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Abstract

Multiple macro-phenomena such as disease epidemics, online information propa-
gation, and economic activity can be well-approximated using simple dynamical
systems. Shaping these phenomena with adaptive control of key levers has long
been the holy grail of policymakers. In this paper, we focus on optimal control
of transmission rate in epidemic systems following the widely applicable SIR
dynamics. We first demonstrate that the SIR model with infectious patients and
susceptible contacts (i.e., product of transmission rate and susceptible population)
interpreted as predators and prey respectively reduces to a Lotka-Volterra (LV)
predator-prey model. The modified SIR system (LVSIR) has a stable equilibrium
point, an “energy” conservation property, and exhibits bounded cyclic behavior.
We exploit this mapping using a control-Lyapunov approach to design a novel adap-
tive control policy (CoSIR) that nudges the SIR model to the desired equilibrium.
Combining CoSIR policy with data-driven estimation of parameters and adjust-
ments for discrete transmission levels yields a control strategy with practical utility.
Empirical comparison with periodic lockdowns on simulated and real COVID-19
data demonstrates the efficacy and adaptability of our approach.

1 Introduction

The COVID-19 epidemic, proliferation of fake news, and increasing economic inequality all highlight
the necessity and the enormous challenges of controlling social macro systems. Often, these systems
can be characterized by simple dynamics parameterized along certain factors. Optimal adaptive
control of such factors is a critical problem for policy makers with massive societal consequences.

Management of a pandemic is a prime example of such a control problem with four key levers: (a)
contact restrictions, (b) testing, tracing and isolation, (c) provisioning for medical capacity, and (d)
vaccinations. Of these, contact restrictions is the most powerful policy instrument, especially in low
and middle income countries facing significant resource constraints. However, choosing the optimal
restrictions is highly non-trivial not only because of the complex trade-off between the disease impact
and socioeconomic disruptions but also due to the rapidly evolving situation on the ground.

Public health interventions related to COVID-19 have largely been driven by scenario-based epi-
demiological forecasting [Ferguson et al., 2020, Ray et al., 2020] with decision-making based
on comparison of a limited number of scenarios over a finite time horizon. Though valuable, this
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Table 1: Variants of the relevant SIR models and transmission rate β.
SIR (Constant β) β is constant
Lotka Volterra-SIR (LVSIR) β varies with time following Eqn. 2
Controlled SIR (CoSIR) β varies with time following control mechanism in Eqn. 3
Approximate Control (CoSIR-approx) β from CoSIR is approximated by k discrete levels

approach leans towards a reactive role for the health authorities. In contrast, despite the potentially
far-reaching impact, relatively less attention has been devoted to developing an analytic control
framework to support proactive decision-making based on the target disease and economic outcomes,
and the state of the epidemic. Multiple studies [Chowdhury et al., 2020, Killian et al., 2020, Bin et al.,
2021] point to the benefits of periodic lockdowns, but these interventions are based on simulations
over restricted scenarios and are not adaptive in nature. Some recent works [Acemoglu et al., 2020]
formulate the control problem in terms of net socioeconomic and disease impact but require an expen-
sive numerical solution. Recent reinforcement learning-based formulations [Bhardwaj et al., 2020]
are efforts in similar direction but do not fully exploit the mathematical structure of the epidemic
dynamics.

In this paper, we explore optimal adaptive control of transmission rate for a desired bound on
infectious population. Multiple studies [Chen et al., 2020, Ray et al., 2020] indicate that time-varying
SIR and SEIR [Hethcote, 2000] compartmental models permit parsimonious encoding of infection
dynamics, data-driven calibration, and accurate forecasts leading to wide adoption of these models.
Hence, we focus on the SIR model [Kermack and McKendrick, 1927] for the control analysis.

Contributions:

1. [Section 4] We show that the SIR dynamics maps to the well-known Lotka-Volterra (LV) sys-
tem [Baigent, 2016] on interpreting infectious patients as predators and susceptible contacts (the
product of transmission rate and susceptible population) as the prey under a specific transmission rate
policy. The resulting system (LVSIR) has a stable equilibrium point and an “energy” conservation
property. It exhibits a bounded cyclic trend for active infections and a steady decline of susceptibility.

2. [Section 5] We exploit the mapping to derive optimal control policy for transmission rate (CoSIR)
using control-Lyapunov functions [Tsinias, 1988] based on the "LV system energy". The policy is
guaranteed to converge to the desired equilibrium (target infection level) from any valid initial state
assuming stochastic perturbations. 2

3. [Section 6] We propose a hybrid practical strategy that combines CoSIR with data-driven estima-
tion of parameters and restriction to discrete levels (CoSIR-approx).

4. [Section 7] Empirical results on real and synthetic COVID-19 data demonstrate the efficacy of the
CoSIR approach in stabilizing infections and adaptability to perturbations.

Table 1 lists the relevant SIR models for clarity. Our work points to a general control strategy: (a)
mapping a real-world phenomenon to a well-behaved Hamiltonian system [Nutku, 1990] amenable
for control, (b) designing optimal control mechanisms for levers of interest using control theory, and
(c) employing learning methods to estimate the other model parameters from data. Other application
domains such as online information propagation could benefit from a similar hybrid approach.

Notation: xt and x(t) both denote the value of x at time t; ẋ = dx
dt denotes the time derivative;

[xt], [t]t2t1 denotes the series from t = t1 to t = t2.
2 Problem Formulation
During an epidemic, a key concern for public health officials is to determine the right level and
schedule of contact restrictions that balance the disease and socioeconomic burdens. Strict short-term
lockdowns suppress the infection levels but infections tend to rise on easing restrictions unless the
epidemic is completely wiped out. On the other hand, prolonged restrictions with no intermittent
easing hinder economic activity and impose heavy costs on vulnerable population groups.

Modeling the multi-faceted impact of contact restrictions requires accounting for region-specific
cultural and economic constructs as well as the available resources, which is highly complex. For

2Extensions to other models with an incubation period (e.g., SEIR) as well as control of other variables such
as the infectious period are presented in Appendix A.
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Figure 1: (a) LV system and time evolution of predator and prey populations, (b) SIR dynamics with constant
β, (c) SIR model to LV system mapping and the behaviour of case counts S, J, I, R and transmission rate β.4

tractability, we assume that the public health goal is to limit active infections to a certain target level
determined via an independent impact analysis [BMGF, 2020]. The controls available to the public
health authorities can be viewed as configurable knobs (e.g., offices at 20% occupancy). However,
the need for clear communication and public compliance entails a simpler strategy centered around a
few discrete restriction levels (see Table 6), and a preset schedule for a future time horizon.

Restriction Policy Optimization. For a given region, let (N , Scurr, Icurr) be the total, current
susceptible, and infectious populations respectively. Let (Itargetavg , Itargetmax ) be the target average and
maximum infectious levels. Let A be the set of restriction levels for which the transmission rate is
known or can be estimated3 and T , the decision horizon. The goal is to identify restriction levels
[at], [t]curr+Tcurr+1 , at ∈ A such that the infectious level averages at Itargetavg but does not exceed Itargetmax .
In a general case, the target levels could themselves be time-varying functions instead of static values.

