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Abstract The COVID-19 pandemic has prompted an
international effort to develop and repurpose medica-

tions and procedures to effectively combat the disease.
Several groups have focused on the potential treat-
ment utility of angiotensin-converting–enzyme inhibitors
(ACEIs) and angiotensin-receptor blockers (ARBs) for
hypertensive COVID-19 patients, with inconclusive ev-
idence thus far. We couple electronic medical record
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(EMR) and registry data of 3,643 patients from Spain,
Italy, Germany, Ecuador, and the US with a machine

learning framework to personalize the prescription of
ACEIs and ARBs to hypertensive COVID-19 patients.
Our approach leverages clinical and demographic in-

formation to identify hospitalized individuals whose
probability of mortality or morbidity can decrease by
prescribing this class of drugs. In particular, the algo-

rithm proposes increasing ACEI/ARBs prescriptions
for patients with cardiovascular disease and decreasing
prescriptions for those with low oxygen saturation at
admission. We show that personalized recommendations

can improve patient outcomes by 1.0% compared to the
standard of care when applied to external populations.
We develop an interactive interface for our algorithm,

providing physicians with an actionable tool to easily as-
sess treatment alternatives and inform clinical decisions.
This work offers the first personalized recommendation
system to accurately evaluate the efficacy and risks of
prescribing ACEIs and ARBs to hypertensive COVID-19
patients.

Keywords COVID-19 · ACE inhibitors · ARBs ·
Prescriptive Analytics · Machine Learning

Highlights

– This paper introduces a data-driven approach for
personalizing the prescription of ACE inhibitors
(ACEIs) and angiotensin-receptor blockers (ARBs)
for hypertensive COVID-19 patients.

– Leveraging an international cohort of more than
3,500 patients, we identify clinical and demographic
characteristics that may affect the effectiveness of
ACEIs/ARBs for COVID-19 patients, such as low
oxygen saturation at admission.
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– We developed a user-friendly online application that
is available to physicians to facilitate interpretation
and communication of the results of the algorithm.

1 Introduction

Since its emergence in December 2019, the COVID-19
pandemic has put an enormous strain on healthcare
systems around the world. As of October 19, 2020, more
than 39 million cases have been reported globally, with
a death toll greater than 1.1 million [55]. Patients who
have developed severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) infection exhibit a wide range
of clinical responses, from being asymptomatic to be-

ing critically ill [45]. Given the heterogeneity of clinical
manifestations of the disease, it is of critical importance
to be able to understand how patients will respond to
various potential treatments [50].

There is still limited evidence from randomized con-
trolled trials (RCTs) to recommend specific anti-SARS-
CoV-2 treatment for patients with a suspected or con-

firmed COVID-19 infection. A preliminary report from
the RECOVERY collaborative group demonstrates that
the use of dexamethasone for COVID-19 patients re-
ceiving either invasive mechanical ventilation or oxygen
alone can result in lower mortality [23]. Among an-
tivirals, remdesivir is the only drug which has shown
promising results and recently received FDA approval;

in a relatively small cohort of patients hospitalized for
severe COVID-19, clinical improvement was observed
in 68% of the participants [22]. In separate multi-center
studies, it was shown that remdesivir can lead to faster
clinical improvement in adults who were hospitalized
with COVID-19 and had evidence of lower respiratory
tract infection [3, 54]. There is controversy regarding the
effects of chloroquine and hydroxychloroquine [9, 19, 20].
A wide range of other therapies are continuously be-
ing evaluated, including corticosteroids, other antiviral
agents (lopinavir, ritonavir), antibodies, and convales-
cent plasma transfusion [56].

ACE inhibitors (ACEIs) and angiotensin-receptor
blockers (ARBs) have gained attention regarding their
potential benefits and harms to COVID-19 patients.
ACEIs and ARBs are two medications commonly used
to treat high blood pressure. They work on the same
biochemical pathway in the body to treat hypertension,
but at different spots. Initially, there was concern re-
garding a potential increased risk to COVID-19 patients

taking ACEI/ARBs due to the drugs’ biological mecha-
nisms. SARS-CoV-2 attacks human cells by binding its
viral spike protein to the membrane-bound form of the
monocarboxypeptidase angiotensin-converting enzyme
2 (ACE2) [27]. ACEIs and ARBs directly act on the

renin angiotensin aldosterone system, raising specula-
tion that ACE inhibitors and ARBs might be harmful
in patients with the disease [17]. However, multiple
clinical investigations from various countries showed
that neither ACEIs nor ARBs were associated with an
increased risk of in-hospital death or severe COVID-
19 [31, 34, 37, 39, 43]. To the contrary, among hospi-
talized patients with COVID-19 and coexisting hyper-
tension, inpatient use of ACEI/ARBs was associated
with lower risk of all-cause mortality [58]. The effects of

ACEI/ARBs for hypertensive COVID-19 patients are
therefore not well-understood, and there is no consensus
on appropriate uses of these drugs [53].

Personalized or precision medicine aims at providing

answers to these types of questions [24]. This emerging
field is expected to radically transform medical care
and public health, uncovering prevention and treatment
programs more closely targeted to the individual patient
[29]. Machine learning (ML) and analytics play a major
role in this endeavor [15]. By leveraging large datasets,
these techniques can generate insights and derive de-
cision rules by processing information that exceed the
capacity of the human brain [42]. Thus, they are able
to exploit data patterns at the individual level to deter-

mine the effect of a treatment or the projected risk of
mortality/morbidity.

1.1 Literature Review

Our objective is to develop a model that determines
whether a treatment T can reduce the risk of mortal-

ity/morbidity for an individual patient. We include
in our dataset n observations of the {(xi, yi, zi)}ni=1,
where xi ∈ Rp are the features of the ith observation,
zi ∈ [T,C] is the assigned treatment or control, and
yi ∈ R is the corresponding outcome of interest. We
let y(C) be the potential outcome resulting from the
assignment of the control and y(T ) of the treatment.

This problem lies at the core of the causal inference
literature. Rubin [47] set its foundation by proposing
the Potential Outcomes Framework which assumes that
patients are prescribed a treatment via a probabilistic as-
signment mechanism. Under this framework, the causal
effect of a treatment T is measured by the difference in
the potential outcomes y(T )− y(C). The fundamental
challenge of this problem is that for any given patient,
only one of the potential outcomes is observed [1, 48].
As a result, causal inference methodologies usually focus

on estimating the aggregated treatment effect, studying
its impact on an entire population rather than at the
individual level.

Personalized medicine calls for more individualized
approaches that leverage patient-level characteristics to
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evaluate treatment efficacy for each patient in isolation.
Since machine learning estimates a binary or continu-
ous outcome of interest from large, high-dimensional
datasets, a common approach involves training separate
prediction models for the treatment and the control
group, and recommending the alternative with the best
outcome [18, 41]. This technique is referred in the liter-
ature as “Regress and Compare” [51]. Bertsimas et al.
[5] showed how this framework can be extended for the
management of diabetes by applying the k-nearest neigh-

bors method. While a useful and intuitive framework,
“Regress and Compare” has received criticism as it can
be subject to prediction errors and biases associated
with the specific classification or regression algorithm.

