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Abstract We construct a universal epidemic curve for
COVID-19 using the epidemic curves of eight nations

that have reached saturation for the first phase, and
then fit an eight-degree polynomial that passes through
the universal curve. We take India’s epidemic curve up

to September 22, 2020 and overlap it with the universal
curve by minimizing square-root error. The constructed
curve is used to forecast epidemic evolution up to Jan-
uary 1, 2021. The predictions of our model and those of

supermodel for India are reasonably close to each other
considering the uncertainties in data fitting.

Keywords COVID-19 · Universal Curve · Epidemic

forecast · India’s COVID-19 evolution

1 Introduction

The COVID-19 pandemic is one of the most devastating
natural disaster in the last 100 years and it is still rag-

ing around the world [52]. As of October 25, 2020, the
total infection count is around 43 million and the total
death cases crossed 1.1 million [51]. The whole world
is engaged in mitigation efforts of COVID-19. An im-
portant activity in this direction is the prediction of
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epidemic evolution. Towards this aim, in this paper,
we construct a universal epidemic curve for COVID-19

and use this curve to forecast the epidemic evolution in
India.

The SIR model. constructed by Kermack and McK-
endrick [21], is one of the first models for epidemic evo-

lution. In this model, the variables S and I describe
respectively the numbers of susceptible and infected in-
dividuals, while the variable R represents the removed

individuals who have either recovered or died. SEIR
model, which is a generalization of SIR mode, includes
exposed individuals, E, who are infected but not yet
infectious [6,14]. Researchers have constructed deriva-

tives of the above models to include lockdowns and
travel restrictions, asymptomatic infections, etc. For
example, Peng et al. [34] constructed a seven-variable

model that includes quarantined and death variables
and predicted that the daily count of exposed and infec-
tious individuals in China will be negligible by March
30, 2020. Chinazzi et al. [12] and Hellewell et al. [19]
studied the effects of travel restrictions and isolation
on epidemic evolution. Mandal et al. [29] constructed
a India-specific model that includes intercity connec-

tivity. Shayak et al. [41] modelled epidemic evolution
using delayed-differential equations. In addition, Rah-
mandad et al. [35] has also used a model to predict In-
dian epidemic growth. Schüttler et al. [39] showed that
I(t) or total death count could be modelled using the
error function.

Asymptomatic carriers play a major role in the spread
of COVID-19 epidemic, hence there have been many
attempts to model this effect. In particular, Ansumali
et al. [2] and Robinson et al. [38] have created SAIR
model that takes into this important factor. Recently,
Vidyasagar at al. [49] and Agrawal et al. [1] have adopted
SAIR model to construct an epidemic evolution for In-
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dia; this model, termed as supermodel, has many pre-
dictions. For example, it predicts 10.6 million cases by
the end of this year.

Data-driven models are also used for epidemic fore-
cast. Recent analysis of COVID-19 data reveals that
the epidemic curve begins with an exponential growth,
after which we it follows a sequence of power laws [53,
22,28,7,11,10,48,31,42,3]. The epidemic curve flattens
after square-root growth. Motivated by this observa-
tion, in this paper we construct a universal epidemic
curve for COVID-19 by appropriate normalization. We
use the epidemic data of the first phases of epidemic
growth.

The above universal behaviour [28,32] can be uti-
lized for the predictions of epidemic in various coun-
tries. In this paper we overlap India’s epidemic curve on
the universal curve by appropriate normalization. We
observe that the model predictions describe the past
data quite well. In particular, the model forecast for
last five weeks are in good agreement with the observed
data within 12.3%.

In the next section we construct the universal epi-

demic curve using the epidemic data of several coun-
tries.

2 Construction of the universal epidemic curve

To construct the universal curve for the COVID-19 epi-
demic, we take the epidemic evolution curves of eight
countries: France, Spain, Italy, Switzerland, Turkey, Nether-

lands, Belgium and Germany. We chose these countries
because they have reached saturation for the first phase.
We obtained the data from ’EU Open Data Portal’ [13]

and WorldOMeter [51] websites. The starting dates of
the data collection for these countries are given in Ta-
ble 1. We take the same end date, 30 June 2020, for all

the nations.