Since our goal is to develop an analytical control framework, we make simplifying assumptions on the
observability, (i.e., accurate estimation of the infectious population via sero-surveys and diagnostic
tests) and the disease dynamics (homogeneous interactions, negligible incubation, constant infectious
period). Appendix A describes extensions when some of these assumptions are relaxed.

3 Preliminaries

Compartmental Models. Infectious diseases are often modeled using compartmental models where
the population (N ) is divided into compartments corresponding to disease stages with transitions
governed by the model dynamics. The SIR model [Kermack and McKendrick, 1927] is the simplest
and most widely used one comprising three compartments: Susceptible (S), Infectious (I) and
Removed (R - includes immune & post-infectious persons) with the dynamics in Figure 1(b). Here β
is the rate of disease transmission from infectious to susceptible individuals, which largely depends on
the contact restrictions and γ is the inverse of the average infectious period. The effective reproduction
number (average number of direct infections from each infection) is Reff = βS

γN . Existing restriction
control approaches [Systrom et al., 2020] are often guided by the principle of ensuring Reff ' 1.

Lotka-Volterra (LV) Systems. LV systems [Baigent, 2016] model the population dynamics of
predator-prey interactions in an ecosystem. In a simple two-species LV system, the population of
prey (p) interacts with that of predator (q). The growth rate of prey depends on its reproduction rate
(r) 5 and the rate of consumption by predator (e). The change in predator population depends on the
nourishment-based birth rate b and its death rate d. The system has two fixed points: (a) a saddle point
that maps to extinction (p, q) = (0, 0), and (b) a stable equilibrium at (p, q) = (db ,

r
e ). Typically, the

system exhibits oscillations resulting in a closed phase plot that corresponds to conservation of an
“energy” function. Figure 1(a) presents the dynamics of an LV system and the oscillations of the
prey and predator populations. Due to the criticality of ecological population control, there has been

3Mapping restrictions to transmission is the focus of multiple works [Lehner, 2020] and discussed in Sec 6.
4Please see Appendix B and F for proofs and larger figures respectively. Webapp: http://cosir.herokuapp.com/
5LV reproduction rate r is different from that of the SIR reproduction number.

3
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Figure 2: (a-c) System (S, J, I, R, β) evolution when β follows Eqn. 2 [LVSIR] with its phase plot and single
cycle annotated with extreme points, (d-e) System evolution when β follows Eqn. 3 [CoSIR] and learning rate
η = 1, (f) Dependence of Tperiod on r for different choices of w0/r.2

considerable research on multiple variants of LV systems [Hening and Nguyen, 2018, Wangersky
and Cunningham, 1957] and their Hamiltonian dynamics [Nutku, 1990].

Optimal Control Strategies. Optimal control of dynamical systems Powell [2019] is a well-studied
area with connections to reinforcement learning. Given a set of control variables, the optimal control
policy describes the time derivatives that minimize the cost function and can be derived using
Pontryagin’s maximum principle [Powell, 2019] or the Hamilton-Jacobi-Bellman equations [Peng,
1992]. In the case of linear dynamical systems, there are straightforward techniques for optimal
control. However, control of non-linear dynamical systems relies heavily on the existence of control-
Lyapunov functions often identified using conservation laws of the associated systems, and is
non-trivial. Once a suitable Lyapunov function is identified, there exist multiple control design
methods such as feedback linearization, backstepping and sliding mode control that are guaranteed to
converge using Artstein’s theorem [Artstein, 1983]. In the case of the SIR model, a suitable Lyapunov
function is not readily evident. On the other hand, Lyapunov stability and practical control strategies
of LV systems have been extensively studied [Meza et al., 2005, Pchelkina and Fradkov, 2012].

4 Mapping SIR to Lotka-Volterra System (LVSIR)

Solving the restriction policy optimization is our primary goal. We focus on control of SIR dynamics
as it captures the core disease spread mechanism of most epidemiological models.

Since existing work [Adda and Bichara, 2012] addresses controllability of SIR dynamics only in the
limited context of endemic equilibrium, we adopt a new approach. We first establish a connection
between the SIR dynamics and Lotka-Volterra (LV) system and then leverage the LV system properties
to propose a strategy for transmission rate control in the SIR system (Section 5).

Stabilizing infection levels has a direct analogy with population control in LV predator-prey systems
where it is desirable to maintain the predator and prey population at certain target levels. Comparing
the SIR and LV dynamics in Figure 1, we observe that the behaviour of the infectious people (I) is
similar to that of the “predators” (q). There is an inflow (birth) βSI/N that depends on β as well as
the current infectious and susceptible population. There is also an outflow (death) γI from the I to
the R compartment. However, the counterpart for the “prey” is not readily apparent.

An intuitive choice for “prey” is the “susceptible contacts” (i.e., the product of susceptible people and
β, the number of "contacts" of a person per day) since this acts as “nourishment” to the predators and
contributes to the inflow into the I compartment. Denoting the susceptible contacts by J := βS, we
note that equivalence with the LV system requires

J̇ = β̇S + Ṡβ = (r − eI)J = (r − eI)βS, (1)

4
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where r and e correspond to the reproduction rate and consumption rate of an LV system as described
in Section 3.2. Since Ṡ = −βISN , we require the transmission rate β to follow

β̇ = (r − eI)β + β2I/N. (2)

This modified version of SIR model (LVSIR) maps to an LV system. The inverse of the infectious
period (γ) corresponds to the predator death rate (d) and the inverse of population (1/N) to the birth
rate (b). The LV reproductive rate (r) and prey consumption rate (e) are extra degrees of freedom.

Theorem 1 asserts the existence of an equilibrium for the LVSIR system and the associated behavior.

Theorem 1 2 For the LVSIR model in Figure 1(c), the following holds true:

1. There exists a stable equilibrium at (J∗, I∗) = (γN, r/e).

2. When the initial state (J0, I0) = (J∗, I∗), then (J, I) remain constant while S,R take a
linear form and β increases till the susceptible population reaches 0 at Tend.
(i) S(t) = S0 − γI∗t; R(t) = R0 + γI∗t

(ii) β(t) = γN
S0−γI∗t ; Tend = S0

γI∗

Proof sketch. (1) Setting time derivatives to 0 yields the equilibrium points. The stability emerges
from the conservation of the "system energy" as defined in Theorem 2(a) and its strict convexity. (2)
Invoking the model dynamics (Figure 1(b)) on initial state yields the result.

When the LVSIR system is initialized at a non-equilibrium state, it exhibits an oscillatory behavior
and a conservation property, which are characterized in Theorem 2 below.

Theorem 2 2 For the LVSIR model in Figure 1(c), if the initial state is not at equilibrium, i.e.,
(J0, I0) 6= (J∗, I∗), it exhibits a cyclic behaviour with the following properties.

1. The system “energy” w(J, I) = γ(x− log(x)−1)+r(y− log(y)−1) (where x = J
J∗ , y =

I
I∗ ) remains constant at w0 = w(J0, I0) ≥ w(J∗, I∗) = w∗ = 0 till termination.