More advanced machine learning approaches are focused
on tree-based methods that involve recursive partition-
ing [30], causal trees [2], causal forests [52], and optimal
prescriptive trees [6].

Recently, a machine learning based framework was
proposed to identify the best therapy for patients with
coronary artery disease [8]. The authors created a series
of regression models for several treatment alternatives

to predict the time from diagnosis to a potential heart
attack or a stroke. It extends the classical “Regress and
Compare” approach by aggregating an ensemble of ML
models, making it more robust to individual method

biases. The algorithm recommends the therapy with the
best expected outcome through a voting mechanism that
considers the predictions from each of the regression

models. We build upon this framework and adapt it to
the specific challenges posed by COVID-19.

1.2 Contributions

In this paper, we propose a machine learning-based ap-
proach for personalized prescription of ACEI/ARBs for
hospitalized hypertensive patients with COVID-19. We
leverage EMR and registry data of 3,643 patients from
Spain, Italy, Germany, Ecuador, and the US to provide

accurate predictions of expected mortality and morbid-
ity. We then propose individualized treatment decisions
by applying the voting scheme that was introduced by
Bertsimas et al. [8]; we combine multiple binary classifi-

cation models to identify whether there is a potential
benefit from prescribing this class of drugs based on a
patient’s characteristics. The main contributions of this
work can be summarized as follows:

– We combine EMR data with an international registry
to create a diverse dataset from multiple clinical cen-
ters. We present a unified dataset from 38 hospitals of
five distinct countries, encompassing demographics,
pre-admission comorbidities and medications, vitals

at admission, laboratory test results, and inpatient
medications.

– We develop binary classification models to predict
mortality and morbidity during hospital admission
under treatment alternatives.

– We utilize an ensemble analytical framework, that
has been previously applied to personalize treat-
ments for coronary artery disease and hyperten-
sion [7, 8], to evaluate the effectiveness of ACEI/ARBs
at the individual level.

– We discover specific patient populations who benefit
most from this class of drugs, such as patients with
cardiovascular disease, as well as those who may suf-
fer from these prescriptions, like patients with low
oxygen saturation at admission. We provide clini-
cal insights that validate findings from the medical
literature, and propose new hypotheses for further
investigation.

– We provide a dynamic online application with a user-
friendly interface of the predictive models and the
resulting prescriptions for use by clinical providers.

2 Methods

We propose a machine learning approach to the problem

of personalizing treatments. A patient’s prescription is
generated based on individualized risk scores under each
treatment alternative. We leverage clinical data from
3,643 patients across international institutions to train
our models. One ensemble of various machine learning
models is trained to predict mortality/morbidity risk

with ACEI/ARBs, and another ensemble is trained to
predict the risk when patients are not given ACEI/ARBs.
We then employ a voting scheme to aggregate the risk
scores of the individual methods and give a final prescrip-

tion and estimated benefit of treatment. An overview of
the approach is illustrated in Figure 1.

2.1 Data Resources

This study utilizes patient data from 38 hospitals across
five countries: Spain, Italy, Ecuador, Germany, and the
United States. Depending on the institution, data is
sourced either from a standardized COVID-19 specific
registry or from electronic medical records. The data
is separated into a derivation cohort, which is used to

train the machine learning models, and a validation
cohort, which is used to test the models on unseen pop-
ulations. The derivation cohort is comprised of data
from 2,842 hypertensive patients from HOPE registry’s
hospitals in Spain and from HM Hospitals, also in Spain
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Patient-level data:
§ Clinical features available 

at admission (!)
§ Outcome (" ∈ [0,1])
§ ACEI/ARBs treatment 

indicator (Z ∈ [0,1])
No ACEI/ARBs 
treatment group 

(* = 0) 

ACEI/ARBs 
treatment group 

(* = 1)

Predict probability of 
mortality/morbidity with
ACEI/ARBs treatment

Predict probability of 
mortality/morbidity without

ACEI/ARBs treatment

1. Data Processing:
Construct COVID-19 patient 
database from international 
collaborating institutions.

2. Matching Algorithm:
Match treated and untreated 
populations based on clinical 
features and other treatments.

3. Predictive Modeling:
Train several binary 
classification models to predict 
patient risk under treatment 
alternatives.

4. Treatment Prescription: 
Aggregate model predictions 
through voting scheme to 
generate final prescription.

Method Prescribe
ACEI/ARBs?

CART Yes

OCT No

… …

XGBoost Yes

4/6 methods predict improvement 
under ACEI/ARBs 

à prescribe ACEI/ARBs

Fig. 1: An overview of the machine learning approach to prescription personalization.

[21]. The validation cohort consists of data from 801 pa-
tients diagnosed with hypertension from the following

organizations and geographic locations: HOPE (Italy,
Germany, Ecuador), ASST Cremona (Northern Italy),
and Brigham and Women’s Hospital (Massachusetts,
United States). The study population includes adult pa-
tients with a hypertension diagnosis who were admitted
to the hospital with confirmed severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection by
polymerase chain reaction testing of nasopharyngeal
samples. Hypertension was identified using diagnosis
codes from a patient’s medical record or from patient

history available in the registry, as accepted in their
respective medical centers or attending medical teams;
this is detailed further in the Appendix. A description
and details of the collaborating organizations, as well as
the time horizon of admissions for each organization’s
study population, can be found in Table 1.

2.2 Clinical Features

Dataset features include demographics, pre-admission
comorbidities and medications, vitals at admissions, lab-
oratory test results, and inpatient medications. In total,
we compile 29 features, which are summarized in Supple-
mental Tables 3-4. Comorbidities are derived from the
International Classification of Diseases (ICD), 9th and
10th revision, using codes of hospital discharges. Medi-

cations are extracted from the Anatomical Therapeutic
Chemical (ATC) Classification System. We record the
earliest laboratory test results obtained within the hos-
pital admission and include both binary measurements
(e.g., D-dimer≥ 0.5mg/L) and continuous measurements

(e.g., creatinine in mg/dL). We also collect information
on patient mortality, as well as inpatient development

of specific morbidities during hospitalization, including:
sepsis, acute renal failure, heart failure, and embolic
event. The outcome of interest is the occurrence of mor-
tality or morbidity during hospital admission. Missing
values are imputed using multivariate imputation by
chained equations (MICE) (details can be found in the

Appendix) [12]. We exclude all features that are not
present for at least 70% of the observations.

2.3 Covariate Matching

As opposed to data obtained from a randomized con-
trolled trial (RCT), for which treatment assignment is
random, the data in our study is observational in nature.

Given that we aim to determine the effect of a treatment
on the probability of mortality and morbidity for a pa-
tient, we must consider that individuals taking a specific
treatment may differ from those that are not taking the
treatment in terms of their baseline, or pre-treatment,
characteristics. Such characteristics may affect both
treatment assignment and mortality/morbidity risk and

may, therefore, confound our treatment effect estimates.
We also recognize that the medications that we are in-
vestigating were not used in isolation and were often
administered in combination with other medications;
this, too, may bias our treatment effect estimates. In
order to mitigate bias introduced by confounding vari-
ables, we use matching techniques prior to training our
machine learning models.

Matching is a method that can be used to control
for confounding in observational studies. The motiva-

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223594doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223594
http://creativecommons.org/licenses/by/4.0/


Personalized Prescription of ACEI/ARBs for Hypertensive COVID-19 Patients 5

Table 1: Overview of participating institutions in the study. The column NH stands for Number of Hospitals.

