Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Gastroenterological and Hepatic Manifestations of Patients with COVID-19, Prevalence, Mortality by Country, and Intensive Care Admission Rate: Systematic Review and Meta-analysis

Mohammad Shehab, Fatema Alrashed, Sameera Shuaibi, Dhuha Alajmi, Alan Barkun
doi: https://doi.org/10.1101/2020.10.29.20207167
Mohammad Shehab
1Consultant gastroenterologist, clinical tutor and lecturer at Kuwaiti board of internal medicine, Dept. of internal medicine, Mubarak Alkabeer University Hospital, Kuwait. (study concept and design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript for important intellectual content; statistical analysis)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dr_mshehab@hotmail.com moshehab@moh.gov.kw
Fatema Alrashed
2Clinical pharmacy resident, Dept of pharmacy practice, Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA. (acquisition of data; analysis and interpretation of data; drafting of the manuscript)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sameera Shuaibi
3Medical resident, Kuwait University, Kuwait. (acquisition of data; drafting of the manuscript).
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dhuha Alajmi
4Medical resident, Kuwait University, Kuwait. (acquisition of data)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan Barkun
5Chairholder, Douglas G. Kinnear Chair in Gastroenterology and Professor of Medicine, Director of Endoscopy and Therapeutic Endoscopy Training Program, Chief Quality Officer, Division of Gastroenterology, McGill University and the McGill University Health Centre. (critical revision of the manuscript for important intellectual content; statistical analysis; study supervision)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background & Aims Patient infected with the SARS-COV2 usually report fever and respiratory symptoms. However, multiple gastrointestinal (GI) manifestations such as diarrhea and abdominal pain has been described. The aim of this study was to evaluate the prevalence of GI, liver function test (LFT) abnormalities, and mortality of COVID-19 patients.

Methods We performed a systematic review and meta-analysis of published studies that included cohort of patients infected with SARS-COV2 from December 1st, 2019 to July 1st, 2020. We collected data from the cohort of patients with COVID-19 by conducting a literature search using PubMed, Embase, Scopus, and Cochrane according to the preferred reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) guidelines. We analyzed pooled data on the prevalence of overall and individual gastrointestinal symptoms, LFTs abnormalities and performed subanalyses to investigate the relationship between gastrointestinal symptoms, geographic location, fatality, and ICU admission.

Results The available data of 17,802 positive patients for SARS-COV2 from 120 studies were included in our analysis. The most frequent manifestations were diarrhea (13.3%, 95% CI 12-16), nausea (9.1%, 95% CI 9-13) and elevated LFTs (23.7%, 95% CI 21- 27). The overall and GI fatality were 7.2% (95% CI 6 -10), and 1% (95% CI 1- 4) respectively. Subgroup analysis showed non statistically significant associations between GI symptoms/LFTs abnormalities and ICU admissions (OR=3.41, 95% CI 0.87 – 13.4). The GI mortality rate was 0.58% in China and 3.5% in the United States (95% CI 2 - 5).

Conclusion Digestive symptoms and LFTs abnormalities are common in COVID-19 patients. Our subanalysis shows that the presence of gastrointestinal and liver manifestations does not appear to affect mortality, or ICU admission rate. However, the mortality rate was higher in the United States compared to China.

Introduction

In December 2019 China was struck with a new strain of Coronavirus, Novel Coronavirus (2019 nCov). Within a short period of time, it soon spread to a full pandemic.

It was first noticed by the innumerable cases of pneumonia that suddenly surged amongst local inhabitants in the Province of Wuhan. Soon, the virus was detected through sequencing leading to officially being renamed severe acute respiratory syndrome coronavirus 2 (SARS-COV2) by the International Committee on Taxonomy of Viruses [1-2]. The disease caused by Coronavirus (SARS-COV2) was allocated the title of COVID-19 or ‘Coronavirus disease’ [3]. Coronaviruses in general are single stranded RNA viruses falling under the family of Coronaviridae which also include MERS (MERS Cov) and SARS (SARS Cov)[4]. By the end of May, 5,796, 257 cases of COVID-19 have officially been confirmed worldwide and as of July the number of confirmed cases passed the 12 million mark [5].