2. The I, J curves exhibit periodic oscillations resulting in a closed trajectory. The normal-
ized phase plot has four extreme points {(xmin, 1), (1, ymin), (xmax, 1), (1, ymax)} where
(xmin, xmax) are the roots of the equation x− log(x) = 1 + w0/γ and (ymin, ymax) are
the roots of the equation y − log(y) = 1 + w0/r.

3. The cyclic period is given by Tperiod =
∫ log(xmax)

log(xmin)
( 1
F−1

1 (G(z))
− 1

F−1
2 (G(z))

)dz,

where (xmin, xmax) are defined as above,G(z) = γ(ez−z−1)−w0, and F1(s), F2(s) are
restrictions of F (s) = s+ r log(1− s

r ) to positive and negative ranges. In general, Tperiod
has the form g(r, γ, w0

r ) with approximation via linearization yielding Tperiod ' 2π√
(rγ)

.

4. In each cyclic period, S reduces by a fixed amount ∆S = γI∗Tperiod. When S < ∆S at
the start of a cycle, the epidemic terminates during that cycle.

Proof sketch. (1) Substituting the model dynamics into the energy function yields time-invariance.
(2) The closed phase plot emerges from the conservation property with the extreme points determined
by the properties of the convex function f(x) = x− log(x)− 1. (3) Derivation of the time period
follows a similar analysis for Lotka-Volterra systems [Hsu, 1983]. (4) Fixed drop in S follows from
the periodicity and the fact that I∗ is the average value of I in each cycle.

Figure 2(a) depicts the oscillatory behaviour of the LVSIR model for the hypothetical region in Table 3 .
Similar to an LV system, the “energy” which corresponds to a weighted Itakura-Saito distance [Itakura
and Saito, 1968] between (I, J) and the equilibrium (I∗, J∗) is conserved. The infectious population
I (and susceptible contacts J) oscillates between [yminI

∗, ymaxI
∗] (and [xminJ

∗, xmaxJ
∗] ) during

the entire period with an average value of I∗ (and J∗) while the susceptible population reduces steadily
in a staircase-like fashion, which is desirable from a public health perspective. The transmission
rate β also exhibits periodic oscillations but the average steadily goes up to compensate for the
reduction in the susceptible population. Figures 2(b-c) show the phase plot and the variation of the
key quantities during a single period while Figure 2(f) shows dependence of Tperiod on r and w0/r.

5
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5 Transmission Rate Control (CoSIR)

Consider an epidemic system from a control theory perspective with the compartmental populations
as the system state, the transmission rate as the control input, and the external flows as perturbations.
The SIR system has a natural positive feedback loop because of the infection mechanism (since
Ṡ = βSI

N ) which leads to an exponential-like behavior in the early phase of the epidemic. The LVSIR
dynamics neutralizes this feedback loop to create oscillatory behavior. We now explore the problem
of controlling the transmission rate β to nudge the infectious levels to a desired equilibrium.

As discussed in Section 3, control of non-linear dynamical systems is typically achieved via Control-
Lyapunov functions (CLFs) defined below. Hence, our immediate goal is to exploit the SIR-LV
mapping to derive CLFs based on the “Lotka-Volterra energy” function w(J, I) in Theorem 2.

Definition 1 Given a dynamical system ż = f(z,u) with state vector z ∈ D ⊂ IRn, control u ∈ IRm,
and equilibrium state z∗ = 0, a control-Lyapunov function (CLF) is a function V : D 7→ IR
that is continuously differentiable, positive-definite s.t. ∀z 6= 0, ∃ u, V̇ (z,u) = 〈∇V (z), ż〉 =
〈∇V (z), f(z,u)〉 < 0.

The CLF V (·) can be viewed as a generalized energy function with V̇ (·) being a dissipation function.
Artstein [1983] proved that as long as there is a CLF, there exists a control u to ensure the reduction
of energy at every non-equilibrium state and eventual convergence to the zero energy equilibrium.

Theorem 3 (Artstein [1983]) For any non-linear dynamical system with affine control, ż =
f(z,u) = f0(z) +

∑m
i=1 fi(z)ui with state z ∈ D ⊂ IRn, control u ∈ IRm, has a CLF iff it

admits a regular stabilizing control feedback u, that is a locally Lipschitz function on IRn \ {0}.

Once a CLF is identified, it is relatively straightforward to design an appropriate control function u
as described in [Artstein, 1983, Tsinias, 1989]. For the current scenario, we consider appropriately
defined functions of the LV energy. Let z = ( JJ∗ − 1, II∗ − 1) so that the equilibrium z∗ = (0, 0) and
L(w) : IR+ 7→ IR be a continuously differentiable function such that | dLdw | > 0 and L(w) ≥ 0, ∀w
and L(w) = 0 ⇐⇒ w = 0. Then, the function V (z) = L(w(J, I)) can be shown to be a CLF for
the SIR model and used to construct an affine control policy (CoSIR) as described below.

Theorem 4 (CoSIR) 2 For the SIR model, a proportional additive control on β of the form,

β̇ = (r − eI)β +
β2I

N
+ uβ (3)

6
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Figure 3: (a-b, d-e) New hospitalization influx and excess/under hospitalization with various transmission
control policies for two regions: India-IN and Netherlands-NL, (c) CoSIR-approx schedule (IN) for a 5-week
period (see Appendix F for full range) with a possible mapping to real restrictions, (f) Disease progression
indicates that CoSIR variants adapt to target levels and also to a sudden increase (t = 50) or decrease (t = 100). 2

converges to the equilibrium (J∗, I∗) when u = −η(t) dLdw

(
J
J∗ − 1

)
with learning rate η(t) > 0, ∀t.

Proof sketch. Follows from Definition 1 and Theorem 3 using | dLdw | > 0.

Pchelkina and Fradkov [2012] proposed a special case of the above construction with L(w) = 1
2w

2,
which is referred to as the speed-gradient method. Figures 2(d-e) show the damping oscillatory
behavior of the CoSIR model for this special case, for the hypothetical region in Table 3. The β-
control policy (Eqn. 3) can be interpreted as follows. The first term β2I

N corresponds to the relaxation
possible due to the decreasing susceptible population while the second term (r − eI)β leads to
oscillatory behavior, and the last term uβ = −η(t)β dLdw (J/J∗ − 1) ensures dissipation of energy and
convergence to the equilibrium. Even with external perturbations, the system can recalibrate β, but
the convergence properties depend on the nature of perturbations and need to be explored.

6 Practical Transmission Rate Control

Algorithm 1 outlines a practical approach to solve the restriction policy optimization problem
(Section 2) using the optimal β-control in Theorem 4. There are four key steps.

Input Collection. Infection level targets (Itargetavg , Itargetmax ), periodicity of the restriction schedule
(Tperiod), decision horizon (T ) need to be determined based on public health and socioeconomic
considerations. Historical case counts and restrictions ([St, It, Rt, at], [t]curr0 ) also need to be
collected to enable accurate calibration and policy optimization.