Organization Region
Study
Dates

NH Description

Derivation Cohort

HOPE
(Spain)

Madrid, Galicia, Castilla y
León, Castilla la Mancha,
Andalucia, Murcia,
Valencia, Cataluña (Spain)

03/01-
04/30

21

HOPE is an international registry that
was created at the beginning of the
pandemic with the aim of collecting
data to carefully characterize the
clinical profile of patients infected
with COVID-19. The study was
initiated by the Hospital Clinico San
Carlos in Madrid and the majority
of the recorded patients were
hospitalized in Spain.

HM
Hospitals

Madrid, Galicia, Castilla y
León, Cataluña (Spain)

02/01-
04/20

17

HM Hospitals, a leading Hospital
Group in Spain with 15 general
hospitals and 21 clinical centres that
cover the regions of Madrid, Galicia,
and León. The group has served more
than 2,300 COVID-19 patients over
the last two months. Its total capacity
includes more than 1,468 beds and
101 operating rooms.

Validation Cohort

ASST
Cremona

Lombardy (Italy)
02/01-
05/08

3

Azienda Socio-Sanitaria Territoriale di
Cremona (ASST Cremona) includes the
Ospedale di Cremona, Ospedale Oglio
Po and other minor public hospitals in
the Province of Cremona. Cremona is
one of the most hit italian provinces in
Lombardy in the Italian COVID-19
crisis with a total of 4,422 positive cases
to date. Ospedale di Cremona has around
750 beds. During the COVID-19 crisis all
elective activities and surgeries were suspended
and most of the hospital was converted to
treat COVID-19.

HOPE
(Other)

Mannheim (Germany),
Lombardy, Piedmont,
Lazio, Puglia, Marche
(Italy), Guayaquil,
Quito (Ecuador)

03/01-
04/30

14

This subpopulation includes patients
discharged (deceased or alive) from all
collaborating hospital centers from the
HOPE registry outside of Spain with a
confirmed diagnosis or a COVID-19 high
suspicion have been included. There are no
exclusion criteria, except for the patient’s
explicit refusal to participate.

Brigham and
Women’s
Hospital

Massachusetts (USA)
03/01-
05/31

1

Brigham and Women’s Hospital is a leading
academic medical center located in Boston, MA.
Today it is part of Massachusetts General
Brigham (MGB), which comprises 16 institutions
in New England. During the COVID-19
pandemic, it has played a central role providing
health care services and conducting research
with multiple academic institutions of the US.

tion of the technique is to find groups of treated and

non-treated individuals whose pre-treatment character-
istics are similar, and to then create models using only
these individuals. By minimizing the differences in pre-
treatment characteristics, we become more confident

that the outcome estimates can be attributed to dif-
ferences in the treatment assignment rather than to

preexisting differences between the individuals in the

treated and non-treated group. We evaluate our match-
ing procedure based on how balanced pre-specified co-
variates are between our treated and non-treated groups.
Balance is measured by comparing the pairwise abso-

lute standardized mean differences in covariates. Groups
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are considered well-balanced if their standardized mean
differences are below 0.10.

For our matching procedure, we aim to find pop-
ulations of patients in each treatment group that (1)
have similar baseline characteristics and (2) have similar
medications as part of their additional treatments. To
study of the effect of ACEI/ARBs on patient mortality,
we first identify all of the patients that were given either
ACEIs or ARBs during their hospital stay. We then use
cardinality matching [59] to identify the most similar
cohort of non-ACEI/ARB recipients to this group, as
measured by a set of important pre-treatment and other

treatment features. The final dataset we use to predict
patient mortality consists of the ACEI/ARBs treatment
group along with the matched dataset from the non-
ACEI/ARBs treatment patient group.

2.4 Risk Prediction under Treatment Alternatives

Using the matched datasets, two sets of models are con-
structed to predict a patient’s risk of mortality/morbidity,
as defined in Section 2.2. One set of models is trained on
patients who were given ACEI/ARBs, and the other on
patients who were not given ACEI/ARBs. The match-
ing process aims to equalize the baseline characteris-
tics of the populations to better isolate the effect of

ACEI/ARBs between the two sets of models.

For each treatment, we train six binary classification

models to predict a patient’s risk of mortality/morbidity.
The machine learning methods we utilize are: random
forests [10], classification and regression trees [11], op-

timal classification trees [4], gradient boosted decision
trees [14], quadratic discriminant analysis [25], and Gaus-
sian näıve Bayes [57]. These models take diverse ap-
proaches to classification tasks and involve tradeoffs in
their interpretability, handling of nonlinear relationships,
and computational complexity. Further details on the
training procedures and parameter tuning employed for
these models are available in the Appendix. Algorithms
were trained using Python 3.6.3 and Julia 1.2.0 through
Scikit-learn [40], XGBoost [14], and the Interpretable
AI [28] packages.

The primary metric of performance for the classifica-
tion models is Area Under the ROC Curve (AUC), which
measures a model’s ability to discriminate between high
and low risk patients. Although the predictive models
are not the final output of our framework, this evalua-

tion is important to verify that the individual models
provide high quality predictions.

We apply the SHapley Additive exPlanations (SHAP)
to identify the most important risk drivers for each

learner under both treatment alternatives [35, 36]. We
use the SHAP Python package [36], leveraging the Tree
Explainer for the XGBoost, classification and regression
trees, and random forests algorithms and the Kernel
Explainer for the logistic regression, quadratic discrimi-
nant analysis, and Gaussian Naive Bayes classifiers. The
SHAP methodology approximates any nonlinear pre-
diction model with a linear model around the patient
prediction. The coefficients of the linear approximation
are called SHAP values. They are computed for each

observation by introducing every feature separately and
comparing the model output risk. We calculate the abso-
lute mean SHAP value for all the independent covariates
using the testing set. We report the ones with the great-
est impact on the prediction task.

2.5 Treatment Prescription Methodology

Each algorithm is used to train two separate models: one

model with ACEI/ARBs and one without ACEI/ARBs.
For a given patient and algorithm, the models yield a
prediction for the patients mortality/morbidity risk with
ACEI/ARBs, ŷY , and without ACEI/ARBs, ŷN . The
algorithm recommends ACEI/ARBs if administering the
treatment is predicted to have a reduction of at least
5% in the probability of mortality/morbidity. Namely,

treatment with ACEI/ARBs is suggested if:

ŷY − ŷN
ŷN

≤ −0.05

The improvement threshold is intended to reduce un-
necessary prescriptions: if the patient’s predicted risk
is nearly identical under both treatment alternatives,
we do not recommend treatment. The threshold of 5%
was chosen based on tradeoffs between treatment ef-
fectiveness and number of prescriptions; this is further
explored in the Appendix.