It has been established that the transmission of Coronavirus (SARS-COV2) occurs from person to person through upper airway tract (droplet infection) or direct contact [6]. The virus can also be detected in saliva, urine, gastrointestinal tract and possibly through airborne spread [7,8]. The spectrum of symptoms attributable to SARS-COV2 include fever, cough, myalgia, fatigue, and to a lesser extent headache. Patients may also be asymptomatic [9-11]. Diarrhea, nausea and vomiting, as well as liver involvement have all been reported in the literature [12,13]. In fact, gastrointestinal involvement is plausible given that angiotensin converting enzyme 2 (ACE2), the major human cellular receptor for the SARS-COV2, is expressed in the gastrointestinal tract as well as liver cells [14]. We thus conducted a systematic review of published gastrointestinal and liver symptoms associated with COVID-19 on the basis of disease severity, age group, and geographical region.

Methods

Search strategy

A systematic review was conducted using Pubmed, Scopus, Cochrane, and Embase databases. Medical literature searches for human studies were performed from December 1st, 2019 up to July 1st, 2020. The key terms used for the literature search were ((“COVID-19” OR “COVID 2019” OR “severe acute respiratory syndrome coronavirus 2” OR “severe acute respiratory syndrome coronavirus 2” OR “2019 nCoV” OR “SARS-COV2” OR “2019nCoV” OR (“severe acute respiratory syndrome coronavirus 2” OR “SARS-COV2” AND GASTROINTESTINAL AND (MANIFESTATIONS OR CLINICAL CHARACHTERISTICS) OR (“gastrointestinal tract” OR (“gastrointestinal’ AND “tract”) OR “gastrointestinal tract” OR (“gi” AND “tract”) OR (“fatality” or “Mortality”). In addition, a manual search of all review articles, editorials and retrieved original studies was also performed. All procedures used in this meta-analysis were consistent with the Preferred Reporting Items for Systematic Reviews and Meta analyses (PRISMA) guidelines and prespecified protocol, which described our method and analysis before data collection was initiated (see supplementary PRISMA check list).

Selection criteria and data extraction

Data were independently abstracted based on our protocol by two investigators (MS and FA) and any discrepancies between the two authors were resolved through discussion. Inclusion and exclusion criteria were defined prior to the literature search. The inclusion criteria were (1) study type: case reports/case series (including chart reviews), prospective/retrospective cohort studies, case control studies, cross sectional studies and randomized controlled trials; (2) patients population: Adults patients with COVID-19; inpatient or outpatient setting and (3) Outcome measured: At least one GI manifestation reported and LFT abnormality, defined as any value above the normal upper limit.

Exclusion criteria were (1) Review, opinion, abstracts from conferences, editorials, commentary articles, review articles and meta analyses; (2) studies without data for retrieval; (3) duplicate studies; (4) Asymptomatic patients with COVID-19: (5) studies that did not report gastrointestinal symptoms.

Data extraction was performed using Microsoft excel. The following data were extracted:

  1. Study: author, journal, date, country, number of patients, and study type.

  2. Patients characteristics: mean age, ethnicity, gender, and comorbidities.

  3. Overall fatality rate and fatality rate by country.

  4. Number of patients admitted to the ICU.

  5. Gastrointestinal symptoms proportion: abdominal pain, diarrhea, nausea, anorexia, loss of taste, elevated liver enzymes or other nonspecified gastrointestinal symptoms.

Risk of bias and certainty of evidence

The Methodical Index for Nonrandomized Studies (MINORS) [15] was used to assess bias risk (see table 2). In addition, risk of bias was assessed based on 4 domains: selection, ascertainment, causality, and reporting. An overall judgment of risk of bias was made based on factors deemed to be most critical for the systematic review (selection criteria, ascertainment of outcome, and followup duration).

Statistical Analysis

Our primary analysis focused on assessing the weighted pooled prevalence of GI symptoms/LFT abnormalities in patients with COVID-19 infection, occurring any time during the course of illness. We also conducted subanalyses that looked at the association between GI symptoms/LFT abnormalities and mortality as well as ICU admission. Categorical variables were described as count (%). Continuous variables were described using mean (SD) if they are normally distributed, median (IQR) if they are not. We pooled the single arm event rates using a random effects method and we measured heterogeneity within our studies using the I2 statistic. Subanalyses were described and tested using odd ratios and 95% confidence interval to determine statistical significance. Stata 16 was used to calculate odd ratios and their respective 95% CI and create Forest and Box plots.

Sensitivity Analysis

To examine the effect of the quality of studies on our results, we performed a sensitivity analysis on the prevalence of GI symptoms and LFTs abnormalities by excluding low qualities studies. These include case reports, case series and case control studies. We also assessed selected outcomes comparing patients with versus without GI/LFTs abnormalities.