Data-driven Calibration. We then employ SIR calibration methods to estimate the parameter γ
(COMPUTEGAMMA) and the state of the epidemic (Scurr, Icurr Rcurr) from historical data. There
is a huge body of literature in this space [Ray et al., 2020, Bettencourt and Ribeiro, 2008, Baek et al.,
2020] based on likelihood maximization, Bayesian optimization and MCMC methods that can be
readily employed. Similarly, the restriction level to transmission map (ρ) can be initialized from
public health guidelines [COVID-AMP, 2020] and refined using the observed β for past restrictions
(REFINEBETAMAP) via online learning or contextual bandit methods [Beygelzimer et al., 2011]. For
the sake of brevity, we skip a detailed description of these techniques (more details in Appendix D).
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Choosing COSIR Parameters. The free parameters of the COSIR model need to be chosen based
on the control requirements. Algorithm 1 lists the choices derived from Theorem 2. Equilibrium I∗

is chosen to be the same as the average target infectious level, LV reproductive rate (r) is based on
the desired cyclic period Tperiod and the ratio of the maximum and average target levels, and lastly
the consumption rate (e) is determined by r and I∗. There is flexibility on the choice of β̂curr and
η. Choosing the immediate transmission rate to be β̂curr = J∗

Scurr
= γN

Scurr
(equivalent to forcing

effective reproduction number Reff = 1) ensures a maximal reduction in the system “energy” and
faster convergence to the desired equilibrium, but dampens fluctuations. However, fluctuations might
be necessary for economic activity. When nearly steady infection levels are desired, Itargetavg ' Itargetmax ,

then r = (2π)2

γT 2
period

and high η are appropriate.

Computing Near Optimal Restrictions. Determining the restriction policy can be split into two
phases. The first involves estimating the ideal β control (CoSIR) from Eqn. 3 while the second
involves identifying the “closest” restriction level for the ideal β at each time step with “closeness”
based on a suitable divergence such as the squared loss (CoSIR-approx).

The main utility of the above approach is that it combines estimation of model parameters
(COMPUTEGAMMA, REFINEBETAMAP) with the underlying system dynamics to arrive at a practical
strategy. Additional aspects relevant for a real-world implementation are discussed in Section 9.

7 Empirical Results
We present simulation results on the COVID-19 pandemic to demonstrate the efficacy and adaptability
of the proposed CoSIR approaches relative to other widely cited approaches [Chowdhury et al., 2020].

Experimental Setup.
Data. Simulated data (Apr 2020-Apr 2021) from two regions (India, Netherlands) was used along
with real COVID-19 data [Dong et al., 2020] from the initial phase of pandemic (till end of Dec 2020)
where the SIR dynamics are more applicable due to negligible reinfection and vaccination rates.
Algorithms. We consider five transmission control policies (see Table 2) assuming SIR dynamics.
These include a completely non-restrictive policy (No-Restrictions), two CoSIR-based policies
(CoSIR, CoSIR-approx), and two baseline policies (PL-low, PL-high) based on dynamic periodic
interventions [Chowdhury et al., 2020]. We also include the real outcome as indicative of the actual
public health transmission control that was adopted.
Parameter Choices. Table 3 enumerates the parameters chosen based on COVID-19 characteristics
and practical considerations (details in Appendix C). Two critical choices in our simulations are the
restriction periodicity which was set to a weekly cadence and the target infectious level Itargetavg which
was chosen based purely on medical capacity constraints due to the absence of other information.
We estimate a manageable hospitalization inflow ∆Htarget

avg based on factors such as population and
per-capita bed capacity and set Itargetavg = ∆Htarget

avg γh−1 noting that in the case of SIR dynamics,
the new hospitalizations equal γhI where h denotes the fraction of cases requiring hospitalization.

Hospitalization Influx. Figures 3(a,d) show the simulated daily new hospitalizations (γhI) while
Figures 3(b,e) depict the average excess and under hospital inflow relative to the target rate as follows:
Excess demand := mean

t

[
min
( γhI(t)

∆Htarget
avg

−1, 0
)]
,Under utilization := mean

t

[
min
(
1− γhI(t)

∆Htarget
avg

, 0
)]
.

Real hospitalizations are based on appropriate scaling of the reported active cases accounting for
under-reporting (Appendix C) and point to periods where the healthcare system was overwhelmed
(India) or the restrictions were more stringent than necessary (Netherlands). The CoSIR variants
result in nearly steady hospitalization inflow with the smallest deviation from the target levels relative
to all other choices including the actual implemented policy. The key takeaway is that optimizing
resource utilization requires choosing β based on the constraints and the varying susceptibility.

Feasibility of CoSIR-approx Restriction Policy. Figure 3(c) shows the CoSIR-approx β schedule
for a 5-week duration comprising two phases each of which has a weekly periodicity. This schedule
could potentially be implemented by having tighter weekend restrictions in the initial phase which
are then eased in the later phase along with permitting high contact activities (e.g., local market) on a
single weekday. Public communication for these multi-week phases is quite feasible.

Adaptability of CoSIR. Figure 3(f) shows the epidemic evolution of the two CoSIR variants along
with a hypothetical but a realistic premature relaxation policy. The CoSIR variants not only stabilize
infections, but are able to adapt to sudden upward (t = 50) or downward perturbations (t = 100) as in
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the case of super-spreader events or sudden quarantine restrictions respectively and continue pushing
towards the equilibrium. In practice, the adaptation is not seamless and depends on the nature of
perturbations and the lags in the data collection and public communication processes.
8 Related work
Most of the existing literature on epidemiological modeling focuses on the following aspects: (a)
Design of models to capture the disease dynamics [Harko et al., 2014], (b) Accurate forecasting
of future case counts [Ray et al., 2020], (c) Estimation of model parameters corresponding to non-
pharmaceutical interventions (NPIs) [Davies et al., 2020] (d) Optimization of public-health policy
(especially NPIs such as quarantine and lockdown policy) based on economic impact and disease
burden [Acemoglu et al., 2020, Petrie and Masel, 2020]. There is also work [Naji and Mustafa,
2012] in the space of eco-epidemiology that interleaves SIR and LV dynamics to model prey-predator
populations when there is an infection spreading among the prey but it is substantially different
from the current effort. Our current work is aligned with the last area, often referred to as economic
epidemiology, since the objective is identification of optimal NPIs. However, most of the research in
this space is focused on the variation of disease dynamics across subgroups using compartmental
models and the explicit modeling of the economic and disease impact along with the trade-offs. The
formulated optimization problems are often not readily tractable. Due to the subjective nature of
the socioeconomic modeling assumptions and the computationally expensive solutions, this work is
more suited for static recommendations. Our work, on the other hand, focuses on dynamic adaptive
control of the transmission rate assuming simple SIR dynamics with the goal of maintaining a specific
(possibly varying) target level of infection. The resulting analytic control policy adjusted for practical
considerations can be useful for real-time decision support.