The six ML algorithms yield six “votes” for whether
or not to recommend ACEI/ARBs. The final prescrip-
tion aggregates the votes. If there is majority consensus
(i.e. if at least four methods agree on the optimal treat-
ment), the majority choice is selected. In the case of
ties (i.e. three methods vote for ACEI/ARBs and the
other three vote against it), we consider the AUC of the
individual methods as a way of measuring the credibility

of the votes. We select the treatment option which has a
higher average AUC for the methods that voted for it. In
other words, in the case of a tie between the treatments,
we follow the treatment selected by the most credible
methods.
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2.6 Prescription Evaluation

An effective treatment prescription scheme should im-
prove outcomes compared to the current standard of
practice. Since our outcome of interest is a patient’s
mortality/morbidity, good prescriptions would decrease
the incidence rate. Prescription evaluation is a well-
recognized problem due to the lack of counterfactuals;
we only have data on the treatment received by a pa-
tient, and we cannot know what their outcome would
have been under the other treatment option. We must

therefore estimate the counterfactuals to evaluate the
quality of our prescriptions, and we can leverage the pre-
dictive models for this task. We perform this assessment
in several ways:

Prescription Effectiveness The effectiveness of the pre-
scription scheme can be estimated by comparing the
actual event rate to the average predicted risk under
our prescription scheme. For a given patient, we can
compute their predicted risk under a treatment as the av-

erage probability among the methods that voted for the
treatment; for example, if ACEI/ARBs are selected by
four methods, the predicted probability with treatment

would be the averages of these four methods’ predic-
tions. Let ŷip denote patient i’s predicted probability of
mortality/morbidity under the recommended treatment,
and yi ∈ {0, 1} indicate the true outcome. Then the
prescription effectiveness (PE) is defined as:

PE =
1

n

n∑
i=1

ŷip −
1

n

n∑
i=1

yi

If the raw mortality/morbidity rate is 30%, for example,
and the average probability of mortality/morbidity is
25% under the prescription scheme, then the PE equals

-0.05. We adjust the calculation of this metric to include
only cases for which the algorithmic recommendation dif-
fers to the doctors’ prescription at the standard of care.
Thus, observations of patients whose medication did not
change were not included. Note that a negative number
indicates an improvement in mortality/morbidity.

Calibrated Prescription Effectiveness When applying
the prescription algorithm to external populations with
significantly different mortality/morbidity rates, the PE
metric may require recalibration. PE compares the base-
line mortality/morbidity rate to the average probability
of the proposed treatments. If a new population has a

much higher event rate than the training population,
the predicted probabilities may be systematically low;
the opposite is true if the new population has a much
lower incidence rate. We take a simple rescaling ap-
proach to adjust the probabilities proportionally to the

incidence rates. Denoting the outcome rate on the train-
ing population as ȳTrain, we can construct a calibration
factor

c =
1
n

∑n
i=1 yi

ȳTrain

If the new population has a higher incidence rate, this
factor will be greater than 1, meaning that we scale up
the projected probabilities. If the new population has a
lower incidence rate, then c < 1 and the probabilities
will be scaled down. The calibrated PE (CPE) is then

given by:

CPE = c

(
1

n

n∑
i=1

ŷip

)
− 1

n

n∑
i=1

yi

Other sophisticated calibration schemes exist, but this
metric has an appeal of not requiring access to data and
outcomes for the full external population. For example,
if we are applying the method to a new hospital, we
only need to know the baseline mortality/morbidity to
recalibrate our probabilities. We also note that by using

a constant scaling factor, we preserve the ordering of
the probabilities; this, therefore, does not affect the
prescription decisions or the AUC of the models.

Prescription Robustness While PE and CPE are highly
intuitive metrics, they can also be biased in their esti-

mates of the outcome probability under the prescription
scheme since the predictions are taken from methods
that also determine the prescription. In the binary clas-
sification setting, these metrics involve data of different
types as they compare the discrete outcomes with contin-
uous probabilities. Prescription robustness (PR) takes a
more objective view: it uses a single ML method to eval-

uate both the outcome probability under the standard
of care (given treatments) and the probability under the
prescription. For example, PR with respect to CART
would be computed as:

PRCART =
1

n

n∑
i=1

ŷCART
ip − 1

n

n∑
i=1

ŷCART
it

where ŷCART
ip and ŷCART

it are the CART models’ pre-
dicted outcomes under the proposed treatment (p) and
true treatment (t), respectively. PR is calculated for
each of the six candidate methods, and the range across
the methods is reported.

Treatment Agreement Rate We report the proportion

of our prescriptions that match the true treatment deci-
sions. For example, if out of 100 patients, 60 of our treat-
ment recommendations are consistent with the treat-
ment decision, then the agreement rate would be 60%.
We note however that given the rapid evolution of the
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pandemic and shifting treatment protocols, the true
treatments do not necessarily reflect a consistent treat-
ment strategy. While the agreement rate is informative,
the goal of the prescriptive algorithm is to improve upon
the current standard of care and thus a high agreement
rate is not necessarily desirable.

Prescription AUC We also report the AUC of the risk
probabilities for our prescriptions compared to the true
outcomes. We can only compare the probabilities and
outcomes for the patients whose treatment prescriptions
agree with their true treatments, since we do not have the
counterfactual outcomes. For example, if the agreement
rate is 60%, the AUC of our prescriptions can only
be compared for the 60% of patients with agreement.
This metric does not assess the prescription benefit,
but rather the quality of our predictions under the
prescription algorithm.

3 Results

In this section, we present the results of our analysis
from the predictive and prescriptive components of this

study. In Section 3.1, we provide information regard-
ing the final dataset and describe the impact of the
matching process. Section 3.2 focuses on the predictive
performance of the binary classification models trained
to predict mortality/morbidity risk. Section 3.3 outlines
the quantitative results of the proposed prescription
mechanism. Section 3.4 summarizes the online interface

that was developed to communicate the output of the
algorithm to the clinical audience.

3.1 Data Processing

The derivation cohort contains 1,043 observations of
patients receiving ACEI/ARBs and 1,663 records that
are not prescribed the specific class of drugs.

Following the method described in Section 2.3, we
identify optimal matches for the treatment group and re-
strict our cohort to an equally balanced set of 1,920 cases.
We select the features for matching through a t−hypothesis
test, identifying the variables that are most significant
in differentiating those who experienced the outcome
of interest and those who did not. Thus, we selected 21
patient features and also included all available covari-
ates related to other administered treatments, includ-

ing hydroxychloroquine, antivirals (lopinavir and riton-
avir), corticosteroids, anticoagulants, and interferons.
We achieve pairwise balance between two groups below
0.05 for all covariates considered. Figure 2 provides an
illustration of the matching results. In Supplementary

Table S5, we summarize the pre-treatment variables
before and after the matching procedure.

A descriptive summary of each treatment group’s
clinical features and outcomes, for both the derivation
and validation groups, is shown in Table 2. After match-
ing, the derivation cohort has an even split of patients
with and without ACEI/ARBs. The validation cohort

has 801 total patients, of which 280 (35.0%) receive
ACEI/ARBs.

3.2 Predictive Models

The AUCs for the six individual binary classification al-
gorithms for both the ACEI/ARBs and non-ACEI/ARBs
models are shown in Table 3. We report the average
AUCs on the training and testing splits of the derivation
population, as well as the external validation popula-
tion. In general, the models for predicting outcomes
without ACEI/ARBs have higher performance on the
test and validation set than those for patients treated

with ACEI/ARBs. Random Forests and XGBoost are
the highest performing methods overall, although nearly
all methods demonstrate AUCs above 0.7 across all

cohorts, and above 0.8 in most cases.