RESULTS

Research selection and quality assessment

Overall, 120 studies (supplementary table. S1) from 2355 potentially relevant citations were included in the analysis (Figure 1). Most of the included studies were single arm only, very few studies included comparator groups. Furthermore, outcome assessors in all 120 studies were not blinded. Both inpatients and outpatients studies were included. The risk of evidence imprecision was rated as very serious, given that the included studies were all observational studies. Overall, all included studies were rated as having very serious risk of bias because they lacked a control group and had a high risk of confounding and selection bias.

Figure 1:
  • Download figure
  • Open in new tab
Figure 1:

Flow diagram for study selection

Clinical data

This systematic review included 120 studies [16-136] with a total of 17,801 patients that tested positive for SARS-COV2 and were included in the analysis. The mean patient age was 52.6 (±14, 95% CI 48-57.3) and 47.6% of the patients were males. Most patients had several comorbidities, most common being hypertension (23.4%, 95% CI 21-27), diabetes mellites (13.4%, 95% CI, 12-15), and cardiovascular diseases (12.4%. 95% CI, 10-14). GI symptoms included nausea, vomiting, and diarrhea. Heterogeneity statistic I2 is 94.5%, which signifies a significant heterogeneity among our studies. The most common GI/liver manifestations were elevated liver enzymes and diarrhea (supplementary figure.1). Specifically, GI manifestations of patients infected with SARS-COV2 are diarrhea 13.3% (95% CI 12 - 16), nausea (9.1%, 95% CI 9 - 13) anorexia or loss of appetite (8.3%, 95% CI 8 - 11), vomiting (6.4%, 95% CI 5 - 8), abdominal pain (3%, 95% CI, 3-6), loss of taste (1.3%, 95% CI 1 - 4), and elevated LFTs (23.7%, 95% CI 21 - 27).

Sensitivity Analysis

The sensitivity analysis included 25 studies (supplementary: table S4). The results did not differ from our main analysis. Among the GI manifestations experienced by COVID-19 patients, diarrhea (13.1%, 95% CI, 12-14), was still the most common symptom, followed by nausea (9.2%, 95% CI 8-11). The percentage of patients experiencing LFTs abnormalities was 24% (95% CI 21 - 26).

Fatality rates and Geographic Variation

A total of 78 studies reported the incidence of mortality. The overall fatality rate of patients was 7% (95% CI 6 -10), (supplementary: table S5). The subgroup analysis included three studies [19-21] that directly compared mortality rate in patients with and without GI symptoms. In this analysis the number of patients who experienced gastrointestinal symptoms/liver test anomalies and those who did not were 227 and 326, respectively. The results showed that patients with GI manifestations//LFT abnormalities were no more likely to die compared to those who did not with a pooled odd of patients was not statistically significant 1.07 (95% CI 0.58 - 1.97) (figure 3).

Figure 2:
  • Download figure
  • Open in new tab
Figure 2:

Box plots representing the range and outliers of the gastrointestinal and liver manifestations in patients with COVID-19.

Figure 3:
  • Download figure
  • Open in new tab
Figure 3:

Forest Plot for mortality in patients with COVID-19, showing no significant difference in the pooled odds of patients with gastrointestinal symptoms and those without gastrointestinal adverse events.

Moreover, out of the 78 studies, a total of 25 studies reported mortality in patients with GI/Liver manifestations (see figure 4). A subanalysis of fatality rate in patients with GI symptoms based on their location showed that 27 out 4660 patients (0.58%) in China died (95% CI 0.5, 1.6), whereas 16 out 449 patients (3.5%) in the United States died (95% CI 2 - 5). In addition, 3 studies from Taiwan, Korea, and Japan reported zero fatality (table.1).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table. 1

Mortality by geographic location

Figure 4:
  • Download figure
  • Open in new tab
Figure 4:

Funnel plot of the 25 studies that reported mortality of patients with GI symptoms

ICU admission rate

Only two studies [20,21] reported differences in ICU admissions amongst patients manifesting GI symptoms/LFT abnormalities and patients without. The total number of patients with gastrointestinal problems or LFT abnormalities who were admitted in the ICU were 23 and the number of patients who did not experience gastrointestinal problems or LFT abnormalities and were admitted to the ICU were 156. No statistically significant difference in ICU admission rate was noted between those who experienced GI/LFTs abnormalities and those who did not. The pooled proportion was 3.41 (95% CI, 0.87,13.4). (Figure. 5).