9 Assumptions & Limitations
Real-world utility of the proposed control framework relies on a few key assumptions. The first
pertains to the applicability of the SIR dynamics (i.e., ODEs in Figure 1 with β possibly varying
with time) and the associated homogeneous mixing property for a given epidemic and region. This
has been validated for MMR and Ebola epidemics for certain regions [Yuan et al., 2015] with
SEIR model being preferable for COVID-19. The second assumption relates to the existence of
a 1-1 mapping between contact restrictions and the transmission, which is somewhat validated by
multiple studies [Liu et al., 2021] though the relationship can include delays and stochasticity due
to compliance issues. The third assumption is on the nature of perturbations or the external flows
since the optimality of control and convergence results are guaranteed only for the ideal β control
with normal stochastic perturbations. Adaptability under arbitrary/adversarial perturbations remains
to be explored. Effective implementation in a practical public health setting similar to the dynamic
protocol deployed in California [CA, 2020] also depends heavily on ensuring (a) appropriateness and
availability of a target (possible time-varying) infection level through an independent impact analysis,
(b) robust data-driven estimation of model parameters (e.g., γ) as well as the restriction to β mapping,
(c) adjusting for the lags and under-reporting in the data collection process, and (d) accounting
for delays in public communication systems and varying compliance. An important limitation of
our current work is that the efficacy of control strategies could only be demonstrated via generic
SIR-based simulations since real experiments are impractical due to the associated human impact. As
more case and restriction data becomes available, we plan to perform off-policy evaluation.

10 Conclusion & Future Work
We propose an analytical framework for epidemic control with the intent of supporting an active
goal-oriented public health response. This framework relies on a mapping between SIR dynamics to
Lotka-Volterra system under a specific transmission rate policy (LVSIR) and an additional feedback
control mechanism (CoSIR). Given the vast literature on control of LV systems, this mapping can
be leveraged to design new epidemic control techniques as well as extend current results to richer
compartmental models and additional control variables (Appendix A). Results in diverse settings point
to the utility of this approach. Qualitative insights such as weekly restriction patterns were employed
in a regional COVID-19 response. Regret bounds for a non-stochastic control setting [Hazan et al.,
2020] with arbitrary bounded perturbations is a promising direction to explore. Additionally, we could
investigate control strategies for applications such as online information propagation and regulation
of occupational groups that exhibit Hamiltonian dynamics [Nutku, 1990].
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Appendix

A Extensions

Delayed SIR & SEIR Models. Certain infectious diseases have a significant incubation period
when the individuals are infected but are not spreading the disease (non-infectious). The SEIR
model [Hethcote, 2000] includes an additional E (exposed) compartment to model the incubation
phase. This model is known to closely mimic the behaviour of the delayed SIR model [Kaddar
et al., 2011]. When β follows Eqn. 2, the delayed SIR model readily maps to a delayed LV system
with a non-preying growth period for the predators, which is a special case of the well-studied
Wangersky–Cunningham systems [Martin and Ruan, 2001, Wangersky and Cunningham, 1957].
It can be shown that the modified delayed SIR system with a delay τ has the same equilibrium
(J∗, I∗) = (γN, r/e), exhibits (unbounded) oscillations and permits control of the form Eqn. 3,
where

u(t) =− η(t)
dL

dw

(
J(t)

J∗ − 1

)

− r

(
(I(t)− I∗)

(J(t)− J∗)

)(
J(t− τ)I(t− τ)− J(t)I(t)

I(t)I∗

)
with η(t) > 0. There is a need for special handling when J approaches J∗ with the behavior

depending on τ .

Testing & Isolation Policy. Testing, tracing and isolation also play a critical role in regulating the
epidemic. In terms of SIR and SEIR dynamics, the net effect of aggressive testing is minimizing the
infectious period [Bar-On et al., 2020, Larremore et al., 2020]. This is analogous to the culling of
predators (infectious population) by increasing the death rate for which there already exists multiple
control mechanisms [Meza et al., 2005]. In particular, choosing V (z) = L(w(J, I)) as the CLF of
interest, we obtain the control, γ(t) = γ0 + ζ(t) dLdw ( II∗ − 1), with ζ(t) > 0.

Figure 4: The control theory perspective of the epidemic dynamics.

Non-stochastic Control. Figure 4 depicts the epidemic system from a control perspective. Theoreti-
cal guarantees of optimal control based on control Lyapunov functions rely on the assumptions of (a)
deterministic transition dynamics, (b) stochastic perturbations p(t), and (c) exact control. In practice,
however, the parameters of the SIR model such as the inverse infectious period (γ) vary with time,
the perturbations due to in/out flow might be arbitrary, and the control is approximate because of
public communication and compliance issues. To address these constraints, we need to continuously
re-estimate the model parameters as well as the mapping between the restriction levels and β from
historical data. In this online learning setting, the restriction levels can be viewed as bandit arms
each associated with a specific transmission rate (or probability distribution) and compartmental
populations correspond to the state. The arm-specific transmission rates are estimated in each step
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using observations based on an appropriate loss function. When the loss function is defined in terms
of the Lotka-Volterra energy over a time horizon, this formulation can be viewed as a non-linear
contextual bandit [Beygelzimer et al., 2011] and the properties of the LV energy permit derivation of
regret bounds similar to the non-stochastic control framework for linear dynamical systems [Hazan
et al., 2020].

B Proofs

Definition 2 [Boyce et al., 2017] Let z∗ ∈ Rn be a critical point of a system of ODEs. The critical
point z∗ is stable if, for any ε > 0 ∃ δ > 0 such that if z = φ(t) satisfies ||φ(0) − z∗|| < δ then
||φ(t)− z∗|| < ε, ∀ t > 0.

Proof of Theorem 1.1
At equilibrium (J∗, I∗), we have J̇ = 0 and İ = 0. From Eqn. 1, it follows that

J̇ |(J,I)=(J∗,I∗) = rJ∗ − eI∗J∗ = 0⇒ I∗ =
r

e
,

İ|(J,I)=(J∗,I∗) =
J∗I∗

N
− γI∗ = 0⇒ J∗ = γN.

To prove the stability of the critical point at (J∗, I∗), let us consider the normalized variables
φ(t) =

(
x(t), y(t)

)
where x(t) = J(t)

J∗ and y(t) = I(t)
I∗ . z∗ = (1, 1) is the corresponding critical

point.

||φ(0)− z∗||2 = (x0 − 1)2 + (y0 − 1)2 < δ2

⇒ 1− δ < x0 < 1 + δ, 1− δ < y0 < 1 + δ.

Let f(s) = s − log(s) − 1. Since f(s) is a convex function, 1 − δ < s < 1 + δ, implies
f(s) < max{f(1 + δ), f(1 − δ)}. Denoting this bound by Dmax implies f(x0) < Dmax and
f(y0) < Dmax

From Theorem 2.1, we note that

w(J0, I0) = γf(x0) + rf(y0)

< (r + γ)Dmax

Denoting wb = (r + γ)Dmax, from Theorem 2(a), we note that

w(J(t), I(t)) = w(J0, I0) < wb

⇒ f
(
x(t)

)
<
wb
γ
, f
(
y(t)

)
<
wb
r
.