A summary of the predictive models and their fea-
ture importance is shown in Table 4. Our analysis reveals
that the key predictors of mortality and morbidity are

common between the two treatment groups. Abnormal
creatinine levels, white blood cell count, and hemoglobin
are identified in both groups as the most significant lab
values. Age and low oxygen saturation are also identified
within the top five predictors of risk. These biomarkers
have been identified in other retrospective analysis of

mortality outcomes of COVID-19 [13, 32, 46]. In accor-
dance with the medical literature [33], lymphocyte count
is also found as an important feature in both models.
There are a few less significant variables in each co-
hort that are distinct between the two groups. Platelets
were found to only be a significant risk predictor for
ACEI/ARBs, while blood sodium and temperature only
appeared in the No ACE/ARBs cohort.

3.3 Treatment Prescriptions

Table 5 shows the results of the prescription voting
scheme on the training, testing, and validation popula-
tions for an improvement threshold of 5.0%. 42.2% of

the patients in the training population are recommended
to receive ACEI/ARBs under our scheme, as well as
43.1% of the testing population and 46.8% of the valida-
tion population. The voting behaviors of the individual
methods are included in the Appendix. The proposed

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223594doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223594
http://creativecommons.org/licenses/by/4.0/


Personalized Prescription of ACEI/ARBs for Hypertensive COVID-19 Patients 9

INTERFERONOR

ANTICOAGULANTS

ANTIVIRAL

CLOROQUINE

CORTICOSTEROIDS

BLOOD_PRESSURE_ABNORMAL_B

IN_DVITAMINSUPLEMENT

TRANSAMINASES_B

LDL_B

DDDIMER_B

PCR_B

ANYCEREBROVASCULARDISEASE

ANYHEARTDISEASE

ANYLUNGDISEASE

DISLIPIDEMIA

RENALINSUF

OBESITY

MAXTEMPERATURE_ADMISSION

PLATELETS

LYMPHOCYTES

HEMOGLOBIN

LEUCOCYTES

CREATININE

SAT02_BELOW92

GENDER.MALE

AGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0 0.1 0.2 0.3 0.4

Matching for treatment NO_ACEI_ARBS

INTERFERONOR

ANTICOAGULANTS

ANTIVIRAL

CLOROQUINE

CORTICOSTEROIDS

BLOOD_PRESSURE_ABNORMAL_B

IN_DVITAMINSUPLEMENT

TRANSAMINASES_B

LDL_B

DDDIMER_B

PCR_B

ANYCEREBROVASCULARDISEASE

ANYHEARTDISEASE

ANYLUNGDISEASE

DISLIPIDEMIA

RENALINSUF

OBESITY

MAXTEMPERATURE_ADMISSION

PLATELETS

LYMPHOCYTES

HEMOGLOBIN

LEUCOCYTES

CREATININE

SAT02_BELOW92

GENDER.MALE

AGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0 0.1 0.2 0.3 0.4

Matching for treatment NO_ACEI_ARBS

INTERFERONOR

ANTICOAGULANTS

ANTIVIRAL

CLOROQUINE

CORTICOSTEROIDS

BLOOD_PRESSURE_ABNORMAL_B

IN_DVITAMINSUPLEMENT

TRANSAMINASES_B

LDL_B

DDDIMER_B

PCR_B

ANYCEREBROVASCULARDISEASE

ANYHEARTDISEASE

ANYLUNGDISEASE

DISLIPIDEMIA

RENALINSUF

OBESITY

MAXTEMPERATURE_ADMISSION

PLATELETS

LYMPHOCYTES

HEMOGLOBIN

LEUCOCYTES

CREATININE

SAT02_BELOW92

GENDER.MALE

AGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0 0.1 0.2 0.3 0.4

Matching for treatment NO_ACEI_ARBS

After Matching
Before Matching

Covariate Balance: 
Maximum Pairwise Difference Between the Treatment and Control Group

Standardized Mean Absolute Difference

Fig. 2: Pre-Treatment covariate balance after matching.

prescription rate decreases from the 50% seen in practice

in the training and testing data due to the matching pro-
cedure. In the raw validation data, we see an increase
in the prescription rate from the observed 35.0% of
COVID-19 patients who received ACEI/ARBs at these
sites.

The PE metric indicates a reduction in mortality and
morbidity rate of 1.0% on the validation set, a notable
reduction from the baseline mortality/morbidity rates

seen in practice. When calibrating for the incidence
rates in the testing and validation populations, the CPE
decreases from the PE but still demonstrates a reduction
in average risk. The PE metric indicates a slight increase
in the mortality/morbidity probability on the test set
(-0.8%).

When evaluating the given vs. recommended treat-
ments using each of the individual ML algorithms as

the ground truth, we see a benefit ranging from 0.8% to
3.3% on the test set and 0.7% to 4.5% on the validation
set. Thus, we see a benefit even in the most pessimistic
estimates. We observe that the PE metric can be worse
than even the most pessimistic PR estimate; this is due

to the fact that PE compares probabilities to the event

rate, versus directly comparing probabilities. While both
are useful, PR provides a more consistent basis for eval-
uation.

The match rate is 51.4% on the testing set and
48.2% on the validation set. The predictions of mortal-
ity/morbidity under our prescriptions have an AUC of
80.4% on the testing set and 77.4% on the validation

set, demonstrating strong discriminative ability for risk
in cases where the predictions match the true treatment
decisions.

Figure 3 compares the proposed prescription fre-

quencies to the true treatment decisions administered
in practice on the validation data, broken down by var-
ious clinical features. These figures offer insight into
how our prescriptions differ from current practice and

how the treatment patterns change for specific clinical
characteristics.

Our results generally propose to increase the prescrip-
tion rate in the validation data, which treated 35.0% of
patients with ACEI/ARBs in practice. The prescrip-
tion rate increases by 67.6% for patients with heart
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Table 2: Descriptive summary of clinical characteristics of derivation and validation populations prior to matching.

