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ABSTRACT 
 

Alzheimer Disease (AD) is a progressive neurodegenerative disease that can significantly impair 

cognition and memory. AD is the leading cause of dementia and affects one in ten people age 65 and 

older. Current diagnoses methods of AD heavily rely on the use of Magnetic Resonance Imaging (MRI) 

since non-imaging methods can vary widely leading to inaccurate diagnoses. Furthermore, recent research 

has revealed a substage of AD, Mild Cognitive Impairment (MCI), that is characterized by symptoms 

between normal cognition and dementia which makes it more prone to misdiagnosis. 

A large battery of clinical variables are currently used to detect cognitive impairment and classify 

early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD from cognitive 

normal (CN) patients. The goal of this study was to derive a simplified risk-stratification algorithm for 

diagnosis and identify a few significant clinical variables that can accurately classify these four groups 

using an empirical deep learning approach. Over 100 variables that included 

neuropsychological/neurocognitive tests, demographics, genetic factors, and blood biomarkers were 

collected from EMCI, LMCI, AD, and CN patients from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database. Feature engineering was performed with 5 different methods and a neural network was 

trained on 90% of the data and tested on 10% using 10-fold cross validation. Prediction performance used 

area under the curve (AUC) of the receiver operating characteristic analysis. 

The five different feature selection methods consistently yielded the top classifiers to be the 

Clinical Dementia Rating Scale - Sum of Boxes (CDRSB), Delayed total recall (LDELTOTAL), 

Modified Preclinical Alzheimer Cognitive Composite with Trails test (mPACCtrailsB), the Modified 

Preclinical Alzheimer Cognitive Composite with Digit test (mPACCdigit), and Mini-Mental State 

Examination (MMSE). The best classification model yielded an AUC of 0.984, and the simplified risk-

stratification score yielded an AUC of 0.963 on the test dataset. 

Our results show that this deep-learning algorithm and simplified risk score derived from our 

deep-learning algorithm accurately diagnose EMCI, LMCI, AD and CN patients using a few commonly 

available neurocognitive tests. The project was successful in creating an accurate, clinically translatable 

risk-stratified scoring aid for primary care providers to diagnose AD in a fast and inexpensive manner. 
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Introduction 
 

Dementia is a neurodegenerative disease characterized by progressive memory loss as a result of 

neuronal cell death. More than 47 million people worldwide live with dementia and by 2050 that number 

is expected to increase to 131 million [1]. The most common type of dementia is Alzheimer’s Disease 

(AD) and Mild Cognitive Impairment (MCI) is often seen as risk state of progression to AD. The latter 

can be subdivided into early mild cognitive impairment (EMCI) and late mild cognitive impairment 

(LMCI), as defined in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [2]. While there 

is no cure for dementia, early diagnosis may enable lifestyle changes (such as diet and exercise), 

neurocognitive enrichment, and therapeutic treatment that may temporarily improve symptoms or slow 

the rate of decline of symptoms, thereby improving the quality of life [3]. 

The core clinical criteria for the diagnosis of MCI and AD are neuropsychological tests [4,5]. 

Fluid and imaging biomarker tests, such as cerebrospinal fluid markers and p-tau, may in some cases 

supplement standard clinical tests in specialized clinical settings [6]. A large array of neurocognitive tests 

are currently used to detect cognitive impairment and classify amongst normal controls (CN), EMCI, 

LMCI and AD [7-8]. Many studies have identified a few top classifiers using logistic regression and 

machine learning methods [9–18]. Some studies have also used MRI and genetic data in conjunction with 

neurocognitive measures for classification [19-20]. However, most of these studies to date performed 

binary classification (i.e., between CN and AD or CN and MCI) [17,21]. Classifying CN, EMCI, LMCI 

and AD remains challenging. 

 Deep learning is increasingly being used in medicine, including classification of diseases to aid 

diagnosis [22-24]. Deep learning, or machine learning in general, uses algorithms to learn the relationship 

amongst different data elements to inform outcomes. In contrast to traditional analysis methods (such as 

logistic regression), the specific relationships amongst different input variables with outcome variables do 

not need to be explicitly specified a priori. Neural networks, for example, are made up of a collection of 

connected nodes that model the neurons present in a human brain [25]. Each connection, like 

the synapses in a brain, transmits and receives signals to other nodes. Each node and the connections it 

forms are initialized with weights which are adjusted throughout training and create mathematical 

relationships between the input data and the outcomes. Deep learning is well-suited to analyze complex 

and large datasets where input and output variables cannot be readily parameterized.  