Given the nature of f(s), f(s) < c ⇒ smin < s < smax where (smin, smax) are the finite-
valued roots of f(s) = c. Hence x(t) and y(t) are both bounded on either side. Consequently,
(x(t)− 1, y(t)− 1) is confined to a bounded rectangle and thus,

⇒ ||φ
(
x(t), y(t)

)
− z∗||2 =

(
x(t)− 1

)2
+
(
y(t)− 1

)2
< ε2

where ε can be directly expressed in terms of δ and vice versa.
Hence, from Definition 2, z∗ = (1, 1) (or equivalently (J∗, I∗)) is a stable equilibrium.

Proof of Theorem 1.2

When initial state (J0, I0) is at equilibrium (J∗, I∗) = (γN, r/e), we have (J(t), I(t)) =
(γN, r/e), ∀t. Hence,

Ṡ = −βSI
∗

N
= −J

∗I∗

N
= −γI∗

⇒ S(t) = S0 − γI∗t.
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Similarly,
Ṙ = γI∗ ⇒ R(t) = R0 + γI∗t,

β(t) =
J(t)

S(t)
=

γN

S0 − γI∗t
.

At t = Tend, the susceptible population S(t) = 0. Hence,

S(Tend) = 0⇒ Tend =
S0

γI∗
.

Proof of Theorem 2.1
The energy function of the LVSIR system in Figure 2(c) corresponds to

w(J, I) = γ

(
J

J∗
− log

( J
J∗

)
− 1

)
+ r

(
I

I∗
− log

( I
I∗

)
− 1

)
,

and the dynamics of I, J are given by

J̇ = (r − eI)J = r

(
1− I

I∗

)
J

İ =

(
J

N
− γ
)
I = γ

(
J

J∗
− 1

)
I.

Considering the time derivative of w(J, I), we have

ẇ(J, I) = γ

(
J̇

J∗
− J̇

J

)
+ r

(
İ

I∗
− İ

I

)

= γJ̇

(
1

J∗
− 1

J

)
+ rİ

(
1

I∗
− 1

I

)
= γrJ

(
1− I

I∗

)(
1

J∗
− 1

J

)
+ rγI

(
J

J∗
− 1

)(
1

I∗
− 1

I

)
(substituting for İ , J̇)

= rγ
(I∗ − I)(J − J∗)

I∗J∗

+ rγ
(I − I∗)(J − J∗)

I∗J∗

= 0

Hence, w(J, I) remains invariant throughout and is equal to w(J0, I0) = w0.

Proof of Theorem 2.2
Let w0 = w(J0, I0) be the energy associated with the modified SIR system in Figure 2(c). The
conservation law implies that every valid state (J, I) corresponds to a point on the level curve given
by

w(J, I) = γ

(
J

J∗
− log

(
J

J∗

)
− 1

)
+ r

(
I

I∗
− log

(
I

I∗

)
− 1

)
= w0

If J, I functions are continuous6, then these would be periodic functions. In terms of normalized
variables, x = J

J∗ and y = I
I∗ , the phase plot reduces to
γ(x− log(x)− 1) + r(y − log(y)− 1) = w0

6Note that J, I are actually discrete population counts and not continuous functions.
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.

Consider the continuously differentiable function f(z) = z − log(z) − 1 defined on R++. Since
df
dz = 1 − 1

z and d2f
dz2 = 1

z2 > 0, f(z) is a convex function with a single global minimum at z = 1
corresponding to f(1) = 0. Hence f(z) ≤ c⇒ zmin ≤ z ≤ zmax where (zmin, zmax) correspond
to the roots of f(z) = c.

To identify the extreme x values, we observe that

γ(x− log(x)− 1) + r(y − log(y)− 1) = w0

⇒ γ(x− log(x)− 1) ≤ w0

( since f(y) > 0)

⇒ xmin ≤ x ≤ xmax

where (xmin, xmax) are roots of f(x) = w0

γ . Both the extreme values of x are realized for
y = 1. Similarly, the extreme values of y are attained for x = 1 and given by (ymin, ymax) which
correspond to the roots of f(x) = w0

r .

Proof of Theorem 2.3
The period of a Lotka-Volterra system has been derived in multiple works Shih [1997]. We include
the below proof based on Hsu’s method Hsu [1983] for completeness.

Let x = J
J∗ and y = I

I∗ . Then we have

ẋ = −rx(y − 1) (4)

ẏ = γy(x− 1). (5)

From 4, we have

ẍ = −rxẏ − rẋ(y − 1)

= −rxγy(x− 1)− r(y − 1)ẋ (substituting ẏ from 5)

= −rγx(− ẋ

rx
+ 1)(x− 1) +

r(ẋ)2

rx
(substituting y from 4)

= −γ(rx− ẋ)(x− 1) +
ẋ2

x

Thus,

ẍ− ẋ2

x
− γ(x− 1)(ẋ− rx) = 0. (6)

Let z = log(x). Then, ẋ = ez ż and ẍ = ez(z̈ + ż2).

From 6, we have

ez(z̈ + ż2)− e2z(ż)2

ez

−γ(ez − 1)(ez ż − rez) = 0

⇒ z̈ − γ(ez − 1)(ż − r) = 0.
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Choosing s = ż ⇒ s = ẋ
x = −r(y − 1).

Let w0 = w(J0, I0). Then, the trajectory corresponds to
γ(x− log x− 1) + r(y − log y − 1) = w0

⇒ γ(ez − z − 1) + r(y − log y − 1) = w0

⇒ γ(ez − z − 1) + r(−s
r
− log(1− s

r
)) = w0

⇒ γ(ez − z − 1)− w0 = s+ r log(1− s

r
)

⇒ G(z) = F (s)

where G(z) = γ(ez − z − 1)− w0 and F (s) = s+ r log(1− s
r ).

Let F1(s), F2(s) be the restrictions of F (s) for the lower and upper parts of the phase plot. Then the
time period for the lower section is given by∫ zmax

zmin

dz

s
=

∫ zmax

zmin

dz

F−1
1 (G(z))

.

The total time for both the lower and upper section is given by∫ log(xmax)

log(xmin)

(
1

F−1
1 (G(z))

− 1

F−1
2 (G(z))

)
dz.

When w0 ' 0, linearization is possible. Simplifying the trajectory F (s) = G(z) using the approxi-
mations ea = 1 + a+ a2

2 and log(1− a) = a− a2

2 , we have

γ(ez − z − 1)− w0 = s+ r log(1− s

r
)

⇒ γz2

2
− w0 = s+ r(−s

r
− s2

2r2
)

⇒ γz2

2
+
s2

2r
= w0

Essentially, we have an elliptical curve with x, y following sinusoidal behavior with a period 2π√
rγ .

Proof of Theorem 2.4
Assuming a continuous form for J , we observe that

J̇ = (r − eI)J

⇒ 1

J

dJ

dt
= r − eI

d

dt
(log(J)) = r − eI

t=t0+Tperiod∫
t=t0

d(log(J)) =

t=t0+Tperiod∫
t=t0

(r − eI)dt

(since J is periodic)

t=t0+Tperiod∫
t=t0

d(log(J)) = 0 (for any t0)

⇒
t=t0+Tperiod∫

t=t0

Idt =
r

e
Tperiod

= I∗Tperiod
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In other words, I∗ is also the average value of I in each cycle.

