yi|β,D, σ2

)
= p

(
β|τ2

) M∏
i=1

∫
p
(
yi|bi,β, σ2

)
p
(
bi|D, σ2

)
dbi,

(2.7)

where the p
(
β|τ2

)
term is a multivariate normal prior with variance τ2 inducing a ridge penal-

ization with parameter λ = σ2/τ2. Let us parameterise the multivariate normal distribution for

bi as

p
(
bi|θ, σ2

)
=

exp
(
−bTi D−1bi

)
(2π)q/2

√
|D|

=
exp

(
−‖∆bi‖2 /2σ2

)
(2πσ2)

q/2
abs|∆|−1

, (2.8)

where σ2D−1 = ∆T∆, and θ denotes the free parameters in D (or equivalently ∆). Note that

in our case the number of random effect parameters q = 2. We can define augmented vectors and

design matrices,

ỹi =

[
yi
0

]
, X̃i =

[
Xi

0

]
, Z̃i =

[
Zi
∆

]
. (2.9)

Pinheiro and Bates [2000] show that given an estimate of b̂i, we can express the likelihood

(without the penalizing prior on β) as

L
(
β,θ, σ2|y

)
=

1

(2πσ2)
N/2

exp

−
∑M
i=1

∥∥∥ỹi − X̃iβ − Z̃ib̂i
∥∥∥2

2σ2

 M∏
i=1

abs(|∆|)√∣∣∣Z̃Ti Z̃i∣∣∣ . (2.10)
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Now, we can show that with the prior on β, we get:

L
(
β,θ, σ2|y

)
∝ 1

(2πσ2)
N/2

exp

−
∑M
i=1

∥∥∥ỹi − X̃iβ − Z̃ib̂i
∥∥∥2

2σ2
− ‖β‖

2

2τ2

 M∏
i=1

abs(|∆|)√∣∣∣Z̃Ti Z̃i∣∣∣
∝ 1

(2πσ2)
N/2

exp

−
∑M
i=1

∥∥∥ỹi − X̃iβ − Z̃ib̂i
∥∥∥2 + λ ‖β‖2

2σ2

 M∏
i=1

abs(|∆|)√∣∣∣Z̃Ti Z̃i∣∣∣
∝ 1

(2πσ2)
N/2

exp

−
∑M
i=1

∥∥∥ỹ∗i − X̃∗iβ − Z̃∗ib̂i∥∥∥2
2σ2

 M∏
i=1

abs(|∆|)√∣∣∣Z̃Ti Z̃i∣∣∣ ,

(2.11)

where we have further augmented the vectors and matrices as

ỹ∗i =

 yi
0
0

 , X̃
∗
i =

 Xi

0√
λ
M Ip

 , Z̃
∗
i =

 Zi
∆
0

 . (2.12)

Following Pinheiro and Bates [2000], we can work out that the profiled likelihood is

L(θ) = L
(
β̂(θ),θ, σ̂2(θ)

)
=

exp(−N/2)

[2πσ̂2(θ)]
N/2

M∏
i=1

abs(|∆|)√∣∣∣Z̃Ti Z̃i∣∣∣ , (2.13)

with σ̂2(θ) defined by the residual sum-of-squares. Instead of the naive approach of first estimat-

ing b̂ and β̂(θ) in order to get σ̂2(θ), we can more efficiently calculate the latter via the QR

decomposition:

Z̃∗i = Q(i)

[
R11(i)

0

]
, (2.14)

where Q(i) is (ni + q + p)× (ni + q + p) and R11(i) is q × q. In our case, q = 2, therefore∥∥∥ỹ∗i − X̃∗iβ − Z̃∗ibi∥∥∥2 =
∥∥∥QT

(i)

(
ỹ∗i − X̃

∗
iβ − Z̃

∗
i bi

)∥∥∥2
=
∥∥c1(i) −R10(i)β −R11(i)bi

∥∥2 +
∥∥c0(i) −R00(i)β

∥∥2 , (2.15)

where [
R10(i)

R00(i)

]
= QT

(i)X̃
∗
i and

[
c1(i)
c0(i)