Figure 5:
  • Download figure
  • Open in new tab
Figure 5:

Odds ratio of ICU admissions in patients with COVID-19amongst patients with and without gastrointestinal symptoms / LFT abnormalities.

Discussion

This meta-analysis of 17,801 COVID-19 patients found that gastrointestinal symptoms are common in patients infected with SARS-COV2. Our study has several strengths. This is one of the more recent meta-analyses that summarizes the rapidly emerging and sometimes confusing literature on COVID-19 on the prevalence of overall and individual gastrointestinal manifestations. The large patient population and comprehensive inclusion of 120 studies allow a more precise estimation of the prevalence of gastrointestinal symptoms and liver test anomalies associated with COVID-19. Subgroup analysis found that no association between the presence of gastrointestinal symptoms/LFT anomalies and mortality; but a trend towards their absence and ICU admission was noted.

Gastrointestinal symptoms including abdominal pain, diarrhea, nausea, vomiting, loss of appetite, loss of taste and elevated liver enzyme are among the presenting symptoms or laboratory abnormalities of SARS-COV2 infection. Diarrhea was the most common gastrointestinal symptom; this is particularly important because previous studies have shown that patients with diarrhea on presentation have a higher stool RNA positivity and viral load than those without [137,138]. One study showed that 44 of 153 patients with COVID-19 tested positive for the virus in the stools [139]. Another study by Xiao et al. showed that among 73 hospitalized COVID-19 patients in China, 39 (53.42%) tested positive for SARS-COV2 RNA in stools [140]. In addition, a report of a COVID-19 patient with positive fecal but negative pharyngeal and sputum viral tests has been described [140]. This may imply that fecal oral route is a possible route of SARS-COV2 transmission.

The possibility of fecal oral transmission of SARS-COV2 emphasizes the importance of frequent and proper hand hygiene. This is important in every clinical setting, but especially in low resource areas with poor sanitation. Intuitively, proper handling of the excreta of COVID-19 patients should still be strongly enforced, and sewage from hospitals should also be properly disinfected. The presence of the virus in the digestive tract also raises the concerns of COVID-19 infection in patients with established gastrointestinal conditions as well as potential fecal microbiota transplant donors. Nevertheless, the unknown effect of COVID-19 on patients with preexisting gastrointestinal diseases and its influence on treatment and outcome is a cause for concern [140]. These implications warrant further investigation. The American Gastroenterological Association (AGA) and joint society recommend the use of enhanced personal protective equipment, including the use of N95 (or N99) masks instead of surgical masks, for health care workers performing upper or lower GI procedures regardless of COVID19 status [141].

It is believed that the prevalence of gastrointestinal symptoms is underestimated because the majority of studies only reported gastrointestinal symptoms on the day of admission but not throughout the disease course [142]. Furthermore, many earlier studies did not report on other gastrointestinal symptoms except for diarrhea [141,143]. Based on these findings, clinicians must be aware that digestive symptoms, such as diarrhea, may be a presenting feature of COVID-19 that can arise before respiratory symptoms, and on rare occasions may be the only presenting manifestation of COVID-19.

The analysis also found that elevated liver enzymes are a common laboratory marker of COVID-19 patients. Huang et al. showed that AST elevation was observed in 8 (62%) of 13 patients in the intensive care unit compared with only 7 (25%) of 28 patients who did not require care in an ICU [140]. On the other hand, one study from China showed that COVID-19 patients with underlying chronic hepatitis B infection did not have higher disease severity compared to the overall population [143]. Unfortunately, most studies report liver enzymes as the mean/median value of the entire cohort without cutoff values for a given institution rather than as a proportion of patients with elevated values. One aspect that remains to be determined is the impact of COVID-19 in patients with preexisting chronic liver diseases, such as viral hepatitis, and fatty liver disease.

The pooled analysis showed that the overall fatality rate was 11.2%. While the finding is not statistically significant, any possible true difference in mortality may be worth further investigation among better defined COVID-19 patient subgroups with GI/LFT anomalies because one study showed that prevalence of severe disease was more common in patients who had gastrointestinal symptoms than those who did not [141]. Furthermore, a study by Wang et al found that abdominal pain was more frequent in patients who required ICU care than those who did not [142]. Although our finding was not statistically significant, the subgroup sub analysis showed that patients who did not have gastrointestinal manifestations were more likely to be admitted to the ICU. This possible finding also requires additional data.