Considering the time derivatives of S and I , we have İ = βSI
N + γI and Ṡ = −βSIN .

Let ∆S be the drop in S during a single cycle starting at any t0, then

∆S =

∫ t=t0+Tperiod

t=t0

Ṡdt

=

∫ t=t0+Tperiod

t=t0

(−İ + γI)dt

(since İ = −Ṡ + γI)

= 0 + γ

∫ t=t0+Tperiod

t=t0

Idt

(since I is periodic)

= γI∗Tperiod (from above)

Proof of Theorem 4.
Assuming a proportional additive control on β of the form β̇ = β2SI

N + (r− eI)β+uβ, the variation
of the susceptible contacts J is given by

J̇ = β̇S + βṠ

=

(
β2SI

N
+ (r − eI)β + uβ

)
S

+ β

(
−βSI

N

)
= (r − eI + u)J

Let z = (J/J∗ − 1, I/I∗ − 1) = (z1, z2) so that z = (0, 0) corresponds to the equilibrium state.
Then w(J, I) = γ(z1 − log(1 + z1)) + r(z2 − log(1 + z2)). For V (z) = L(w(J, I)) to be a
control-Lyapunov function, we require V̇ (z,u) < 0.

V̇ (z,u) = 〈∇V (z), ż〉

=
dL

dw
〈∇w(z), ż〉

=
dL

dw

(
dw

dz1
ż1 +

dw

dz2
ż2

)

=
dL

dw

(
γ
(

1− 1

z1 + 1

)
ż1

+ r
(

1− 1

z2 + 1

)
ż2

)

=
dL

dw

(
γ
( J
J∗
− 1
)
u

)
.
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Factor Notation Hypothetical India Netherlands
Population N 13M 1.366B 17.1M
Stage of pandemic (Scurr, Icurr) (12.6M, 0.2M) (1.36B, 279k) (17.09M, 6.7k)
Bed Occupancy level (Phillip et al. [1984]) κ - 0.76 0.76
Medical Capacity (per capita) (capacity
[2020])

p - 5.3× 10−4 3.32× 10−3

Hospitalization ratio h - 2% 6.6%
Time spent in hospital Thosp - 20 days 20 days
Target manageable infections Itargetavg 0.15M 6.88M 0.16M
Target max to average ratio Itargetmax /Itargetavg 1.3 1.13 1.13
Infection-Fatality ratio (Meyerowitz-Katz
and Merone [2020], Mukhopadhyay and
Chakraborty [2020], Murhekar et al. [2020])

IFR - 0.002 7 0.0068

Death detection ratio DDR - 0.3 1
Reported Infections on 1st Dec 2020 (Worl-
dometer [2021], COVID19India [2020])

- 9.5M 527k

Reported Fatalities on 15th Dec 2020 (Worl-
dometer [2021], COVID19India [2020])

- 144k 10k

Under reporting factor URF - 25.28 2.83
Periodicity Tperiod 7 days 7 days 7 days
Reciprocal of infectious period γ 0.2 0.2 0.2
LV Reproduction rate r 4.2 4.2 4.2
Consumption rate e 2.8× 10−5 6.1× 10−7 2.6× 10−5

Initial transmission rate β0 0.2 0.2 0.2
Learning rate η 5 5 5

Table 4: State of the epidemic, public health requirements, and COSIR parameters used for the
simulations in Section 7.

When the control is chosen as
u = −η(t) dLdw ( JJ∗ − 1) and η(t) > 0, ∀t,

V̇ (z,u) =
dL

dw

(
γ
( J
J∗
− 1
))

×

(
− η(t)

dL

dw

( J
J∗
− 1
))

= −η(t)γ

(
dL

dw

( J
J∗
− 1
))2

< 0 (unless w = w∗)

Hence, Artstein’s theorem guarantees convergence to the equilibrium.

C Parameter Choices

Table 4 enumerates the detailed parameter choices and the relevant assumptions for the different
regions that can be broadly divided into three groups. We now discuss the rationale for the various
parameter choices.

(a) Target Hospitalization & Infectious levels. There are multiple ways to arrive at an acceptable
level for infectious population Itargetavg based on socioeconomic impact considerations [BMGF, 2020].
When the focus is on medical capacity constraints, this target level can be set chosen so that the
available medical capacity can meet the hospitalization requirements at a steady state. Let p denote the
per-capita hospital bed capacity of a region with population N , κ the bed occupancy level for normal
functioning, and Thosp the average duration of hospitalization. Then, a manageable hospitalization

7Since these estimations vary, we choose an intermediate value.
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inflow that will not overwhelm the medical infrastructure is given by ∆Htarget
avg = Npκ

Thosp
. As

described earlier in Section 7, assuming SIR dynamics, the new hospitalizations would be given by
γhI . Hence, we choose the target infectious level as Itargetavg = Npκ

γhThosp
.To concretely instantiate these

choices for various regions, we use the populations of the regions N , the per-capita medical capacity
capacity [2020] assuming an average hospitalization period Thosp = 20 days and hospitalization
ratio between 2 − 6.6% based on literature. Note that these parameters are likely to vary across
regions and there is a significant uncertainty in the estimates across multiple studies. However, the
key insights on the relative behavior of the transmission control policies hold true regardless of the
specific choices of the parameter values.

(b) Under Reporting Factor. While comparing real observed case counts with simulations, a critical
factor to consider is the level of under reporting. This factor was computed based on the assumption
that the infection fatality rate (IFR) and death detection rate (DDR) are largely variant within
a region and there is a steady lag of 2 weeks between infection and the associated fatalities. In
particular, we estimate the under reporting factor (URF) as

URF =
Reported Infections

Total Infections

=
(Reported Infections on Dec 1st)×DDR× IFR

Reported Fatalities on Dec 15th

The purpose of computing URF is to figure out the appropriate scaling of real cases for a fair
comparison with the simulated results.

(c) SIR & CoSIR Parameters. The primary parameter of interest in the SIR model apart from the
transmission rate is γ, i.e., reciprocal of the infectious period, which was chosen to be 0.2 across all
simulations since it is a disease-specific factor. For practical implementation of a control policy, a
periodicity aligned with typical economic activity is preferable and hence, we choose a periodicity
of Tperiod = 7 days for the CoSIR model. Assuming the maximum value of infections to be 13%
higher than the average and following Algorithm 1, we obtain the LV reproductive rate r = 4.2. We
choose the steady state infectious level to be the target infectious level, i.e., I∗ = Itargetavg and the
consumption rate is given by e = r/I∗. To ensure effective control, we pick an aggressive learning
rate η = 5.

D Additional Experiments
To assess the impact of the different transmission control policies on socioeconomic activity, we
consider the variation of the restriction level, i.e., β over time. We also compute for each policy, the
total number of days where the transmission rate associated with the policy was higher (i.e., less
restrictive) than a particular β and discuss the associated implications on socioeconomic impact.

Figures 5(a-b) show the variation of the transmission rate (β) with time for four intervention poli-
cies (CoSIR, CoSIR-approx, PL-high, PL-low). All the approaches involve alternating between
different levels of restrictions but the CoSIR based approaches adapt these levels as the susceptible
population decreases over time. In the case of Netherlands, this approach nearly permits a return to
no restrictions by April 2021 even without other interventions such as vaccination (conditioned on
the assumptions on the acceptable hospitalization levels).