]
= QT

(i)ỹ
∗
i . (2.16)
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By integrating out the bi, eq. (2.11) can then be shown to become

L
(
β,θ, σ2|y

)
=

M∏
i=1

exp
[
−
∥∥c0(i) −R00(i)β

∥∥2 /2σ2
]

(2πσ2)
ni/2

abs

(
|∆|∣∣R11(i)

∣∣
)

=
exp

(
−
∑M
i=1

∥∥c0(i) −R00(i)β
∥∥2 /2σ2

)
(2πσ2)

−N/2

M∏
i=1

abs

(
|∆|∣∣R11(i)

∣∣
)

.

(2.17)

The term in the exponent is a residual sum-of-squares across patients i, which can be calculated

using an additional QR decomposition as follows: R00(1) c0(1)
...

...
R00(M) c0(M)

 = Q0

[
R00 c0
0 c−1

]
, (2.18)

which leads to:

L
(
β,θ, σ2|y

)
=
(
2πσ2

)−N/2
exp

(
‖c−1‖2 + ‖c0 −R00β‖2

−2σ2

)
M∏
i=1

abs

(
|∆|∣∣R11(i)

∣∣
)

. (2.19)

Using the maximum likelihood estimates for β and σ2:

β̂(θ) = R−100 c0 and σ̂2(θ) =
‖c−1‖2

N
, (2.20)

we get the final expression for the profile likelihood:

L(θ|y) = L
(
β̂(θ),θ, σ̂2(θ)|y

)
=

(
N

2π ‖c−1‖2

)N/2
exp

(
−N

2

) M∏
i=1

abs

(
|∆|∣∣R11(i)

∣∣
)

.
(2.21)

We are now able to optimize eq. (2.21) with respect to θ = D and then use the maximum

likelihood estimate θ̂ in eq. (2.20) to get the estimates for β̂(θ) and σ̂2(θ). Note that this approach

only involves a single matrix inversion of R00; however, since this is an upper triangular matrix,

we can simply solve for β̂(θ) by forward substitution in the equation R00β̂(θ) = c0.

Finally, we note that the QR decomposition in eq. (2.18) is rather inefficient for the high-

dimensional case, because of the inflation of the starred matrices with p penalty terms, which

leads to having to calculate the QR decomposition of a matrix of size (M ∗ (ni + p)) × (p + 1).
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We can avoid the computational burden by first noting that the matrix on the left-hand side in

eq. (2.18) is taller than it is wide. Let us define:

Rc =

 R00(1) c0(1)
...

...
R00(M) c0(M)

 , (2.22)

and

Rc(i) =
[
R00(i) c0(i)

]
. (2.23)

Then it can be shown that the R-matrix from the QR decomposition of Rc can be obtained

by Cholesky decomposition of the cross-product A = Rc
TRc. But the cross-product of the

(M ∗ (ni+p))× (p+1) matrix Rc is just the sum of M cross-products Rc
T
(i)Rc(i). We can further

optimize the calculation by noting that each Rc
T
(i)Rc(i) is of the form:

Rc(i) =

[
R′T00(i)R

′
00(i) + P R′T00(i)c

′
0(i)

R′T00(i)c
′
0(i) c′T0(i)c

′
0(i)

]
, (2.24)

where P = λ
M Ip, and R′T00(i) and c′0(i) result from transforming the unpenalized vector and matrix

ỹi and X̃i defined in eq (2.9) by the upper left (ni + q)× (ni + q) matrix of QT
(i), similarly to eq.

(2.16). As a result, we can avoid calculating the cross-products of (ni + p)× (p+ 1) matrices in

favour of ni × (p+ 1) matrices, followed by adding P to the upper left p× p matrix.