Derivation Validation
ACEI/ARBs No ACEI/ARBs ACEI/ARBs No ACEI/ARBs

Patient Count 1043 1663 280 521
Age 70.0 (57.0-79.0) 70.0 (56.5-79.0) 68.0 (56.0-78.0) 68.0 (57.0-79.0)
Gender = Male 599 (57.4%) 985 (59.2%) 175 (62.5%) 336 (64.5%)
Race = Black 2 (0.2%) 1 (0.1%) 8 (2.9%) 40 (7.7%)
Race = Caucasian 955 (91.6%) 1532 (92.1%) 237 (84.6%) 369 (70.8%)
Race = Hispanic 78 (7.5%) 109 (6.6%) 34 (12.1%) 106 (20.3%)
Race = Asian 3 (0.3%) 6 (0.4%) 1 (0.4%) 5 (1.0%)
Temperature 36.8 (36.5-37.5) 36.8 (36.6-37.4) 37.3 (36.8-37.8) 37.0 (36.8-37.8)
Creatinine (mg/dL) 0.9 (0.7-1.2) 0.9 (0.7-1.2) 1.0 (0.8-1.3) 1.0 (0.8-1.3)
Sodium (mmol/L) 138.0 (135.0-140.0) 138.0 (135.0-140.0) 138.0 (135.0-140.0) 138.0 (135.0-140.0)
Hemoglobin (g/dL) 14.0 (12.5-15.0) 14.0 (12.9-15.0) 13.6 (12.0-14.8) 13.0 (11.4-14.2)
Leukocytes (1e3/muL) 6.4 (4.9-8.5) 6.3 (4.8-8.4) 6.9 (5.0-9.8) 7.0 (5.1-9.4)
Lymphocytes (1e3/muL) 1.0 (0.7-1.4) 1.0 (0.7-1.4) 1.0 (0.7-1.4) 1.0 (0.8-1.4)
Platelets (1e3/muL) 194.0 (150.0-255.0) 195.0 (152.0-250.0) 200.5 (150.8-256.2) 204.0 (152.0-285.0)
Low Oxygen Saturation 345 (33.1%) 614 (36.9%) 114 (40.7%) 182 (34.9%)
Low Systolic BP 78 (7.5%) 191 (11.5%) 10 (3.6%) 35 (6.7%)
Elevated D-Dimer 728 (69.8%) 1244 (74.8%) 224 (80.0%) 419 (80.4%)
Elevated CRP 945 (90.6%) 1564 (94.0%) 193 (68.9%) 429 (82.3%)
Elevated Transaminases 406 (38.9%) 688 (41.4%) 125 (44.6%) 239 (45.9%)
Elevated LDH 758 (72.7%) 1298 (78.1%) 124 (44.3%) 227 (43.6%)
Diabetes 315 (30.2%) 497 (29.9%) 59 (21.1%) 159 (30.5%)
Hypertension 1043 (100.0%) 1663 (100.0%) 280 (100.0%) 521 (100.0%)
Dislipidemia 517 (49.6%) 823 (49.5%) 72 (25.7%) 199 (38.2%)
Obesity 310 (29.7%) 458 (27.5%) 54 (19.3%) 129 (24.8%)
Renal Insufficiency 84 (8.1%) 192 (11.5%) 18 (6.4%) 65 (12.5%)
Lung Disease 285 (27.3%) 430 (25.9%) 45 (16.1%) 122 (23.4%)
Atrial Fibrillation 70 (6.7%) 161 (9.7%) 13 (4.6%) 47 (9.0%)
HIV 2 (0.2%) 4 (0.2%) 0 (0.0%) 1 (0.2%)
Heart Disease 360 (34.5%) 603 (36.3%) 71 (25.4%) 154 (29.6%)
Cerebrovascular Disease 96 (9.2%) 190 (11.4%) 14 (5.0%) 56 (10.7%)
Connective Tissue Disease 52 (5.0%) 72 (4.3%) 8 (2.9%) 44 (8.4%)
Liver Disease 66 (6.3%) 75 (4.5%) 5 (1.8%) 29 (5.6%)
Cancer 155 (14.9%) 310 (18.6%) 19 (6.8%) 77 (14.8%)
Corticosteroids 387 (38.0%) 724 (44.1%) 138 (49.3%) 225 (44.3%)
Interferons 108 (10.6%) 176 (10.8%) 50 (17.9%) 47 (9.3%)
Tocilizumab 96 (9.2%) 176 (10.6%) 20 (7.1%) 20 (3.8%)
Antibiotics 842 (80.7%) 1367 (82.2%) 221 (78.9%) 399 (76.6%)
Death 219 (21.0%) 352 (21.2%) 67 (23.9%) 139 (26.7%)
Mortality/Morbidity 329 (31.5%) 545 (32.8%) 82 (29.3%) 179 (34.4%)
Heart Failure 73 (7.0%) 92 (5.5%) 12 (4.3%) 22 (4.2%)
Acute Renal Failure 163 (15.6%) 266 (16.0%) 19 (6.8%) 43 (8.3%)
Sepsis 108 (10.4%) 148 (8.9%) 8 (2.9%) 26 (5.0%)
Embolic Event 14 (1.3%) 25 (1.5%) 4 (1.4%) 7 (1.3%)
Mechanical Ventilation 53 (5.1%) 82 (4.9%) 23 (8.8%) 44 (12.1%)

disease and 22.5% for patients without the comorbid-

ity. Specifically, for the case of atrial fibrillation, our
algorithm suggests a significant increase by 153.8% for
those diagnosed with the disease, compared to 28.1% for

those who are not. Notice that for patients with chronic
lung disease, the proposed prescription is 237.5% higher
compared to the standard of care. The corresponding
increase for patients who were not diagnosed with lung
disease is lower, 19.1%. The personalized approach leads
to a decrease in the prescription rate by -14.0% for pa-
tients who were admitted with low oxygen saturation. To

the contrary, observations with oxygen saturation levels
at the normal range were associated with a 66.9% in-
crease. The prescription rate increases across all age
groups, with greater increases for younger patients; the

algorithm raises prescriptions by 125.0% for patients
below 40 and only 8.3% for patients over 70. Finally,
the algorithm proposes to increase the prescription rate
more for women (43.8%) than for men (28.0%).
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Table 3: AUC of the six binary classification algorithms trained on two populations. The twelve models are evaluated
on the training, testing, and validation datasets.

Training Data Testing Data Validation Data
ACEI/ARBs No ACEI/ARBs ACEI/ARBs No ACEI/ARBs ACEI/ARBs No ACEI/ARBs

RF 0.886 0.862 0.834 0.814 0.770 0.761
CART 0.843 0.827 0.812 0.790 0.762 0.714
OCT 0.879 0.829 0.797 0.777 0.737 0.699
XGBOOST 0.909 0.927 0.819 0.802 0.768 0.743
QDA 0.883 0.870 0.827 0.813 0.718 0.736
GB 0.824 0.813 0.826 0.805 0.710 0.734

Average AUC 0.871 0.855 0.819 0.800 0.744 0.731

Table 4: Summary of variable importance for each model by rank (1 = most important).

Algorithm CART GB OCT QDA RF XGBOOST Average

ACEI/ARBs

Creatinine 1.0 – 1.0 2.0 1.0 1.0 1.2
Low Oxygen Saturation 2.0 – 2.0 4.0 2.0 2.0 2.4
Age 3.0 1.0 3.0 3.0 3.0 3.0 2.7
White Blood Cell Count – 2.0 – 1.0 4.0 4.0 2.8
Hemoglobin – 3.0 5.0 – – – 4.0
Platelets – 4.0 – 5.0 – – 4.5
Lymphocytes – 5.0 4.0 – 5.0 5.0 4.8

No ACEI/ARBs

White Blood Cell Count – 2.0 – 1.0 – – 1.5
Creatinine 1.0 4.0 1.0 3.0 2.0 1.0 2.0
Age 3.0 1.0 3.0 2.0 1.0 3.0 2.2
Low Oxygen Saturation 2.0 – 2.0 5.0 3.0 2.0 2.8
Lymphocytes 4.0 – 4.0 – 4.0 – 4.0
Hemoglobin – 3.0 5.0 4.0 5.0 4.0 4.2
Temperature 5.0 – – – – – 5.0
Blood Sodium – 5.0 – – – 5.0 5.0

Table 5: Summary of prescription results on training, testing, and validation datasets, using a 5% improvement
threshold.