 The goal of this study was to compare different feature-selection algorithms and develop a deep-

learning algorithm to identify the top neurocognitive test scores that accurately classify normal control, 

early MCI, late MCI and Alzheimer’s disease. From these findings, we further constructed a novel 

simplified risk score model to classify normal, EMCI, LMCI and AD for clinical use.  
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Methods 
 
Study Population 

 Data used in this study was obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu). Patients were taken from the ADNI1, ADNIGO, ADNI2, and 

ADNI3 patient sets. Figure 1 shows the flowchart for patient selection. The inclusion criteria were a 

confirmed diagnosis from screening to the baseline visit and the exclusion criteria were greater than 20% 

of patient data missing. The total sample size in the study was 1937 patients, with 1743 being randomly 

assigned to the training dataset and 194 being assigned to the testing dataset before any feature selection 

or feature engineering was performed. The dataset was the ADNI database, which is a multi-institutional 

data source, which had built in independent data sets. Future studies will further test using additional 

independent datasets. Of the 1937 participants that met the inclusion criteria, 516 patients were diagnosed 

as CN, 383 were diagnosed as EMCI, 644 were diagnosed as LMCI, and 394 were diagnosed as AD.  

  
Data Preprocessing 

 We evaluated about 100 input variables (i.e., test scores, demographic information, and 

biomarkers). Correlation matrix analysis showed that 47 variables had a correlation coefficient above 0.5 

and were determined to be correlated, which merited exclusion from further analysis. In addition, 29 

variables were missing in >20% of patients and they were also excluded from analysis. For the rest of the 

variables, missing data (most of which had < 10% data missing) was imputed with Classification and 

Regression Trees (CART) using Multivariate Imputation by Chained Equations (MICE) in R, a statistical 

analysis software (version 4.0.0) [26]. Although regional volumes were available through the FreeSurfer 

pipeline, >30% were missing and regional volumes were thus not included in the analysis. Intracranial 

volume was included with imputation because <20% was missing. 

 The following neurocognitive tests, demographics, comorbidities and other variables were used in 

our analysis. The neuropsychological scores included ADAS11 (Unweighted sum of 11 items from The 

Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog)), ADAS13 (Unweighted sum of 

13 items from ADAS-Cog) , ADASQ4 (Score from Task 4 (Word Recognition) of the Alzheimer’s 

Disease Assessment Scale (ADAS)), CDRSB, FAQ (Functional Activities Questionnaire), LDELTOTAL, 

MMSE, RAVLT_forgetting (Rey’s Auditory Verbal Learning Test – Forgetting score), 

RAVLT_immediate (Rey’s Auditory Verbal Learning Test – Immediate Recall score), RAVLT_learning 

(Rey’s Auditory Verbal Learning Test – Learning Score), RAVLT_percentage_forgetting (Rey’s 

Auditory Verbal Learning Test – Percent Forgetting), TRABSCOR (Trail Making Test Part B Time), 

mPACCdigit, and mPACCtrailsB. The extracted imaging parameters that were used included intracranial 
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volume (ICV), volume of ventricles, and whole brain volume. APOE4 status was also included. The 

demographics included age, sex, race, ethnicity, education level (PTEDUCAT). The outcomes were 4 

diagnosis classes: AD, LMCI, EMCI, and CN based on comprehensive clinical diagnosis as provided in 

the dataset.  

  

Neural Network Model 

 Ranking of feature importance was first conducted among cognitive tests, demographic 

information, genetic tests, and extracted biomarkers. Five different feature selection methods were 

utilized to identify the most predictive variables: Information Gain, Boruta Random Forest, Recursive 

Feature Elimination with the Random Forest Classifier, Logistic Regression with LASSO/L1 

regularization, and Permutation Importance in Keras. The scikit-learn library was used for Recursive 

Feature Elimination and Logistic Regression analyses. The Boruta package in R for Boruta Random 

Forest and Weka for Information Gain. To conduct Permutation Importance analysis, a separate neural 

network was trained with all features available rather than just the top few variables [27]. This network 

consisted of 5 layers, a BatchNormalization layer followed by 2 fully connected (FC) dense layers 

followed by a dropout layer and finally another fully connected dense layer. The first FC layer consisted 

of 24 neurons with the ReLU activation function and the second FC layer consisted of 16 neurons with 

the ReLU activation function. The dropout layer had a dropout rate of 0.20. The last layer consisted of 4 

neurons with the Softmax activation function for multiclass classification. The model was compiled with 

categorical cross entropy loss with the ADAM optimizer and a learning rate of 0.001 [28]. The top 

predictors were those that demonstrated statistical significance.  