2.2 Mixture model for latent group structure detection

We are now ready to define the mixture model that combines a latent group membership variable

with the longitudinal regression model defined in Subsection 2.1. Conditional on zi = k, i.e.

knowing the cluster memberships, the joint likelihood of (yi,Xi) can be decomposed into the

mixed effects regression model for yi|Xi, and a multivariate model for Xi as follows:

p (yi,Xi|θk, zi = k) ≡ p
(
yi|θYk ,Xi, zi = k

)
p
(
Xi|θXk , zi = k

)
, (2.25)
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12 F. Hatami and others

where θk = (θXk ,θ
Y
k )T . Marginalizing out the latent variables leads to a mixture regression of

the form:

p (y,X|θ, τ ) =
M∏
i=1

K∑
k=1

p
(
yi|θYk ,Xi, zi = k

)
p
(
Xi|θXk , zi = k

)
τ k (2.26)

where θ = (θ1, . . . ,θK)T and τ = (τ 1, . . . , τK)T . The model formulation presented in eq. 2.26

has been studied by Ingrassia et al. [2012] under the non-longitudinal setting and in the context

of ML estimation.

Gaussian graphical model for p
(
Xi|θXk , zi = k

)
. Throughout this paper we assume that co-

variates can be modelled via p-dimensional multivariate Gaussian distributions such that θXk =

(µk,vec(Σk))T , where µk is the mean and Σk is the p × p covariance matrix. To mitigate

computational costs during inference, we do not attempt to model the time-dependencies for

time-varying covariates, but instead asssume that the overall mean and covariance are sufficiently

representative of the underlying phenotype that we want to capture via the mixture components.

To deal with the potentially large number of parameters in Σk, we use regularization via the

graphical lasso introduced in Friedman et al. [2008] (package glasso in R, Friedman et al. [2015]).

The graphical lasso induces sparsity in the inverse covariance matrix, denoted by Ωk = Σ−1k for

group k, where we set the graphical lasso penalty to be −ξ‖Ωk‖1, in such a way that ξ > 0

controls the strength of regularization and ‖.‖1 is the L1 norm. Then for known group labels the

graphical lasso estimate is given by solving the following maximization problem

arg max
Ωk∈M+

{
log |Ωk|− tr(ΩkŜk)− ξ‖Ωk‖1

}
, (2.27)

where M+ is the space of positive definite matrices and Ŝk is the ML covariance estimate of Xk. In

practice, this will be weighted by the responsibilities mik = p(zi = k|yi,Xi,θk) of each patient,

using Mk, the N × N diagonal matrix with entries Mk(r, r) = mik if row xr corresponds

to covariates for patient i. The empirical estimate for the covariance matrix becomes Ŝk =

XTMkX. If the covariates are not time-varying, then for the purpose of eq. (2.27) the matrix
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Penalized longitudinal mixed models 13

X can be simplified to an M × p matrix without loss of generality.

Linear mixed model for p(yi|θYk ,Xi, zi = k). The regression term p(yi|θYk ,Xi, zi = k) corre-

sponds to the mixed effects model in eq. (2.2). However, in the case where the latent variable

zi is unobserved, we need to additionally account for the responsibilities mik of each patient. In

other words, the likelihood function for group k is of the form

L
(
βk,Dk, σ

2
k|y
)

= p
(
βk|τ2

) M∏
i=1

p
(
yi|βk,Dk, σ

2
k

)mik
, (2.28)

which means that eq. (2.17) can be shown to become

L
(
βk,θ, σ

2
k|y
)

=
exp

(
−
∑M
i=1mik

∥∥c0(i) −R00(i)βk
∥∥2 /2σ2

k

)
(2πσ2

k)
−N/2

M∏
i=1

abs

(
|∆|∣∣R11(i)

∣∣
)mik

=
exp

(
−
∑M
i=1

∥∥√mikc0(i) −
√
mikR00(i)βk

∥∥2 /2σ2
k

)
(2πσ2

k)
−N/2

M∏
i=1

abs

(
|∆|∣∣R11(i)

∣∣
)mik

,

(2.29)

and consequently the matrix that needs to undergo QR decomposition becomes:

Rk
c =


√
m1kR00(1)

√
m1kc0(1)

...
...√

mMkR00(M)
√
mMkc0(M)

 . (2.30)

Note that L
(
β̂k(θk),θk, σ̂

2
k(θk)|y

)
can be optimized individually for each k, leading to po-

tential efficiency gains using parallel computation.

