Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

High prevalence of SARS-CoV-2 swab positivity and increasing R number in England during October 2020: REACT-1 round 6 interim report

View ORCID ProfileSteven Riley, View ORCID ProfileKylie E. C. Ainslie, View ORCID ProfileOliver Eales, View ORCID ProfileCaroline E. Walters, Haowei Wang, View ORCID ProfileChristina Atchison, Claudio Fronterre, View ORCID ProfilePeter J. Diggle, View ORCID ProfileDeborah Ashby, View ORCID ProfileChristl A. Donnelly, Graham Cooke, View ORCID ProfileWendy Barclay, View ORCID ProfileHelen Ward, Ara Darzi, View ORCID ProfilePaul Elliott
doi: https://doi.org/10.1101/2020.10.30.20223123
Steven Riley
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Steven Riley
  • For correspondence: s.riley{at}imperial.ac.uk p.elliott{at}imperial.ac.uk
Kylie E. C. Ainslie
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kylie E. C. Ainslie
Oliver Eales
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Oliver Eales
Caroline E. Walters
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Caroline E. Walters
Haowei Wang
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christina Atchison
1School of Public Health, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christina Atchison
Claudio Fronterre
3CHICAS, Lancaster Medical School, Lancaster University, UK and Health Data Research, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter J. Diggle
3CHICAS, Lancaster Medical School, Lancaster University, UK and Health Data Research, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter J. Diggle
Deborah Ashby
1School of Public Health, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Deborah Ashby
Christl A. Donnelly
1School of Public Health, Imperial College London, UK
2MRC Centre for Global infectious Disease Analysis and Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK
4Department of Statistics, University of Oxford, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christl A. Donnelly
Graham Cooke
5Department of Infectious Disease, Imperial College London, UK
6Imperial College Healthcare NHS Trust, UK
7National Institute for Health Research Imperial Biomedical Research Centre, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wendy Barclay
5Department of Infectious Disease, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wendy Barclay
Helen Ward
1School of Public Health, Imperial College London, UK
6Imperial College Healthcare NHS Trust, UK
7National Institute for Health Research Imperial Biomedical Research Centre, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Helen Ward
Ara Darzi
6Imperial College Healthcare NHS Trust, UK
7National Institute for Health Research Imperial Biomedical Research Centre, UK
8Institute of Global Health Innovation at Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Elliott
1School of Public Health, Imperial College London, UK
6Imperial College Healthcare NHS Trust, UK
7National Institute for Health Research Imperial Biomedical Research Centre, UK
9MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
10Health Data Research (HDR) UK London at Imperial College
11UK Dementia Research Institute at Imperial College
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Paul Elliott
  • For correspondence: s.riley{at}imperial.ac.uk p.elliott{at}imperial.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Background REACT-1 measures prevalence of SARS-CoV-2 infection in representative samples of the population in England using PCR testing from self-administered nose and throat swabs. Here we report interim results for round 6 of observations for swabs collected from the 16th to 25th October 2020 inclusive.

Methods REACT-1 round 6 aims to collect data and swab results from 160,000 people aged 5 and above. Here we report results from the first 86,000 individuals. We estimate prevalence of PCR-confirmed SARS-CoV-2 infection, reproduction numbers (R) and temporal trends using exponential growth or decay models. Prevalence estimates are presented both unweighted and weighted to be representative of the population of England, accounting for response rate, region, deprivation and ethnicity. We compare these interim results with data from round 5, based on swabs collected from 18th September to 5th October 2020 inclusive.