Match Rate Presc. Count Avg. AUC PE CPE PR (Low) PR (High)

Training Data 0.521 688 0.896 -0.058 -0.058 -0.008 -0.034
Testing Data 0.514 124 0.804 0.008 0.007 -0.008 -0.033
Validation Data 0.482 375 0.774 -0.010 -0.005 -0.007 -0.045

3.4 Online Algorithm Interface

Our goal is to provide clinicians with a readily avail-
able and actionable tool that can communicate the
algorithm recommendations. For this reason, we have
developed an online application that can directly inform
the decision making process of physicians using the pro-
posed models. Through this application (accessible at:
https://www.covidanalytics.io/treatments), prac-

titioners can enter new patient data at hospital ad-
mission, obtain individualized estimations of mortal-
ity/morbidity risk and evaluate the effectiveness of
ACEI/ARBs for their own patients. Figure 4 displays
the user interface of the web application.

4 Discussion

In this study, we compiled EMR and registry data from
five different countries to create predictive and prescrip-
tive models for COVID-19 patients. We demonstrate
that accurate analytical models can help physicians
assess the potential benefit of ACEI/ARBs for hyper-
tensive patients in practice. To the best of our knowl-
edge, this constitutes the first personalized prescription
algorithm for COVID-19 patients that has been vali-
dated in an international cohort of patients. We place

particular emphasis on essential components of causal
inference by applying matching methods to confirm com-
mon baseline characteristics between both treatment
groups, establishing similar baseline risk between the
two populations. We combine six well-established binary
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Fig. 3: Comparison of ACEI/ARBs prescription rates under observed (blue) and recommended (orange) treatments
for the validation dataset.

classification techniques to predict in-hospital mortality
and morbidity. We combine these models on an individ-
ual basis, using a voting scheme to assess whether the
prescription of ACEI/ARBs can reduce the probability
of a hypertensive patient experiencing an adverse event
during hospital admission. We apply detailed quantita-
tive evaluation metrics to assess the recommendations’

effectiveness and robustness. We demonstrate through
various metrics that the application of our framework
can lead to improved patient outcomes relative to the

standard of care.

4.1 Clinical Insights

Figure 3 offers insight into how our proposed treatment
scheme agrees with and differs from what was observed
in the data, as measured by the prescription rates. Our
algorithm recommends an increase in the overall number
of prescriptions of ACEI/ARBs. This includes sugges-

tions to hypertensive patients who were not originally
prescribed this line of therapy as well as patients who
were already prescribed this class of drugs. A benefit of
personalization is also the identification of patients for
whom getting this regimen might be detrimental.
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Fig. 4: Visualization of the online algorithm user interface.

Figure 3(a) shows that the algorithm recommends a
higher ACEI/ARB prescription rate for patients with
heart disease. This could be highly impactful given the
prevalence and potential consequences of cardiovascular
disease in severe COVID-19 cases [16, 38]. In particu-

lar, we note that the algorithm identifies a significantly
higher proportion of patients with atrial fibrillation who
would benefit from this class of drugs. This finding is

in line with the hypothesis that this comorbidity in
combination with COVID-19 can lead to severe compli-
cations [49], and potentially extends previous findings
suggesting a benefit of ACEI/ARBs in relation to atrial
fibrillation [26].

The proposed personalized treatment allocation iden-
tifies a potential subgroup of hypertensive patients for

which ACEI/ARB prescriptions may be detrimental. Fig-
ure 3(d) highlights that the prescription rate should be
lowered amongst patients with low oxygen based on the
mortality/morbidity outcome. Oxygen saturation has
been commonly used as a reference metric to potentially

identify respiratory complications due to COVID-19.
This finding provides an interesting direction for future
clinical research.

Our prescription scheme proposes an increase in
prescription rates across all age groups, as indicated in
Figure 3(e). The algorithm proposes the most significant

increase in prescription rates for the youngest cohort
below 40 years of age.

Other clinical criteria for ACEI/ARBs cannot be
confirmed by our study due to our outcome of inter-
est. For example, ACE inhibitors are known to be risky
for women who may become pregnant due to potential
birth defects, [44] yet our prescription scheme proposes
a higher prescription rate for women (Figure 3(g)). This
is not surprising, because such an effect would not be

captured in our mortality/morbidity outcome. These
external factors demonstrate the need for clinical exper-
tise; while this tool can facilitate treatment decisions, it
must be considered in the broader context of a patient’s
care.
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Finally, we note that our criteria for prescription
is an improvement of at least 5.0% in predicted mor-
tality/morbidity during hospitalization. Thus, the re-
duction does not necessarily imply that ACEI/ARBs
are harmful to the remaining patients; the effect could
be neutral. The raw predicted probabilities for a pa-
tient under each treatment alternative can be assessed
in more detail on an individual basis. This can assist
clinicians by quantifying the effect of ACEI/ARBs on
the specific outcome of interest, mortality/morbidity

from COVID-19, which can then be traded off against
other external concerns such as chronic hypertension
treatment for.

4.2 Limitations

There are several limitations to this study. We consider
the effect of ACEI/ARBs in isolation, rather than in

combination with other treatments. This assumes that
the effect of other treatments is independent from the
effect of ACEI/ARBs. This is consistent with existing lit-

erature, in which COVID-19 treatments have generally
been considered separately rather than as combination
regimens. However, there is potential to consider treat-
ment strategies more holistically as drug combinations.
The methodology presented in this work could be easily
extended to the case of multiple treatments: rather than
training models for the treated and untreated group,

as done here, models could be trained for N treatment
groups, and the same prescription and voting scheme
could be followed to choose between the N alternatives.
This was impractical in the current study given the
scope of the available data, as the sample sizes become
much smaller when dividing the population by treat-
ment combination, but this could be considered in future
work as larger datasets become available.

All of the data included in the derivation and vali-
dation cohorts were collected between February to May
2020. As a result, our investigation carries the limita-
tions associated with the design of observational studies.
Moreover, we would like to highlight that the outcome
prevalence seems to be dependent on the relative timing
of the pandemic curve. Hence, confounding factors such
as the degree of congestion in the hospital systems, or
changes in the clinical protocols and the use of other
drugs might have affected the observed mortality and
morbidity rates.

Additionally, there is a tradeoff between obtaining

detailed clinical data and curating large datasets. In
order to leverage a broad international cohort of patients,
we were unable to use granular data that was only
available for subgroups of patients. As a result, we used
binary indicators with predefined cutoff values for many

clinical features. If raw lab readings were available, we
could gain further insight into these features and identify
data-driven risk cutoffs.

Finally, we note that these results are not causal
and do not isolate the effect of ACEI/ARBs in patient
outcomes. However, given the time and cost involved
in implementing an RCT, we believe that this study
adds value. Our study provides insight into potential
subpopulations with maximal benefit from ACEI/ARBs
that can guide future clinical studies.