2.3 Expectation-Maximization Algorithm

Inference of βk, Dk and σk for each group k ∈ K is complicated by the fact that the group

indicator variables zi are unobserved. We employ an expectation-maximization (EM) algorithm,

similar to Perrakis et al. [2019], to perform this inference. We describe the initialisation, expecta-

tion (E-step) and maximisation (M-step) below; the algorithm is also summarized in Algorithm

1.
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14 F. Hatami and others

Initialisation. We initialise βk values across all groups, by running a simple penalised linear

model using the glmnet package in R (Hastie [2020]). We initialise Dk and σk by choosing

randomly generated positive definite matrices and scalar values, respectively, across all groups.

E-step. We estimate the responsibilities following Perrakis et al. [2019], using the the following

formula:

mik ≡ p (zi = k|yi,Xi,θk)

=
p
(
yi|θYk ,Xi, zi = k

)
p
(
Xi|θXk , zi = k

)
τk∑

k′ p
(
yi|θYk′ ,Xi, zi = k′

)
p
(
Xi|θXk′ , zi = k′

)
τk′

,
(2.31)

with the modification that in our work, i refers to patients rather than data points, and

p
(
yi|θYk ,Xi, zi = k

)
is defined as in eq. (2.2).

In the next step, which is now the M-step, we need to optimise the objective function stated

in eq. (2.28) (which comes in the form a profile log-likelihood function) and update θYk and θXk

using the responsibilities mik from the E-step. For θXk , let Wk = MkX be the weighted covariate

matrix, then µkp =

∑
r Wk(r, p)

Nk
is the update for µk, where Nk =

∑
imik. Σk can be updated

using the graphical lasso update in eq. (2.27). For θYk , we update βk, Dk and σk using the profile

likelihood in eq. (2.21).

Algorithm 1 shows the pseudo-code of the EM procedure deployed in the LJCR algorithm.

Here objective function refers to the eq. (2.28) and Mk is the N × N matrix containing the

responsibilities on the diagonal and zero elsewhere. The maximum number of iterations Nit is

set to 100, although the loop may terminate early if we reach convergence, or if the size of one of

the groups (Nk) gets very small. This latter condition is necessary to avoid splitting individuals

into very small groups where estimation of βk, Dk and σk would not be reliable.
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Penalized longitudinal mixed models 15

Algorithm 1: Pseudo-code of the utilized EM algorithm

Result: Optimal values for βk, Dk, σk and responsibilities mik for each i ∈ {1, . . . ,M}

and k ∈ {1, . . . ,K}

Initialize with some values for βk Dk and σk;

ρ =

√
2M log(p)

2
;

for iteration← 1 to Niteration do
E-step

pyik = p(yi|Xiβk,ZiDkZ
T
i + σkIni);

pxik
= p(Xi|µ′k,Ωk);

mik =
pyikpxik∑
k pyikpxik

mk
;

Nk =
∑
i I(mik >

1
K );

M-step

µ′k =

∑
imik × Et[Xi(t)]∑

imik
;

Ŝk = XTMkX;

Ωk =glasso(Ŝk, ρ, penalize.diagonal = FALSE)$w);

Optimise the objective function defined in the eq. (2.28) and set

Literation = L
(
βk,D, σ

2
k|y
)
;

Update βk, Dk and σk;

if (Nk 6 M
10×K ) or (Literation − Literation-1 < 1) then

Stop the for loop and output βk Dk, σk and mik for each i ∈ {1, . . . ,M} and

k ∈ {1, . . . ,K}
else

Continue the for loop

end

end
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3. Results

We apply the LJCR model to two different longitudinal datasets; a simulated dataset, which allows

us to evaluate the ability of the model to recover known subgroups and regression coefficients;

and the PRO-ACT dataset (Atassi et al. [2014]), the largest database of clinical trials of patients

with ALS (Amyotrophic Lateral Sclerosis). The latter allows us to both evaluate the predictive

performance of the model on a real-world dataset, and to gain novel insights into factors that

may be associated with different clinical phenotypes and progression trajectories in this disease.