We consider the curves for cumulative infection counts
(I(t)) versus number of days (t). To construct the uni-
versal curve, we normalize the curves for the selected
countries by dividing I(t) and t with Imax and tmax re-
spectively. Imax and tmax for each country are defined as
the value of I(t) and t as on 30th June 2020 (see Table
1). The normalized I(t) curves indeed exhibit a uni-
versal behaviour, as shown in Fig. 1. The dashed lines
represent individual countries, whereas the solid black
curve represents the average of all the eight countries.

Note that the universal curve starts with an ex-
ponential part and then it contains various power-law
regimes before reaching a saturation. Refer to Fig. 2
and references [10,48,7,31,42,3] for more details on var-
ious power-law regimes of the epidemic curves. Rather

Table 1 Imax and tmax for the eight nations used for the
construction of universal curve, the starting date taken for
universal curve. The end date for all of them are taken to be
June 30, 2020.

Countries
(Start Date)

Imax tmax

France
(February 24)

164,801 128

Spain
(February 26)

296,351 126

Italy
(February 21)

240,578 131

Switzerland
(February 26)

31,714 126

Turkey
(March 12)

199,906 111

Netherlands
(February 27)

50,273 125

Belgium
(February 29)

61,427 123

Germany
(February 23)

195,832 129

Fig. 1 The normalised I(t) vs. t plots of eight countries con-
sidered for the construction of the universal curves. The solid
black curve represents the average of all the plots.

than fitting with various power laws at different stages
of the epidemic, we fit a large-degree polynomial that
passes through the universal curve after the exponential
regime. This polynomial is listed in Table 2.

3 Modelling Indian epidemic curve using the
universal curve

After the construction of an unversal epidemic curve for
COVID-19, we attempt to overlap the Indian epidemic
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Fig. 2 The black curve is the universal curve of Fig. 1. We
illustrate various power-law regimes in the universal curve.

Table 2 Polynomial that fit with the universal curve of Fig.
1 and 2.

Figure De-
tails

Best-fit functions with errors

A polyno-
mial that
fits with the
universal
curve of Fig.
1

1) −240.5t8 +1130t7−2194t6 +2253t5−
1288t4+389t3−50.26t2+2.539t−0.03237
(std : ±0.089)

Best-fit
curves for
various
regimes
shown in
Fig. 2

1) 8.31e0.44t (±3.81%)
2) 44.54e0.24t (±5.35%)
3) 3228.69t− 63346.48 (±2.26%)
4) 14745.83

√
t + 3354.79 (±1.55%)

curve on the universal curve by employing appropriate
normalization. The real-time data of India’s Infection
count were accessed from ’EU Open Data Portal’ from
4th March to 5th October. Note that India’s I(t) curve
is yet to reach saturation, hence we cannot determine
tmax and Imax from India’s epidemic curve at present.
For optimization purpose of our algorithm, we used In-
dia’s data from 4th March to 22nd September, 2020.
We determine these quantities approximately using the
procedure outlined in Algorithm 1.

We estimate tmax and Imax by minimizing the fol-
lowing function:

Error =

[∑
t

[P (t/tmax) − I(t)/Imax]2

]1/2

, (1)

where P (t/tmax) is the polynomial fit for the univer-
sal function, shown in Table 2. We choose tmax and
Imax for which the error is minimum (see Algorithm 1).

Fortunately, the process converges towards the unique
minimum. The numerical procedure yields Imax = 26.85
million and tmax = 850 days for which the value of error
in equation 1 is 0.1023. These values yield a maximum
overlap for India’s normalised curve on the Universal
curve (Fig. 4). We expect to get a better fit with more
data (after later date).

Algorithm 1: Optimizing Imax and tmax.

Input: I(t) and t as 1D arrays
1 Function P (x):
2 return polynomial
3

4 Errormin = 10
5 tmax = 700
6 Imax = 10000000
7 topt = 0
8 Iopt = 0
9

10 while tmax <= 1000 do
11 while Imax <= 40000000 do
12 Error =

[
∑N

k [P (tk/tmax)− Ik(t)/Imax]2 ]1/2

13

14 if Error < Errormin then
15 Errormin= Error
16 Iopt=Imax

17 topt=tmax

18 Imax = Imax + 10000

19 end
20 tmax = tmax + 2

21 end
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Fig. 3 For India’s epidemic curve, contour plot of log(Error)
as a function of Imax and tmax, where Error is as defined
in Eq. 1. The small dot inside the innermost closed curve
represents the minima for which Imax = 26.85 million cases
and tmax = 850 days.
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Fig. 4 Normalized cumulative (red) and daily infection
(blue) counts for India. The solid curves represent the ac-
tual data, while the dashed curves are the universal curves
using which we can forecast India’s curves.