For the deep learning model, a Multi-layer Perceptron (MLP) neural network was constructed 

with 2 fully connected dense layers for classification followed by a dropout layer and finally a fully 

connected dense layer. The first two FC layers contained 8 neurons along with the ReLU activation 

function. The next layer was a dropout layer with dropout rate of 0.15. The last layer contained 4 neurons 

and used the Softmax activation function for multiclass classification. The model was compiled with 

categorical cross entropy loss with the ADAM optimizer and a learning rate of 0.003. Additionally, while 

testing the classification accuracy of the variables selected by Permutation Importance analysis, a 

BatchNormalization layer was added as the first layer of the network. The top predictors extracted from 

the global feature selection analysis were used as input for the neural network and the output was the 

diagnosis class. The dataset was split into 90% training data and 10% testing data using 10-fold cross 

validation while training the neural network. Diagnosis results were categorized by multiclass 

classification.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.11.09.20226746doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20226746
http://creativecommons.org/licenses/by-nc-nd/4.0/


Risk Score Model Development 

A simplified risk score model was constructed using the top 5 global variables (ca. cognitive test 

scores) identified by the different feature selection methods as followed: 1) For each variable, scores were 

plotted for the 4 classes of diagnosis and cutoff points were chosen to maximize separation amongst the 4 

classes. 2) The cutoff points were then used to construct a point value system for each cognitive test’s 

score range. This was done by fitting the top cognitive tests in the training dataset against the diagnosis 

outcome using a Generalized Linear Model (GLM) [29]. 3) The GLM then assigned risk score points for 

each of the cognitive tests score ranges. A higher number of points for a given score range means that the 

patient is more likely to have AD. 4) A composite risk score from the sum of the top 5 variables’ risk 

scores was constructed for each patient. 5) The risk score model was then tested on an independent testing 

dataset and evaluated using ROC analysis. Risk scores of the testing dataset were plotted for the 4 classes 

with interpolation smoothing. 

We chose only the top five variables because: i) they are manageable for creating the risk score, 

ii) feature importance dropped significantly after the first five features for multiple machine-learning 

methods, which provided further validation for the selection of features and avoid potential bias, and iii) 

limiting to a few features (instead of all features) prevents overfitting in training the neural network and 

the risk score models. 

 

Performance Evaluation and Statistical Analysis 

 Statistical analyses were performed using SPSS v26.Frequencies and percentages for categorical 

variables between the stages of AD were compared in a pair-wise fashion using χ2 tests. Continuous 

variables, which were denoted as median (IQR), were first tested for normality with the Lilliefors 

corrected Kolmogorov-Smirnov test. If they were shown to not have a normal distribution, further 

comparison was done in a pair-wise fashion between groups using the nonparametric Kruskal-Wallis test. 

P-values < 0.05 were considered statistically significant.  

ROC analysis was used to evaluate the performance of the NN and the risk score model, in which 

training data was first split into 90% for training and 10% for testing using 10-fold cross validation and 

then tested on an independent testing set. The AUC calculation was binary, in which one class was 

contrasted with the rest of the classes (one versus rest) and this was repeated for each of the 4 classes. The 

sensitivity and specificity reported were taken as an average of the binary sensitivity and specificity of 

each class. The 95% Confidence Interval (CI) for the AUC was obtained through bootstrapping the neural 

network’s predictions 1000 times.  
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RESULTS 

Table 1 shows the demographic data for CN (n=516), EMCI (n=383), LMCI (n=644), and AD 

(n=394) groups. Age was not significantly different between groups except between CN and LMCI and 

between the LMCI and AD groups. Race and ethnicity did not differ significantly between groups. The 

median education level did not differ significantly between any pair except between AD versus the other 

classes.    

With few exceptions, all neurocognitive test scores and mPACC tests showed pairwise 

differences between groups. The MRI-extracted parameters were significant between CN and AD and 

between CN and LMCI, but not significant between the other pairwise comparison. APOE4 was 

significant different in all pairwise comparisons. Sleep apnea and depression were the only significant 

comorbidities between groups. 

 Figure 2 shows the results of the rankings by importance from the 5 feature selection methods 

performed on the training dataset and Table 2 lists the top 9 features. CDRSB was the most frequently 

identified top feature amongst the top 5 feature selection methods (5 out of 5), followed by LDELTOTAL 

(4 out of 5), mPACCdigit (4 out of 5), mPACCtrailsB (3 out of 5), MMSE (2 out of 5).  

 
Neural Network Model for Classification 

Classification was performed using the top 5 features. The performances on the testing data for 

the 5 methods are summarized in Table 3. AUCs for the Information Gain, Boruta Random Forest, 

Recursive Feature Elimination with the Random Forest Classifier, Logistic Regression with LASSO/L1 

regularization, and Permutation Importance were 0.978, 0.984, 0.983, 0.906 and 0.982, respectively, on 

the testing dataset. The classifier selected by Boruta Random Forest performed the best in terms of AUC, 

but the classifier selected by Recursive Feature Elimination performed better in terms of accuracy, 

sensitivity, and specificity. By comparison, classification using CDRSB, LDELTOTAL, mPACCdigit, 

mPACCtrailsB, and MMSE individually yielded an AUC of 0.8899, 0.8957, 0.8619, 0.8624, and 0.7808 

respectively, on the testing dataset. 