3.1 Simulation Study

We perform a simulation study to test the performance of the LJCR method under a range

of scenarios. More precisely, we study how well the model can predict the three parameters βk

(coefficients for the fixed effects), σk (variance), and Dk (covariance matrix of the random effects)

under scenarios with different number of individuals M and number of covariates (features) p. We

then compare the performance of the LJCR algorithm with three different methods as follows:

• kml: k-means method for longitudinal data [Genolini and Falissard, 2010] (package kml in

R).

• Clustering+LMM: In this method we first use the standard k-means algorithm to cluster

the data (based on the response values y) and then apply a Linear Mixed Effects Model

(LMM) (Schafer [1998]) (package LMM in R by Zhao [2020]) on each cluster.

• Baseline method: Here we cluster the data as above and then apply a simple linear model

with a random slope only, without including the fixed effects for the design matrix X. This

provides a convenient baseline that is not affected by the dimensionality of X.

Here we generate 10 sets of independent datasets where in each of those sets we generate 4

different datasets (in total 40) with the dimension of (M × ni) × p where M = 400 (number
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Penalized longitudinal mixed models 17

of individuals), ni = 10 (number of observations/data points for each individual i), and p ∈

{100, 500, 1000, 7000} (number of features/covariates). We use these set of generated data to

show the performance of the LJCR model when varying the number of features p (see figure 1).

We then generate another 10 sets of independent datasets where in each of those sets we generate

4 different datasets (in total 40) with the dimension of (M×ni)×p where M ∈ {500, 1000, 4000},

ni = 10, and p = 7000. Again, we use these set of generated data to show the performance of the

LJCR model when varying the sample size M (see figure 1). The number of groups across all

these simulation scenarios is assumed to be K = 3.

In both of the aforementioned sets of simulated data, we use normal distribution (using rnorm

in R) with mean 0 and variance 1 to generate the data. We then sample the initial values for βk,

Dk and σk from a normal distribution with mean 0 and variance 1, randomly generated positive

definite matrices (using genPositiveDefMat() in clusterGeneration R package by Weiliang Qiu

[2015]), and uniformly generated scalar values, respectively, across all groups.

Figure 1 shows a comparison between the LJCR, the k-means for longitudinal data (Genolini

and Falissard [2010]), clustering and then running LMM on each cluster (Clustering+LMM), and

baseline methods. Performance of the all models have been tested on the generated datasets we

explained before, varying the number of covariates and samples. Notice that in the kml method,

we compute the mean trajectories of each group k, using the function calculTrajMeanC in the

kml package, and consider them as the values of βk. We then directly use the obtained βk values

to calculate responses yi. We see that in the both scenarios where we increase the number of

features p or the sample size M , the LJCR outperforms all the models in terms of prediction of

both parameters βk and response values yi. We could not apply the Clustering+LMM method

beyond p = 500, as multivariate nature and high-dimensional setting makes it infeasible. There

is no covariate matrix X used in the baseline method, hence there would be no β obtained in

this method.

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.10.20229302doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.10.20229302
http://creativecommons.org/licenses/by-nd/4.0/


18 F. Hatami and others

Fig. 1: Comparison of the performance of the LJCR, k-means for longitudinal data, clustering and
then running LMM on each cluster (Clustering+LMM), and baseline methods on simulated data
when varying the number of features (top row), and sample size (bottom row). The boxplots
represent the estimates of RMSE obtained from 10 independent simulated datasets. Missing
boxplots for Clustering+LMM indicate situations where the dimensionality was too high to apply
this method. Also note that the baseline method will not return an estimate for the βk, and kml
will not return an estimate for σk or Dk.
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Fig. 2: (a) The number of times the hyperparameter (λ) is selected by a 10-fold cross validation.
The x-axis represents the proportion of sparse betas (everything below the 0.01 threshold) in
the initial vector β that is used to simulate the data. (b) ROC curves of the estimated β̂ and
associated AUC values for different hyperparameter values.
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Next we perform a sensitivity analysis of the LJCR model to look at the effect of different

values of hyperparameters λ in eq. (2.6). We define a set of hyperparameters λ ∈ {0.1, 1, 10, 100}

and allow the LJCR model to pick up the best value via 10-fold cross-validation. Figure 2a shows

which hyperparameter values are chosen for different degrees of sparsity of the initial vector β.