Figures 5(c-d) show the number of days where a control policy allows a transmission rate higher than
a particular β, i.e., in other words allows all socioeconomic activities that necessitate a transmission
rate of β. The periodic lockdown policies tend to have a discontinuous profile while the CoSIR based
policies allow a more continuous transition. In particular, a large number of vital socioeconomic
activities correspond to β between “safer-at-home” and “new normal”. The CoSIR based policies
clearly dominate in this region. Given a socioeconomic model that maps β to socioeconomic costs
and the distribution of the transmission rate β, we could quantitatively evaluate the socioeconomic
impact of the various policies. We do not provide such an impact analysis due to the complexity of
socioeconomic modeling in the context of significant variations between high income and low-middle
income regions [Zachary and Mobarak, 2020]. However, since small relaxations in restriction levels
in the range between “stay/safer at home” policies and “new normal” do seem to allow a substantial
increase in socioeconomic activity with diminishing returns beyond that stage, the differences in the
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Figure 5: Plots (a-b) depict the variation of policy transmission rate with time. Plots (c-d) show the restrictiveness
profile (number of days where the policy is less restrictive than a specified β) for the periodic lockdown and
CoSIR-based policies for India and Netherlands

Policy India Netherlands
CoSIR-ideal 2026.6 2009.7
CoSIR-approx 2184.6 2133.2
PL-high 6561.9 5416.7
PL-low 6744.9 6826.6

Table 5: Total LV Energy for the entire duration of 350 days corresponding to all policies for India
and Netherlands respectively.

β profile are likely to be amplified when the socioeconomic impact is considered. Note that if the
simulation were to cover the entire duration of the pandemic, the CoSIR based approaches would
turn out to be more relaxed than the fixed periodic lockdowns.

Figure 6 show the LV Energy curve with respect to time for the different policies. The energy, which
denotes how far the systtem is from the target values, quickly comes down for the CoSIR variants.
Table 5 shows the total energy of each of the policy over the entire duration of 350 days. The total
energy of the CoSIR variants is significantly low which signifies that the system remained close to
the target levels.

D.1 Empirical results till April 2021

Given the heavy interest in the subsequent waves of infections in India and Europe, in the interest of
transparency, we also have included plots showing the real outcome till April (Figure 7). However, as
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Figure 6: Plots (a-b) depict the variation of LV Energy with time corresponding to all policies for India and
Netherlands respectively.

Jun'20 Aug'20 Oct'20 Dec'20 Feb'21 Apr'21100

101

102

103

104

105

106

N
ew

 H
os

pi
ta

liz
at

io
ns

ΔHtarget
average

Excess demand

Real
No−Restrictions
PL−low
PL−high
CoSIR
CoSIR−approx

(a) Hospital influx - India

Jun'20 Aug'20 Oct'20 Dec'20 Feb'21 Apr'21100

101

102

103

104

105
N
ew

 H
os

pi
ta

liz
at

io
ns

ΔHtarget
average

Under utilization

Real
No−Restrictions
PL−low
PL−high
CoSIR
CoSIR−approx

(b) Hospital influx - Netherlands

Figure 7: New hospitalization influx with various transmission control policies for two regions: India-IN and
Netherlands-NL with real data till April 2021

per the discussion in Section 9, one needs to be mindful that the proposed control policy (CoSIR)
applies only when SIR dynamics are valid. In the first phase of the pandemic (most of 2020) when
reinfection and vaccination rate was negligible, this is largely true but it not the case for the most
recent phase. The right approach is to consider a new compartmental model that incorporates the
reinfection and vaccination dynamics and derive the corresponding optimal control, which is a
direction that we are exploring.

E Societal Impact

Epidemic and population control have applications in multiple domains such as public health, public
communications, viral marketing, regulation of economic activity in multi-sided market places, all of
which have an immediate and significant societal impact. Better understanding and controllability
of these macro-systems that impact human lives definitely holds the promise of positive outcomes .
However, as in the case of generic AI techniques, the proposed control methods create an empowered
artificial agency that does entail multiple risks for the society including but not limited to:

• Inappropriate and unsafe use of control techniques due to poor understanding of the lim-
itations and underlying assumptions of the proposed methods (see Section 9) as well as
inadequate safeguards to address these constraints, especially in areas related to goal/input
specification, data observability, and model dynamics. Such misuse (e.g., an inappropri-
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ate target infectious level) can happen even with benevolent controllers and the best of
intentions.

• Use of control techniques for objectives contrary to societal good such as propagating
misinformation on social media, marketing harmful products, and bio-warfare.

• Increase automation of higher order decision that could lead to more efficiency on one
end, but also loss of employment and further empowerment of capital relative to human
resources.

Both the benefits and risks associated with the proposed techniques are amplified by the fact that the
immediate applications such as control of pandemics and online discourse pertain to regulation of
macro-systems affecting large human populations.

F Miscellaneous

This section includes miscellaneous content and larger versions of figures for the readers benefit.
Table 6 contains an example of restriction levels and the corresponding effective transmission rates
(β).

Restriction level Effective COVID-19 Description
R value Transmission rate (β)

Early event 2.52 0.4 No policy interventions.
(Pre-restrictions)
Lockdown 0.84 0.12 Residents are either not allowed to

leave their residence or may leave
only for essential functions.

Stay-at-home 0.95 0.14 Stay-at-home order includes closure
of schools and private sector, and re-
strictions on mass gatherings.

Safer-at-home 1.26 0.19 Relaxed stay-at-home order which in-
cludes closure of schools, but restric-
tions on mass gatherings and private
sector may be relaxed.

New normal 1.83 0.29 Stay-at-home lifted or relaxed with
some restrictions on mass gatherings
and private sector. Schools may or
may not be re-opened. Safeguards
such as face coverings encouraged.

Table 6: Example of restriction levels recommended by public health authorities [COVID-AMP,
2020] and the corresponding effective R value and transmission rate (β) for COVID-19.
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Figure 8: (a) Lotka-Volterra system and evolution of predator (fox) and prey (hare) population over time.

Figure 9: (b) SIR compartmental dynamics for epidemiological modeling. (c) Mapping of SIR model to LV
system and the behaviour of case counts S, J, I, R and transmission rate β.
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Figure 10: (a-c) System (S, J, I, R, β) evolution when β follows Eqn. 2 [LVSIR] with its phase plot and single
cycle annotated with extreme points, (d-e) System evolution when β follows Eqn. 3 [CoSIR] and learning rate
η = 1, (f) Dependence of Tperiod on r for different choices of w0/r.
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Figure 11: (a-b, d-e) New hospitalization influx and excess/under hospitalization with various transmission
control policies for two regions: India-IN and Netherlands-NL, (c) CoSIR-approx schedule (IN) for a 5-week
period (see Appendix F for full range) with a possible mapping to real restrictions, (f) Disease progression
indicates that CoSIR variants adapt to target levels and also to a sudden increase (t = 50) or decrease (t = 100).
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