 
Risk Score Model  

We then developed a simplified risk score model using the same top 5 variables from our deep-

learning analysis. Figure 3 shows an example of the CDRSB cognitive test scores for 4 different classes. 

The cutoff points that maximized separation between the 4 classes were 0.1, 1.3, and 3.5, between CN 

and EMCI, between EMCI and LMCI, and between LMCI and AD group, respectively. The point values 

for individual test score ranges are summarized in Table 4. The composite score from the top 5 cognitive 

tests (CDRSB, LDELTOTAL, mPACCdigit, mPACCtrailsB, and MMSE) were constructed using a 
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GLM. The classification results on the testing dataset are shown in Figure 4. The risk score system 

classified the four groups accurately. The performance of the risk score model yielded an AUC of 0.963 

[95% CI: 0.945-0.975], sensitivity of 88.06% and specificity of 96.16%, and accuracy of 89.18% for the 

testing dataset. 

 
Discussion  

 This study developed a deep-learning algorithm to identify the top neurocognitive test scores that 

accurately classify normal control, early MCI, late MCI and Alzheimer’s disease. Multiple feature 

selection methods identified essentially the same set of top variables, providing further corroboration. 

CDRSB was identified to be a top feature, followed by LDELTOTAL, mPACCdigit, mPACCtrailsB, and 

MMSE for classification of disease subtypes. Performance indices of the deep-learning model and the 

simplified score system were highly accurate in classifying the four groups. The best model yielded an 

AUC of 0.984, and the simplified risk stratification score yielded an AUC of 0.962 for classification on 

the test dataset. We concluded that only a few neurocognitive tests are needed to accurately classify 

normal control, early MCI, late MCI and AD.  

 

 Clinical diagnosis of AD and MCI involves a large collection of clinical variables. They include 

two major neurocognitive tests: CDR and MMSE. MMSE and CDR are useful to distinguish between CN 

and AD but less so amongst EMCI, LMCI and CN (REF). We found that CDR was amongst the top 

performers to classify amongst CN, EMCI, LMCI, and AD, but MMSE was not. 

 

The ADNI dataset consists of a large array of neurocognitive tests that are not currently being 

used in clinical settings but could have future applications. With the advances in computing, it becomes 

possible to use machine learning to analyze the large array of neurocognitive tests to accurately classify 

CN, EMCI, LMCI, and AD.  

 

Although CDR and MMSE were used in the clinical diagnosis, there are other variables that were 

highly ranked, thereby providing insights into specific domain of cognitive dysfunction. It is possible that 

high performance was dominated by a few variables of the same cognitive test group. However, we used 

correlation-matrix analysis to remove variables that are highly correlated. Specifically, CDR and MMSE 

was found to be weakly correlated. This is not surprising as CDR and MMSE measure different 

dimensions of cognitive function. Our approach selected a small set of top predictors among many that 

are highly predictive of outcome.   
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The key findings are: i) our NN model was able to diagnose 4 classes, which is not commonly 

done, ii) our NN model performance is comparable to literature, iii) the combined top neurocognitive 

scores performed better in distinguishing CN, EMCI, LMCI, and AD than individual scores. Taken 

together, our NN model and risk score can ultimately improve classification or diagnosis accuracy 

because it uses multiparametric data. ML can also incorporate longitudinal multiparametric data to predict 

disease progression. 

 

 The top 5 classifiers were all neurocognitive test scores. The CDRSB is rated along 6 domains of 

functioning, with each domain being rated on a 5-point scale, and the global CDRSB being a function of 

the scores from these 6 domains [29]. A higher CDRSB indicates more severe impairment. LDELTOTAL 

measures episodic memory and performance is measured primarily through the amount of a story that is 

remembered [30]. A lower LDELTOTAL score indicates more severe impairment. The mPACCdigit test 

measures working memory by asking the patient to repeat back a sequence of digits of increasing length, 

until they are not able to. The mPACCtrailsB test determines performance of processing speed with a 

smaller score indicating more severe impairment. Lastly, the MMSE, one of the most clinically used 

battery tests, is a 30-question questionnaire that is used to screen for dementia and includes tasks that 

involve registration, recall, and attention. Individually, these tests all perform well in separating AD from 

CN individuals, but struggle to diagnose MCI subtypes, Indeed, we found classification using all top 5 

variables and the derived risk score system outperformed classification using CDRSB, LDELTOTAL, 

mPACCdigit, mPACCtrailsB, and MMSE individually. 