Here we have p = 7000, M = 400 and ni = 10 for all i. The test is performed for 10 simulated

datasets. The size of each circle represents the number of times each value of λ is selected in a

simulation run. As expected, when having highly sparse β, then a large hyperparameter is chosen

by the model. Figure 2b shows the relative ROC curve for different values of λ under the highly

sparse scenario where 6500 out of 7000 values are near zero (93% sparsity). While high values of

the hyperparameter naturally result in larger areas under the ROC curve (AUC) values, we note

that even for misspecified λ values, the drop in AUC is modest.

3.2 ALS PRO-ACT Data

PRO-ACT (Pooled Resource Open-Access ALS Clinical Trials) is a publicly available database

containing industry and academic clinical trials of patients with ALS disease (Amyotrophic Lat-

eral Sclerosis) (Atassi et al. [2014]). It is a longitudinal dataset including records of each individual

across repeated visits to clinic. PRO-ACT is the largest ALS clinical trials database ever created,

with more than 8500 patient records, including demographic and laboratory data, medical histo-

ries and functional scores.

In our study, we have used a subset of PRO-ACT collected longitudinally at different observa-

tion time-points. The response variable (yi) is the ALSFRS (ALS Function Rating Scale) score.

This score captures the overall state of the disease and can be considered as a progression score for

people living with ALS. The ALSFRS scale is a list of 10 different assessments of motor function

(such as the ability to move an object, the ability to eat with cutlery, the ability to handwrite,

etc.), with each measure ranging from 0 to 4, with 4 being the highest (normal function) and 0
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being no function. The score for the individual questions are then summed together to generate

the total ALSFRS score, which ranges between 0− 40.

First of all, we have discarded all patients with single observation (one visit to the clinic). Then

to deal with the missing values we interpolate using inter-subject sectional linear interpolation;

i.e. we look at each individual i and replace every missing value with the average value between its

previous and next observations/datapoints. We are then left with a cohort of M = 4821 patients

and p = 55 observed features (covariates).

Supplementary table S1 shows all the p = 55 features used in the PRO-ACT dataset (Atassi

et al. [2014]).

We have applied the LJCR algorithm to find the underlying latent subtypes.

Figure 3 shows that using the elbow technique (Joshi and Nalwade [2013]), K = 9 latent

subtypes (groups or clusters) represents the optimal number of groups when applying the LJCR

to the PRO-ACT dataset. The idea behind the elbow technique is to choose a number of clusters

so that adding another cluster does not result in better model to fit to the data. More precisely,

we look at the relative change of the values in each pair of consecutive clusters (gradient slope)

and then compare the differences.

Figure 4a shows that there are 4 groups labels which contain most of the population size (k =

{1, 5, 7, 9}). Figure 4b demonstrates that in the pre-mentioned group labels men are susceptible

to be diagnosed with ALS disease earlier in age than women (about 2− 5 years).

Figure 5 shows the estimated effect size (βk) for each feature in group k ∈ {1, 5, 7, 9}. As

an interesting result, we observe that the effect of Mean Corpuscular Hemoglobin Concentration

(MCHC) has a positive effect size in group label 7, unlike in the other groups. Similarly, Absolute

Basophil Count has a negative effect size in group label 7 which is in contrary to all other group

labels.

Many of these factors have been previously associated with the rate of ALSFRS decline
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Fig. 3: Performance of the LJCR model on the PRO-ACT ALS data when varying the number of
latent subtypes (groups). The LJCR model is executed five times (shown in different colors) each
time with different initial values for the parameters βk, σk, and Dk. The number of latent groups
varies with K ∈ {2, . . . , 70}). For each K (x-axis), the y-axis represents the mean prediction error
for the ALSFRS scores across the groups. We calculate the error between the predicted response
values (ALSFRS) (after running the LJCR and assigning the group membership) and the true
ALSFRS values on the whole ALS PRO-ACT samples (training set). The black curve represents
the mean of the colored curves. The elbow method (Joshi and Nalwade [2013]) is then used to
identify K = 9 as the optimal number of subtypes for this dataset.

including weight, FVC and age (Mandrioli et al. [2015]). Plasma creatinine has been previously

associated with outcome in ALS and may act as a marker of muscle reserve (Mitsumoto et al.