Results Overall prevalence of infection in the community in England was 1.28% or 128 people per 10,000, up from 60 per 10,000 in the previous round. Infections were doubling every 9.0 (6.1, 18) days with a national reproduction number (R) estimated at 1.56 (1.27, 1.88) compared to 1.16 (1.05, 1.27) in the previous round. Prevalence of infection was highest in Yorkshire and The Humber at 2.72% (2.12%, 3.50%), up from 0.84% (0.60%, 1.17%), and the North West at 2.27% (1.90%, 2.72%), up from 1.21% (1.01%, 1.46%), and lowest in South East at 0.55% (0.45%, 0.68%), up from 0.29% (0.23%, 0.37%). Clustering of cases was more prevalent in Lancashire, Manchester, Liverpool and West Yorkshire, West Midlands and East Midlands. Interim estimates of R were above 2 in the South East, East of England, London and South West, but with wide confidence intervals. Nationally, prevalence increased across all age groups with the greatest increase in those aged 55-64 at 1.20% (0.99%, 1.46%), up 3-fold from 0.37% (0.30%, 0.46%). In those aged over 65, prevalence was 0.81% (0.58%, 0.96%) up 2-fold from 0.35% (0.28%, 0.43%). Prevalence remained highest in 18 to 24-year olds at 2.25% (1.47%, 3.42%).

Conclusion The co-occurrence of high prevalence and rapid growth means that the second wave of the epidemic in England has now reached a critical stage. Whether via regional or national measures, it is now time-critical to control the virus and turn R below one if further hospital admissions and deaths from COVID-19 are to be avoided.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The study was funded by the Department of Health and Social Care in England.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

We obtained research ethics approval from the South Central-Berkshire B Research Ethics Committee (IRAS ID: 283787).

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The datasets generated or analysed, or both, during this study are not publicly available because of governance restrictions.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted November 03, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
High prevalence of SARS-CoV-2 swab positivity and increasing R number in England during October 2020: REACT-1 round 6 interim report
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
High prevalence of SARS-CoV-2 swab positivity and increasing R number in England during October 2020: REACT-1 round 6 interim report
Steven Riley, Kylie E. C. Ainslie, Oliver Eales, Caroline E. Walters, Haowei Wang, Christina Atchison, Claudio Fronterre, Peter J. Diggle, Deborah Ashby, Christl A. Donnelly, Graham Cooke, Wendy Barclay, Helen Ward, Ara Darzi, Paul Elliott
medRxiv 2020.10.30.20223123; doi: https://doi.org/10.1101/2020.10.30.20223123
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
High prevalence of SARS-CoV-2 swab positivity and increasing R number in England during October 2020: REACT-1 round 6 interim report
Steven Riley, Kylie E. C. Ainslie, Oliver Eales, Caroline E. Walters, Haowei Wang, Christina Atchison, Claudio Fronterre, Peter J. Diggle, Deborah Ashby, Christl A. Donnelly, Graham Cooke, Wendy Barclay, Helen Ward, Ara Darzi, Paul Elliott
medRxiv 2020.10.30.20223123; doi: https://doi.org/10.1101/2020.10.30.20223123

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (431)
  • Allergy and Immunology (757)
  • Anesthesia (221)
  • Cardiovascular Medicine (3298)
  • Dentistry and Oral Medicine (365)
  • Dermatology (280)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1173)
  • Epidemiology (13385)
  • Forensic Medicine (19)
  • Gastroenterology (899)
  • Genetic and Genomic Medicine (5158)
  • Geriatric Medicine (482)
  • Health Economics (783)
  • Health Informatics (3276)
  • Health Policy (1143)
  • Health Systems and Quality Improvement (1193)
  • Hematology (432)
  • HIV/AIDS (1019)
  • Infectious Diseases (except HIV/AIDS) (14637)
  • Intensive Care and Critical Care Medicine (913)
  • Medical Education (478)
  • Medical Ethics (127)
  • Nephrology (525)
  • Neurology (4930)
  • Nursing (262)
  • Nutrition (730)
  • Obstetrics and Gynecology (886)
  • Occupational and Environmental Health (795)
  • Oncology (2524)
  • Ophthalmology (728)
  • Orthopedics (282)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (544)
  • Pediatrics (1302)
  • Pharmacology and Therapeutics (551)
  • Primary Care Research (557)
  • Psychiatry and Clinical Psychology (4218)
  • Public and Global Health (7512)
  • Radiology and Imaging (1708)
  • Rehabilitation Medicine and Physical Therapy (1016)
  • Respiratory Medicine (980)
  • Rheumatology (480)
  • Sexual and Reproductive Health (498)
  • Sports Medicine (424)
  • Surgery (549)
  • Toxicology (72)
  • Transplantation (236)
  • Urology (205)