 

 It is interesting to note that intracranial volume (ICV), volume of ventricles, and whole brain 

volume by MRI were not highly ranked as classifiers of the 4 classes. Volumetric differences could 

readily distinguish between CN and AD groups but might not readily differentiate between CN and MCI 

or between MCI subclasses [31]. Other studies investigating hippocampal volume for classifying 

dementia subtypes showed promise, but it is still challenging for hippocampal volume to accurately 

classify between CN and MCI patients (Chincarini et al., 2016 ). We did not include hippocampal volume 

because it was not readily available in the dataset.  
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Many studies have previously examined neurocognitive tests and identified a few top 

neurocognitive classifiers using non-machine learning methods, but they are not discussed here [9,11-13] 

(see reviews by Abd Razak et al. and De Roeck et al.)  By comparison, only few studies utilized (mostly 

supervised learning) machine learning methods and some of these studies combined neurocognitive tests 

and MRI regional brain volumes as input variables [10,14-18] (Table 5). So et al. used a two-stage 

approach to classification with the first stage identifying the most important subsections of the MMSE 

and the second stage used subsections of the Consortium to Establish a Registry for Alzheimer's Disease 

(CERAD) assessment [14]. They achieved up to 97% classification accuracy in Stage 1 with an MLP and 

75% classification accuracy in Stage 2 with support vector machine. Lins et al. investigated a Brazilian 

dataset and utilized gender, age, study time (in years), AD8, MMSE, Clinical Dementia Rating (CDR), 

and SVFT scores, and two genetic markers (CYP46A1 and APOE4) [15]. They tested the predictive 

power using the Random Forest, support vector machine, and Stochastic Gradient Boosting classifiers 

along with an MLP neural network. They achieved a maximum binary classification accuracy between 

dementia and CN patients of 96% using the CDR and CYP46 features. Stamate et al. identified 

mPACCdigit, mPACCtrailsB, LDELTOTAL as the top classifiers [10]. They combined these scores with 

PET and MRI data and achieved an AUC of 0.88 for the binary classification of NC versus dementia. 

Chiu et al. developed NMD-12, a 12-question questionnaire that was shortened from the original 45 

question questionnaire from the HAICDDS project by the Information Gain algorithm [16]. They showed 

that this test performed better than the commonly used MMSE and MoCA tests with an AUC of 0.94 for 

discriminating between CN and MCI patients and 0.97 for MCI and dementia patients. Zhu et al. analyzed 

a Taiwan cohort and ranked the relative importance of neuropsychological tests using Information Gain, 

Random Forest, and the Relief algorithm [18]. They classified normal, MCI, VMD, and dementia. They 

selected a few top ranked features, and their optimized algorithm had an accuracy of 0.81 using Relief 

feature selection followed by classification with MLP method. Gill et al. investigated an MRI-based 

feature and Modified Barthel Index Score (activities of daily living) for binary classification between CN 

and MCI [17]. They used supervised machine learning and found the AUC to be 0.86. 

In sum, our results are comparable or compared favorably with previous studies although 

comparisons were not made on the same datasets. Our study is novel in that we employed a deep learning 

method, applied to a large and multi-center ADNI dataset with commonly used measures. We also 

classified amongst four groups instead of commonly used binary classification in most previous studies 

(i.e., between normal controls vs AD, or normal controls versus MCI).  
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 This study has several limitations. In this cohort white and non-Hispanic/Latino ethnicities are 

overrepresented. Some of the comorbidities, such as sleep apnea and depression, showed significant 

differences between the groups. We also did not include imaging variables. Further evaluation of 

additional independent datasets, including prospective studies, would improve generalizability of these 

findings.  

An eventual goal of our and other similar approaches is to ultimately create an automated 

machine learning algorithm and a derived simplified risk score system to help physicians to make more 

streamlined and accurate diagnoses. Machine learning approaches can help physicians by offering an 

objective initial assessment and possibly a second opinion of the diagnosis. Moreover, in some other 

fields of medicine, machine learning can already accurately estimate risk for coronary heart disease [34] 

and the detection of lung nodules on chest X-rays [35]. In addition to approximating physician skills, 

machine learning can also detect novel relationships not readily apparent to human perception, especially 

in large, complex, and longitudinal datasets. 

 

Conclusion 

 This study developed a deep-learning algorithm and a simplified risk score to identify the top 

neurocognitive test scores to classify normal control, early MCI, late MCI and Alzheimer’s disease. We 

concluded that only a few neurocognitive tests are needed to accurately classify normal control, early 

MCI, late MCI and AD. Accurate and early diagnosis may lead to better management of the diseases, 

including interventions that improve symptoms or slow the rate of decline of symptoms.  
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Figure Legends 

 

Figure 1. Flowchart of patient selection. 