[2020]). The observation of different relative effect sizes between groups for cholesterol and weight

suggests that cholesterol is not acting only as a proxy for weight. Indeed there is evidence that

serum cholesterol may be an important marker of the extent to which a dysfunctioning motor

system is energy deficient (Dupuis et al. [2008]). The observation that serum cholesterol may have

a different relative effect in different patient groups is important because clearly hyperlipidaemia

can be harmful in certain contexts and lead to, for example, cardiovascular disease; therefore

it would be important to recommend dietary changes to boost cholesterol only when clinically
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Fig. 4: Application of the LJCR model to the PRO-ACT ALS study. (a) Pyramid plot showing
the mixture component sizes. (b) Box-plots showing the age at baseline distribution for the groups
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estimated effect size (estimated βk parameters) for the group labels with largest population size
(k = {1, 5, 7, 9}). Note that MCHC stands for Mean Corpuscular Hemoglobin Concentration.
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appropriate. The observation that MCHC and hematocrit are associated with outcome is a novel

finding. This could be interpreted in the context of resistance to respiratory failure however this

does not explain the different direction of effect in groups 9 and 1. Equally the finding that

absolute basophil count is a predictor of outcome is novel although peripheral immune cells have

been linked to CNS inflammation and disease progression (Butovsky et al. [2012]). Discovering

the differences in CNS inflammation between groups 9 and 5, where basophils have a positive

correlation, and groups 1 and 7 where there is no correlation or a negative correlation, could

guide personalised immunotherapy for ALS.
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Fig. 6: Performance of the LJCR model in detecting how well patients could be classified based
on their covariates alone (no ALSFRS), compared to the group label that they were assigned
when including both covariates and responses (ALSFRS) in the training of the mixture model.
We train the model 10 times with different randomly selected test sets containing 50 individuals.
The bar plots represent the percentage of group assignment error for each fold.

One potential issue with prediction of progression for new patients is that we only have access

to the covariates Xi for assigning the new subject to an existing mixture component. In order

to test whether this is sufficient, we perform an experiment where we first train the model on

the whole dataset (4821 individuals) to assign each individual a group label. Then we choose a

random set of 50 people as our test set and re-run the model on the remaining training set (4771
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people). Finally, for each individual in the test, we find the estimated assigned group label by

solving this problem: Find the group label with the highest probability of test individual i falling

into that group based on the mean and variance of distribution of the observed feature training

set (xik) for each group label k. Here we applied the graphical lasso [Friedman et al., 2008] to

calculate mean and covariance matrix components for each subgroups (Xk). We have repeat this

procedure 10 times. Figure 6 shows that the LJCR models performs reasonably well in detecting

the same group labels that would have been assigned when training on both the response and

the covariates.
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Fig. 7: Distribution of ALSFRS prediction for each individual i and observation time t in different
group labels ({1,5,7,9}).

Figure 7a shows the density plots for the ALSFRS prediction error of the different mixture

components. Note that group 1 is the largest, hence the MSE prediction error for the ALSFRS

total score should be lower, since more data is available to estimate the parameters. Figures 7b

shows a density plot where we have used the group labels inferred from the LJCR model, but then

refit for each group using the LME model (linear mixed effects model). We see that this re-fitting

after inference of the group memberships by the LJCR algorithm improves the prediction error.