5 Conclusions

Our approach provides promising evidence for the the
benefit of individualizing ACEI/ARBs for hypertensive
COVID-19 patients. Using machine learning, we are
able to identify patients who would benefit the most
by receiving this type of medication. Our framework
highlights the potential effect of this class of drugs for
hypertensive patients or cases admitted with low oxy-
gen saturation. By personalizing the drug prescription
process, the proposed framework improves patient out-
comes and avoids unnecessary drug prescriptions that

would have limited efficacy. In the future, the algorithm
could be integrated in practice into existing EMR sys-
tems to generate dynamically personalized treatment
recommendations. Our data-driven approach invites fur-
ther testing using datasets from other hospitals or other
types of treatment. Our work is a key step toward a fully
patient-centered approach to COVID-19 management

and the utilization of existing treatments to reduce its
toll on public health.
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rtepeter MG, Atmar RL, Creech CB, Lundgren J,
Babiker AG, Pett S, Neaton JD, Burgess TH, Bon-
nett T, Green M, Makowski M, Osinusi A, Nayak
S, Lane HC (0) Remdesivir for the treatment of
covid-19: a final report. New England Journal of
Medicine 0(0):null, DOI 10.1056/NEJMoa2007764,
URL https://doi.org/10.1056/NEJMoa2007764,
https://doi.org/10.1056/NEJMoa2007764

4. Bertsimas D, Dunn J (2017) Optimal classification
trees. Machine Learning 106(7):1039–1082

5. Bertsimas D, Kallus N, Weinstein AM, Zhuo
YD (2017) Personalized diabetes management
using electronic medical records. Diabetes Care
40(2):210–217, DOI 10.2337/dc16-0826, URL

https://care.diabetesjournals.org/content/

40/2/210, https://care.diabetesjournals.

org/content/40/2/210.full.pdf

6. Bertsimas D, Dunn J, Mundru N
(2019) Optimal prescriptive trees. IN-
FORMS Journal on Optimization 1(2):164–

183, DOI 10.1287/ijoo.2018.0005, URL
https://doi.org/10.1287/ijoo.2018.0005,
https://doi.org/10.1287/ijoo.2018.0005

7. Bertsimas D, Borentein A, Dauvin A, Orfanoudaki

A (2020) Ensemble Machine Learning for Personal-
ized Antihypertensive Treatment. INFORMS Jour-
nal on Applied Analytics Under Review.

8. Bertsimas D, Orfanoudaki A, Weiner R (2020) Per-
sonalized Treatment for Coronary Artery Disease
Patients: A Machine Learning Approach. Health

Care Management Science DOI https://doi.org/10.
1007/s10729-020-09522-4

9. Boulware DR, Pullen MF, Bangdiwala AS, Pastick
KA, Lofgren SM, Okafor EC, Skipper CP, Nascene
AA, Nicol MR, Abassi M, Engen NW, Cheng MP,
LaBar D, Lother SA, MacKenzie LJ, Drobot G,
Marten N, Zarychanski R, Kelly LE, Schwartz IS,
McDonald EG, Rajasingham R, Lee TC, Hullsiek
KH (2020) A randomized trial of hydroxychloro-
quine as postexposure prophylaxis for covid-19.
New England Journal of Medicine 383(6):517–525,
DOI 10.1056/NEJMoa2016638, URL https://doi.

org/10.1056/NEJMoa2016638, https://doi.org/

10.1056/NEJMoa2016638

10. Breiman L (2001) Random forests. Machine learning
45(1):5–32

11. Breiman L, Friedman J, Stone CJ, Olshen RA (1984)
Classification and regression trees. CRC press

12. Buuren Sv, Groothuis-Oudshoorn K (2010) mice:
Multivariate imputation by chained equations in r.
Journal of statistical software pp 1–68

13. Chen R, Liang W, Jiang M, Guan W, Zhan C, Wang
T, Tang C, Sang L, Liu J, Ni Z, Hu Y, Liu L, Shan H,

Lei C, Peng Y, Wei L, Liu Y, Hu Y, Peng P, Wang
J, Liu J, Chen Z, Li G, Zheng Z, Qiu S, Luo J, Ye C,
Zhu S, Liu X, Cheng L, Ye F, Zheng J, Zhang N, Li
Y, He J, Li S, Zhong N (2020) Risk factors of fatal

outcome in hospitalized subjects with coronavirus
disease 2019 from a nationwide analysis in China.
Chest (April):1–9, DOI 10.1016/j.chest.2020.04.010

14. Chen T, Guestrin C (2016) Xgboost: A scalable
tree boosting system. Proceedings of the 22nd acm
sigkdd international conference on knowledge dis-
covery and data mining pp 785–794

15. Cirillo D, Valencia A (2019) Big data analytics for
personalized medicine. Current opinion in biotech-
nology 58:161–167

16. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G,
Griffin JM, Masoumi A, Jain SS, Burkhoff D,
Kumaraiah D, Rabbani LR, Schwartz A, Uriel

N (2020) COVID-19 and Cardiovascular Dis-
ease. Circulation 2019:1648–1655, DOI 10.1161/
CIRCULATIONAHA.120.046941

17. Esler M, Esler D (2020) Can angiotensin receptor-
blocking drugs perhaps be harmful in the covid-19
pandemic? Journal of hypertension 38(5):781–782

18. Feldstein ML, Savlov ED, Hilf R (1978) A statisti-

cal model for predicting response of breast cancer
patients to cytotoxic chemotherapy. Cancer Res
38(8):2544–2548

19. Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe
M, Doudier B, Courjon J, Giordanengo V, Vieira
VE, Dupont HT, et al. (2020) Hydroxychloroquine

and azithromycin as a treatment of covid-19: results
of an open-label non-randomized clinical trial. In-
ternational journal of antimicrobial agents p 105949

20. Geleris J, Sun Y, Platt J, Zucker J, Bald-
win M, Hripcsak G, Labella A, Manson DK,
Kubin C, Barr RG, Sobieszczyk ME, Schluger
NW (2020) Observational study of hydroxychloro-
quine in hospitalized patients with covid-19. New
England Journal of Medicine 382(25):2411–2418,
DOI 10.1056/NEJMoa2012410, URL https://doi.

org/10.1056/NEJMoa2012410, https://doi.org/
10.1056/NEJMoa2012410

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223594doi: medRxiv preprint 

https://www.pnas.org/content/113/27/7353
https://www.pnas.org/content/113/27/7353
https://www.pnas.org/content/113/27/7353.full.pdf
https://www.pnas.org/content/113/27/7353.full.pdf
https://doi.org/10.1056/NEJMoa2007764
https://doi.org/10.1056/NEJMoa2007764
https://care.diabetesjournals.org/content/40/2/210
https://care.diabetesjournals.org/content/40/2/210
https://care.diabetesjournals.org/content/40/2/210.full.pdf
https://care.diabetesjournals.org/content/40/2/210.full.pdf
https://doi.org/10.1287/ijoo.2018.0005
https://doi.org/10.1287/ijoo.2018.0005
https://doi.org/10.1056/NEJMoa2016638
https://doi.org/10.1056/NEJMoa2016638
https://doi.org/10.1056/NEJMoa2016638
https://doi.org/10.1056/NEJMoa2016638
https://doi.org/10.1056/NEJMoa2012410
https://doi.org/10.1056/NEJMoa2012410
https://doi.org/10.1056/NEJMoa2012410
https://doi.org/10.1056/NEJMoa2012410
https://doi.org/10.1101/2020.10.30.20223594
http://creativecommons.org/licenses/by/4.0/


16 Bertsimas et al.

21. Gil IJN, Estrada V, Fernández-Pérez C, Feltes G,
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