After this exercise, we construct India’s epidemic

curve I(t) using the universal curve. By multiplying
t/tmax by tmax and I(t)/Imax by Imax, we obtain the
predictions for I(t) for any date, as shown in Fig. 5.

We construct a curve for İ(t), which is the daily cases,
by taking a numerical derivative of I(t) curve.
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Fig. 5 Projections of COVID-19 epidemic curves for India
using polynomial fit curve of Table 2.

4 Comparing the predictions with the epidemic
data

Once India’s epidemic curve I(t) has been constructed,
we can forecast infection count at any date, as shown
in Fig. 4 and Fig. 5. Note that the India’s I(t) curve
overlaps with the universal curve quite well. Regard-
ing the forecast, the universal curves indicate that the

linear regime starts at around t/tmax =0.25. For India,
this time translates to the last week of September. Note
that the daily cases are approximately constant in the
linear regime, but they start to decrease after the linear
regime.

Table 3 Predictions of new COVID-19 cases on weekly basis
using the universal curve or the best-fit polynomial.

Week Actual
weekly new
cases (in
millions)

Predicted cases
with percent-
age errors (in
millions)

India: Week-I
(Sept 1 - Sept 7)

0.589 0.549 (6.79%)

India: Week-II
(Sept 8 - Sept 14)

0.65 0.573 (11.85%)

India: Week-III
(Sept 15 - Sept
21)

0.632 0.593 (6.17%)

India: Week-IV
(Sept 22 - Sept
28)

0.583 0.612 (4.97%)

India: Week-V
(Sept 29 - Oct 5)

0.549 0.626 (12.3%)

India: Week-VI
(Oct 6 - Oct 12)

NA 0.636

India: Week-VII
(Oct 13 - Oct 19)

NA 0.643

India: Week-VIII
(Oct 20 - Oct 26)

NA 0.647

India: Week-IX
(Oct 27 - Nov 2)

NA 0.649

India: Week-X
(Nov 3 - Nov 9)

NA 0.648

India: Week-XI
(Nov 10 - Nov
16)

NA 0.644

India: Week-XII
(Nov 17 - Nov 23)

NA 0.639

In Table 3, we list weekly new cases, along with the
model predictions, for India. We also illustrate these
numbers in Fig. 6. The model predictions are close to
the actual data, with the maximum error if 12.3%. A

closer look however reveals that the model’s peak for
the daily cases is delayed compared to the actual cases.
This is somewhat expected due to uncertainties in de-
termination of the universal curve. On the whole, our
model predictions appear to be reasonably robust.
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Fig. 6 Bar chart of the weekly new cases of India’s epidemic
(also see Table 3).

5 Comparison with other leading epidemic
models for India

As described in the introduction, there are interest-
ing low-dimension models of epidemic evolution. These

models are refinement of SEIR model. In this section,
we compare our model predictions with some of the
leading epidemic models for India. In one such model,
Rahmandad et al. [35] forecasted that in early 2021, the

daily infections count in India will reach 0.287 million
(2.87 lacs). Also, refer to Song et al. [43]. Our model
predicts that the daily count will much lower than the

above numbers, unless India faces a devastating second
wave.

India’s supermodel [49,1], which is based on SAIR
model [2,38], has gained major prominence recently.
This model predicts that India may have reached herd
immunity with around 38 crores of the population ei-
ther infected or having antibodies. One of the predic-
tions of the supermodel is that the infection counts
at the end 2021 would be 10.6 million. For January
1, 2021, our prediction for the total infection count is
approximately 14.57 million, and that for daily cont is
81 thousands. These are over-predictions compared to

supermodel, but the predictions are reasonably close.
We believe that our present model could be improved
significantly by employing machine learning algorithms.

6 Discussions and Conclusions

We construct a universal epidemic curve for COVID-19
using the first-phase epidemic curves for the eight coun-
tries: France, Spain, Italy, Switzerland, Turkey, Nether-
lands, Belgium and Germany. The curves for the indi-
vidual countries collapse to a single curve within a stan-

dard deviation of 0.089 indicating a generic behaviour
of the epidemic. We also construct a eight-degree poly-
nomial that fits with the universal curve.