Figure 8 shows the performance of the LJCR model in ALSFRS prediction under two scenar-
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Fig. 8: Performance of the LJCR model on ALS PRO-ACT data in predicting value of ALSFRS
Total, when number of optimal groups is fixed and equal to Koptimal = 9. In each case, we compare
performance of the LJCR model without taking the random effect parameters into account (in
red), with the linear mixed effect model prediction (in blue). (a) Prediction for unseen individuals
over a test set of individuals of size n = 50. The black line represents the true values of ALSFRS
Total and the gray ribbon area shows the 95% confidence interval of the LJCR model when taking
the random effect parameters into account. (b) Prediction for new datapoints of seen individuals
over a test set of observation time-points of size 2. The test is executed on 5 randomly selected
individuals. The black line represents the true values of ALSFRS Total and error bars show
the 95% confidence interval of the LJCR model when taking the random effect parameters into
account.

ios; in the first scenario we test prediction for unseen individuals (Figure 8a) where we predict

ALSFRS value of a test set of 50 new individuals. In the second scenario we test prediction for

unseen time-points on individuals where the previous time points were included in the training

set (Figure 8b). Here we predict ALSFRS scores at two time-points for 5 randomly selected indi-

viduals. Both figures 8a and 8b show that the prediction performance using the random and fixed

effects are almost identical, indicating that the random effects are negligible for the prediction

task.
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4. Discussion

The aim of this article was to introduce longitudinal joint cluster regression (LJCR) to detect

latent group (cluster) structures within longitudinal data and predict personalised disease out-

comes informed by these latent structures. Latent group structure plays a key role in modern

data-intensive applications as it can strongly confound estimates and lead to practical difficulties

if ignored.

Latent group structures are modelled using a class of Gaussian mixture models that couple

together the multivariate distribution of the covariates and response. This is different from clas-

sical mixture regression approaches, which focus on the distribution of the dependent variable

only. Our approach could be further extended to the non-parametric realm using e.g. a Dirichlet

process formulation [Hannah et al., 2011, Liverani et al., 2015]. This would also remove the need

for determining the optimal number of clusters. To avoid excessive computational costs, we have

not pursued this approach here.

We model the longitudinal dynamics of each individual using a random effect intercept and

slope model. The inference is done via a profile likelihood approach that can handle high-

dimensional covariates by incorporating sparsity assumptions via ridge penalization. While l1

penalisation is possible in the mixed model paradigm [Schelldorfer et al., 2011], this comes with

computational disadvantages, and the benefit of additional sparsity obtained by setting some

parameters to zero is not clear; in previous work [Dondelinger et al., 2020], l2 penalisation led to

improved predictions in some settings.

We have compared the performance of the LJCR model with an alternative method based on

k-means [Genolini and Falissard, 2010] under a scenario where we vary the sample size and the

number of covariates. It was shown that the LJCR outperforms this method, both in prediction

error for the response variable (benefitting from modeling longitudinal dynamics via the random

effect parameters), and prediction error for the fixed effect parameters in the high-dimensional
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case (benefitting from incorporating ridge penalization).

An alternative method is the one described in Bruckers et al. [2016], which uses a latent

growth model for the longitudinal data. It is worth mentioning that Bruckers et al. [2016], like

most conventional mixture model approaches, only relies on conditional distribution of responses

Y |X, disregarding any signal arising from the distribution of feature matrix X itself. This is

one of the key differences between the LJCR method and the other standard models as we also

incorporate estimation of the distribution of X via a graphical lasso approach.

We applied LJCR to a cohort of patients with ALS disease to find the latent subtypes (groups)

within the study. Our approach detected 9 group labels in total, with 4 groups hosting the largest

population sizes. Note that we are not claiming this as a ground truth for the homogeneous groups

within the dataset, but rather an estimate based on our linear mixed model approach for the

dynamics within each mixture component. An interesting extension for our work would be to

consider non-linear dynamics for the longitudinal model.

We evaluated the prediction performance on our real-world dataset for each of the larger

groups, and found that post-inference refitting of a standard linear mixed model improves pre-

diction error. As we do not have a gold standard for group membership, we investigate the group

label assignments derived by the LJCR algorithm informally by looking at the group charac-

teristics and interpreting the clinical and biochemical variables identified as important via the

group-specific fixed effects. Further investigations should focus on confirmatory studies to estab-

lish whether these variables have a causal effect on disease progression in subsets of patients.
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