 

Figure 2. Feature ranking for (A) Information Gain, (B) Recursive Feature Elimination with the Random 

Forest classifier, (C) Boruta Random Forest, (D) Permutation Importance, and (E) Logistic Regression 

with LASSO/L1 regularization 

 

Figure 3. Scatterplot of CDRSB scores versus Patient Diagnosis in the training dataset. The black dashed 

lines represent the cutoff points that maximize separation between diagnosis classes. 

 

Figure 4. Composite risk score stratification. The scores ranged from 0 to 11, with 11 indicating the 

greatest risk for developing Alzheimer’s and 0 indicating the lowest. 
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Table 1. Demographic Information, Neurocognitive Tests, MRI-extracted biomarkers, and Genetic 
Factors among CN, EMCI, LMCI, AD. Continuous variables are expressed as median (IQR) and the 
pairwise Kruskal Wallis test is employed. The χ2 test is used to identify significance between classes of 
categorical variables. P-values displayed are with Bonferroni’s correction. Pairwise comparisons are 
represented by symbols, where a * indicates a statistical difference between the CN and EMCI groups, a 
** indicates a statistical difference between the CN and LMCI groups, a *** indicates a statistical 
difference between the CN and AD groups, a $ indicates a statistical difference between the EMCI and 
LMCI groups, a $$ indicates a statistical difference between the EMCI and AD groups, and a # indicates a 
statistical difference between the LMCI and AD groups. 

 

 % of Patients  
 CN 

(n= 516) 
EMCI 

(n=383) 
LMCI 

(n=644) 
AD 

(n=394) 
P- 

values 

Demographics      
  Median Age (IQR)                   73 (70,78)  71 (66,77)* 74 (69,79)$ 75 (71,80)***,$$  
  Sex     <0.001 
       Male 244 (47.3%) 214 (55.9%) 392 (60.9%) 231 (58.6%)  
       Female 272 (52.7%) 169 (44.1%) 252 (39.1%) 163 (41.4%)  
  Race     <0.001 
      American Indian or 2 (0.4%) 1 (0.3%) 1 (0.2%) 4 (1%)  
     Asian 9 (1.7%) 5 (1.3%) 12 (1.9%) 36 (9.1%)  
     Pacific Islander 0 1 (0.3%) 1 (0.2%) 0  
     African American 32 (6.2%) 9 (2.3%) 30 (4.7%) 24 (6.1%)  
     White 471 (91.3%) 357 (93.2%) 596 (92.5%) 312 (79.2%)  
     Multiple Races 2 (0.4%) 6 (1.6%) 3 (0.5%) 15 (3.8%)  
     Unknown  0 4 (1%) 1 (0.2%) 3 (0.8%)  
  Ethnicity     0.002 
      Hispanic/Latino 22 (4.3%) 21 (5.5%) 18 (2.8%) 30 (7.6%)  
      Not Hispanic/Latino 492 (95.3%) 360 (94%) 623 (96.7%) 357 (90.6%)  
      Unknown  2 (0.4%) 2 (0.5%) 3 (0.5%) 7 (1.8%)  
Median Education Level 16 (14,18) 16 (14,18) 16 (14,18) 16 (13,18)***,$$,#  
Median Neurocognitive Measures (IQR) 
      ADAS11 6.3 (4,8.3) 8.7 (6,11)* 11.3 (8.7, 14.7)**,$ 19 (15, 23.3)***,$$,#  
      ADAS13 9.7 (6.7, 12.7) 13 (9, 17)* 18.7 (14.7, 23.3)**,$ 29.7 (24.4, 35)***,$$,#  
      ADASQ4 2 (1.8, 4) 4 (3,5)* 6 (4,8)**,$ 9 (8,10)***,$$,#  
      CDRSB 0 (0,0) 1 (0.5, 1.5)* 1.5 (1,2)**,$ 4.5 (3.5, 5.4)***,$$,#  
      FAQ 0 (0,0) 1 (0,3)* 2 (0,6)**,$ 13 (8,18)***,$$,#  
      LDELTOTAL 13 (11,16) 9 (8,10)* 4 (2,6)**,$ 0 (0,2)***,$$,#  
      MMSE 29 (29,30) 29 (28,29)* 27 (26,29)**,$ 23 (21,25)***,$$,#  
      RAVLT_forgetting 3 (2,5) 4 (2,6)* 5 (3,6)**,$ 5 (3,6)***  
      RAVLT_immediate 45 (38,52) 38 (32,46)* 30 (25,37)**,$ 23 (18,27)***,$$,#  
      RAVLT_learning 6 (4,8) 5 (3,7)* 3 (2,5)**,$ 2 (1,3)***,$$,#  
      RAVLT_% forgetting 30.4 (14.3, 50) 44.4 (24, 69.2)* 71.4 (42.9, 100)**,$ 100 (85.7, 100)***,$$,#  