Universality of the epidemic curve is an important
landmark considering that many major physical phe-
nomena exhibit universality (e.g., law of gravitation,
phase transition, etc.). Note however that the univer-
sality in epidemic is somewhat surprising considering
major differences in demography, government actions,
lockdown conditions, etc.

The discovery of the universal epidemic curve gives
us an interesting handle for forecasting the epidemic
evolution. An advantage of this approach over others is
that it is purely data-driven. Hence, we do not need to
model the differential equation. A disadvantage of this
method is that we do not have any control parameter.
For example, SAIR model can be tuned by changing the
coefficient of some terms of the differential equations,
but we cannot do so in our model because we do not
have any control over the data.

We compared India’s reported epidemic curve with

the universal curve with appropriate scaling. We ob-
served that India’s present epidemic curve fits with the
part of the universal curve. This discovery enables us

to forecast the epidemic evolution. We observe that our
forecasts for 5 weeks match with the observed data
within 12.3%, which is quite encouraging considering
so many uncertainties. Note however that our predic-

tions tend to be systematically larger than the actual
data, which could be due to errors in the construction
of the universal curve.

Our model predicts that the daily cases for India’s
COVID-19 epidemic are falling, which is consistent with
the observations. This result indicates the cumulative
I(t) has reached a linear regime for India’s epidemic.

The predictions of our models and those of the super-
model are reasonably close to each other.

The universal curve could be further refined using
more advanced algorithm, such as machine learning and
deep neural networks. Also, we believe that this model
is robust for modelling the second and third waves of
COVID-19 as well. In addition, it will be interesting to
work out the universal curves for the daily cases, as well
as for the active cases. We are in the process of such
extensions.

Acknowledgements We thank Soumyadeep Chatterjee, Shash-
wat Bhattacharya, and Asad Ali for useful discussions. This
project is supported by a SERB MATRICS project SERB/F/847/2020-
2021.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.07.20220392doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.07.20220392
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Aryan Sharma et al.

References

1. Agrawal, M., Kanitkar, M., Vidyasagar, M.: Modelling
the spread of SARS-CoV-2 pandemic - Impact of lock-
downs & interventions. Indian Journal of Medical Re-
search preprint (2020) URL https://www.ijmr.org.in/

temp/IndianJMedRes000-6388321_174443.pdf
2. Ansumali, S., Kaushal, S., Kumar, A., Prakash, M.K.,

Vidyasagar, M.: Modelling a Pandemic with Asymp-
tomatic Patients, Impact of Lockdown and Herd Immu-
nity, With Applications to SARS-CoV-2. Annual Re-
views in Control. doi:10.1007/s41403-020-00130-w (2020)

3. Asad, A., Srivastava, S., Verma, M.K.: Evolution
of COVID-19 Pandemic in India. Transactions of
the Indian National Academy of Engineering, pp.1-8.
doi:10.1007/s41403-020-00166-y (2020)

4. Barkur, G., Vibha, G.B.K.: Sentiment analysis of nation-
wide lockdown due to covid 19 outbreak: Evidence from
india. Asian journal of psychiatry (2020)

5. Bhardwaj, R.: A predictive model for the evolution of
covid-19. Transactions of the Indian National Academy
of Engineering. doi:10.1007/s41403-020-00130-w (2020)

6. Bjørnstad, O.N.: Epidemics: Models and Data using R.
Springer (2018)

7. Blasius, B.: Power-law distribution in the number
of confirmed COVID-19 cases. arXiv preprint.
arXiv:2004.00940. doi:10.1063/5.0013031 (2020)

8. Chatterjee, K., Kumar, A., Shankar, S.: Healthcare im-
pact of covid-19 epidemic in india: A stochastic math-
ematical model. Medical Journal Armed Forces India.
doi:10.1016/j.mjafi.2020.03.022 (2020)

9. Chatterjee, P., Nagi, N., Agarwal, A., Das, B., Banerjee,
S., Sarkar, S., Gupta, N., Gangakhedkar, R.R., et al.:
The 2019 novel coronavirus disease (covid-19) pandemic:
A review of the current evidence. Indian Journal of Medi-
cal Research 151(2), 147. doi:10.4103/ijmr.IJMR 519 20
(2020)

10. Chatterjee, S., Asad, A., Shayak, B., Bhattacharya,
S., Alam, S., Verma, M.K.: Evolution of covid-
19 pandemic: Power-law growth and saturation.
Journal of Indian Statistical Association 58(1),
1–31 (2020). URL https://sites.google.com/

site/indianstatisticalassociation/journal/

journalprevious-volumes/june-2020
11. Cherednik, I.: Momentum managing epidemic spread and

Bessel functions. arXiv preprint. arXiv:2004.06021. doi:
10.1016/j.chaos.2020.110234 (2020)

12. Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C.,
Litvinova, M., Merler, S., y Piontti, A.P., Mu, K.,
Rossi, L., Sun, K., Viboud, C.: The effect of travel re-
strictions on the spread of the 2019 novel coronavirus
(COVID-19) outbreak. Science, 368(6489), pp.395-400.
doi:10.1126/science.aba9757 (2020)

13. Covid-19 india cases tracker. URL https:

//data.europa.eu/euodp/en/data/dataset/

covid-19-coronavirus-data
14. Daley, D.J., Gani, J.: Epidemic Modelling: An Introduc-

tion. Cambridge University Press (2001)
15. Dong, Y., Dai, T., Wei, Y., Zhang, L., Zheng, M., Zhou,

F.: A systematic review of SARS-CoV-2 vaccine candi-
dates. Signal Transduction and Targeted Therapy, 5(1),
pp.1-14. doi:10.1038/s41392-020-00352-y (2020)

16. Giordano, G., Blanchini, F., Bruno, R., Colaneri, P.,
Di Filippo, A., Di Matteo, A., Colaneri, M.: Modelling
the covid-19 epidemic and implementation of population-
wide interventions in italy. Nature Medicine pp. 1–6.
doi:10.1038/s41591-020-0883-7 (2020)

17. Hale, T., Petherick, A., Phillips, T., Webster, S.: Vari-
ation in government responses to covid-19. Blavatnik
school of government working paper 31 (2020)

18. Hale, T., Webster, S., Petherick, A., Phillips, T., Kira, B.:
Oxford covid-19 government response tracker. Blavatnik
School of Government 25 (2020)

19. Hellewell, J., Abbott, S., Gimma, A., Bosse, N.I., Jarvis,
C.I., Russell, T.W., Munday, J.D., Kucharski, A.J., Ed-
munds, W.J., Sun, F., Flasche, S.: Feasibility of con-
trolling COVID-19 outbreaks by isolation of cases and
contacts. The Lancet Global Health. doi:10.1016/S2214-
109X(20)30074-7 (2020)

20. Hethcote, H.W.: The mathematics of infec-
tious diseases. SIAM review, 42(4), pp.599-653.
doi:10.1137/S0036144500371907 (2000)

21. Kermack, W.O., McKendrick, A.G.: A contribution to
the mathematical theory of epidemics. Proceedings of the
royal society of london. Series A, Containing papers of a
mathematical and physical character, 115(772), pp.700-
721. doi:10.1098/rspa.1927.0118 (1927)

22. Komarova, N.L., Schang, L.M., Wodarz, D.: Pat-
terns of the COVID19 epidemic spread around the
world: exponential vs power laws. medRxiv preprint.
doi:10.1101/2020.03.30.20047274 (2020)

23. Kwok, K.O., Lai, F., Wei, W.I., Wong, S.Y.S.,
Tang, J.W.: Herd immunity–estimating the level re-
quired to halt the covid-19 epidemics in affected
countries. Journal of Infection 80(6), e32–e33.
doi:10.1016/j.jinf.2020.03.027 (2020)

24. Labadin, J., Hong, B.H.: Transmission Dynamics
of 2019-nCoV in Malaysia. medrxiv preprint.
doi:0.1101/2020.02.07.20021188 (2020)

25. Lancet, T.: India under covid-19 lockdown. Lancet (Lon-
don, England) 395(10233), 1315 (2020)

26. Le, T.T., Andreadakis, Z., Kumar, A., Roman, R.G.,
Tollefsen, S., Saville, M., Mayhew, S.: The covid-19 vac-
cine development landscape. Nat Rev Drug Discov 19(5),
305–306. doi:10.1038/d41573-020-00073-5 (2020)
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