  Trail Making Test Part B 
Time (TRABSCOR) 

73 (55.8, 93) 86 (65, 118)* 103 (75, 156)**,$ 200.5 (121, 
300)***,$$,# 

 

   mPACCdigit 0.2 (-1.5, 1.9) -3.1 (-5.8, -1.6)* -7.8 (-10.2, -4.9)**,$ -15.4 (-17.9, -
12.7)***,$$,# 

 
   mPACCtrailsB 0.3 (-1.7, 1.7) -2.7 (-5.2, -1)* -7.4 (-10, -4.6)**,$ -14.5 (-16.9, -

12.1)***,$$,# 
 

MRI Volumes 
   ICV x106/mm3 1.5 (1.4, 1.6) 1.5 (1.4, 1.6) 1.5 (1.4, 1.7)**,$ 1.5 (1.3, 1.6)#  
   Ventricles x104/mm3 3 (2, 4.2) 3.2 (2, 4.9) 3.8 (2.7, 5.7)**,$ 4.4 (3.2, 6.2) ***,$$,#  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2021. ; https://doi.org/10.1101/2020.11.09.20226746doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20226746
http://creativecommons.org/licenses/by-nc-nd/4.0/


 % of Patients  
   Whole Brain x105/mm3 10.3 (9.5, 10.9) 10.6 (9.8, 11.3)* 10 (9.3, 10.8)**,$ 9.6 (8.9, 10.4) ***,$$,#  
Genetic Factorsa      
        0 APOE4 alleles 373 (72.3%) 217 (56.7%) 300 (46.6%) 130 (33%)  
        1 APOE4 allele 127 (24.6%) 135 (35.2%) 263 (40.8%) 187 (47.5%)  
        2 APOE4 alleles 16 (3.1%) 31 (8.1%) 81 (12.6%) 77 (19.5%)  
Comorbiditiesb      
     Diabetes 34 (8.2%) 35 (11.4%) 47 (8.4%) 29 (8.7%) 0.108 
     COPD 17 (4.1%) 3 (1%) 11 (2%) 7 (2.1%) 0.012 
     Hypertension 179 (43.1%) 121 (39.5%) 221 (39.5%) 135 (40.4%) 0.174 
     Depression 76 (18.3%) 101 (33%) 168 (30.2%) 97 (29%) <0.001 
     Sleep Apnea 17 (4.1%) 48 (15.7%) 57 (10.2%) 22 (6.6%) <0.001 
     Glaucoma 38 (9.2%) 20 (6.5%) 29 (5.2%) 23 (5.8%) 0.03 

 
a: Percentages were based on the total number of individuals in each diagnosis class that had a specific number of APOE4 alleles 

b: Comorbidity data was not available for 101 CN patients, 77 EMCI patients, 85 LMCI patients, and 60 AD patients. 
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Table 2. Top 9 clinical variables ranked by 5 feature selection methods 
 

Ranking Information 
Gain 

Boruta 
Random 
Forest 

Recursive 
Feature 

Elimination 

Logistic Regression 
with LASSO 
regularization 

Permutation Importance 

1 CDRSB CDRSB CDRSB CDRSB LDELTOTAL 
2 LDELTOTAL LDELTOTAL LDELTOTAL APOE4 CDRSB 
3 mPACCdigit mPACCtrailsB mPACCdigit FAQ MMSE 
4 mPACCtrailsB mPACCdigit mPACCtrailsB PTEDUCAT mPACCdigit 
5 ADAS13 MMSE PTEDUCAT ADAS13 WholeBrain 
6 FAQ FAQ MMSE RAVLT_immediate ICV 
7 MMSE PTEDUCAT ADAS13 RAVLT_forgetting PTEDUCAT 
8 ADAS11 ADAS13 FAQ Ventricles RAVLT_perc_forgetting 
9 ADASQ4 ADAS11 AGE LDELTOTAL ICV 

 
ADAS11: Unweighted sum of 11 items from The Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) 
ADAS13: Unweighted sum of 13 items from ADAS-Cog 
ADASQ4: Score from Task 4 (Word Recognition) of the Alzheimer’s Disease Assessment Scale (ADAS) 
CDRSB: Clinical Dementia Rating - Sum of Boxes Score 
FAQ: Functional Activities Questionnaire 
ICV: Intracranial Volume 
LDELTOTAL: Delayed Total Recall 
MMSE: Mini-Mental State Examination 
PTEDUCAT: Education Level 
RAVLT_forgetting: Rey’s Auditory Verbal Learning Test – Forgetting score 
RAVLT_immediate: Rey’s Auditory Verbal Learning Test – Immediate Recall score  
RAVLT_percentage_forgetting: Rey’s Auditory Verbal Learning Test – Percent Forgetting 
mPACCdigit: Modified Preclinical Alzheimer Cognitive Composite with Digit test 
mPACCtrailsB: Modified Preclinical Alzheimer Cognitive Composite with Trails test 
Ventricles: Volume of Ventricles 
WholeBrain: Volume of Whole Brain 
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Table 3. Performance of the variables selected from the 5 feature selection methods in our NN. Bracket 
values indicate 95% confident intervals.  

 
 Boruta 

Random 
Forest 

Recursive 
Feature 

Elimination 

Permutation 
Importance 

Information 
Gain 

Logistic 
Regression  

AUC 0.981    
[0.971-0.99] 

 

0.986 
[0.978,0.994] 

0.982 
[0.972,0.99] 

0.978  
[0.966,0.988] 

0.910 
[0.887, 0.932] 

Accuracy (%) 91.24 90.72 90.72 90.21 73.71 
Sensitivity (%) 90.88 90.47 90.30 89.64 73.09 
Specificity (%) 96.94 96.78 96.76 96.53 90.75 
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Table 4: Points given by the risk score model for each cognitive test and per diagnosis class on the 
training dataset. 
Class CDRSB LDELTOTAL MMSE  mPACCdigit mPACCtrailsB 

Score  Points Score  Points Score  Points Score  Points Score  Points 
CN 0-0.1 -4 13.5-23 -1 28.6-30 0 -1.5 to 6.25 0 -2.5 to 7.4 0 

EMCI 0.1-1.3 0 8.5-13.5 0 27-28.6 0 -7 to -1.5 0 -6.3 to -2.5 0 

LMCI 1.3-3.5 0 0.2-8.5 +1 23-27 0 -15 to -7 0 -13 to -6.3 0 

AD 3.5-10 +2 0-0.2 +2 17-22.8 +1 -23.4 to -15 +1 -23.4 to -13 +1 
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Table 5. Comparison of machine learning studies in classifying different forms of dementia. VMD: very 
mild dementia, SVFT: Semantic Verbal Fluency Test, AD8: Dementia Screening Interview  

Study Name Feature Selection Methods Important Neuropsychological 
Measures 

AUC Classes Imaging for 
Classification 

This study Information Gain,  
Permutation Importance, 

Recursive Feature Elimination,  
Boruta Random Forest, and 

Logistic Regression 

CDRSB, LDELTOTAL, 
mPACCdigit, mPACCtrailsB, 

MMSE 

Boruta RF:0.984 
Recursive Feature 
Elimination:0.983 

Permutation 
Importance:0.982 

Information Gain: 0.978 
Logistic Regression: 0.906 

CN, EMCI, 
LMCI, AD 

No 

So et al.(2017) 
[14] 

Chi-squared test and 
Information Gain 

Stage 1: Orientation to place, 
Orientation to time, Three-stage 

commands, Recall, and 
Attention from MMSE 

Stage 2: Orientation to time, 
Memory Function (Trial 1), 
Orientation to place, Word 
Fluency, and Visuospatial 

function (Trial 2) 

Not reported Stage 1: CN and 
cognitive decline 
Stage 2: MCI and 

Dementia 

No 

Lins et al. 
(2018) 
[15] 

Linear Vector Quantization 
(LVQ) 

MMSE, SVFT**, CDR, AD8, 
study time 

Not reported CN, MCI, 
Dementia 

No 

 Stamate, et al. 
(2018) [10] 

Statistical Permutation Tests mPACCdigit, mPACCtrailsB, 
LDELTOTAL, ADAS13, FAQ 

NC vs dementia: 0.88 
NC vs MCI: Not reported 

CN, MCI, 
Dementia 

Yes 

Chiu et 
al.(2019) [16] 

Information Gain ranking Top 12 tests from the 
HAICDDS project (includes 

functional, memory, and 
cognitive tests) 

NC vs MCI: 0.94 
MCI vs VMD: 0.88 

MCI vs dementia: 0.97 
VMD vs dementia: 0.96 

CN, MCI, VMD, 
Dementia 

No 

Zhu et al.(2020) 
[18] 

Random Forest, Information 
Gain, and Relief 

Not reported 0.95 CN, MCI, 
VMD*, dementia 

No 

Gill et al. 
(2020) [17] 

Information Gain ranking Mild Behavior Impairment 
(MBI) 

NC vs MCI/AD: 0.86 NC, MCI/AD Yes 
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