Limitations

Most of the studies we base our analyses on are observational, single arm cohorts. The lack of control groups and comparison arms can lead to bias due to confounding. Also, our subanalyses might have been affected by small sample sizes. Additionally, regarding fatality rate among COVID-19 patients, most of the studies did not differentiate between the GI symptoms and LFTs abnormalities when performing head to head comparison.

Conclusion

In this meta-analysis, we summarize the recent reports of digestive symptoms/LFT anomalies among patients infected with SARS-COV2. Gastrointestinal symptoms are commonly observed in patients with COVID-19, therefore, clinicians should be aware that diarrhea and nausea can be the only manifestations of COVID-19 patients. Our sub analysis showed that patients infected with SARS-COV2 and exhibiting digestive symptoms had higher mortality rate in the United States compared to China. We also could not find statistically significant association between ICU admission in patients with GI symptoms compared to those without digestive symptoms or hepatic manifestations due to small sample size; however, further investigation is warranted to better assess this possible association.

Data Availability

all data link availabe

View this table:
  • View inline
  • View popup

Supplemental Material

View this table:
  • View inline
  • View popup
Table. S1.

Studies included in the meta-analysis

View this table:
  • View inline
  • View popup
Table. S2

The Methodical Index for Non-randomized Studies (MINORS)

View this table:
  • View inline
  • View popup
Table. S3

Gastrointestinal symptoms

View this table:
  • View inline
  • View popup
Table. S4

Sensitivity Analysis

View this table:
  • View inline
  • View popup
Table. S5

Fatality numbers as reported by each study

  • Download figure
  • Open in new tab
  • Download figure
  • Open in new tab
  • Download figure
  • Open in new tab
Supplementary figure S1

Forest plot depicting prevalence of diarrhea

Supplementary figure.2
  • Download figure
  • Open in new tab
Supplementary figure.2

Footnotes

  • Disclosure: All authors have no financial disclosures to report.

References

  1. ↵
    Lu, Roujian et al. “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.” Lancet (London, England) vol. 395,10224 (2020): 565–574. doi:10.1016/S0140-6736(20)30251-8
    OpenUrlCrossRefPubMed
  2. ↵
    Wu, Zunyou, and Jennifer M. McGoogan. “Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention.” Jama 323.13 (2020): 1239–1242.
    OpenUrlCrossRefPubMed
  3. ↵
    Kang, Shuntong et al. “Recent progress in understanding 2019 novel coronavirus (SARS- COV2) associated with human respiratory disease: detection, mechanisms and treatment.” International journal of antimicrobial agents vol. 55,5 (2020): 105950. doi:10.1016/j.ijantimicag.2020.105950
    OpenUrlCrossRef
  4. ↵
    Benvenuto, Domenico, et al. “The global spread of 2019-nCoV: a molecular evolutionary analysis.” Pathogens and Global Health 114.2 (2020): 64–67.
    OpenUrl
  5. ↵
    “WHO Coronavirus Disease (COVID-19) Dashboard.” World Health Organization, World Health Organization, 30 May 2020, covid19.who.int/?gclid=CjwKCAjwiMj2BRBFEiwAYfTbCs-zYYng4rwUJqKD946CSFHwJgC2YP9erGKVDphwwdudJsa3uWTxaBoCdLUQAvD_BwE.
  6. ↵
    Luo, Chao, et al. “Possible transmission of severe acute respiratory syndrome coronavirus 2 (SARS-COV2) in a public bath center in Huai’an, Jiangsu Province, China.” JAMA network open 3.3 (2020): e204583–e204583.
    OpenUrl
  7. ↵
    Guan, Wei-jie, et al. “Clinical characteristics of coronavirus disease 2019 in China.” New England journal of medicine 382.18 (2020): 1708–1720.
    OpenUrlCrossRefPubMed
  8. ↵
    Lidia Morawska, Donald K Milton, It is Time to Address Airborne Transmission of COVID-19, Clinical Infectious Diseases, 2020; ciaa939, https://doi.org/10.1093/cid/ciaa939
  9. ↵
    Bai, Yan, et al. “Presumed asymptomatic carrier transmission of COVID-19.” Jama 323.14 (2020): 1406–1407.
    OpenUrlCrossRefPubMed
  10. Novel, Coronavirus Pneumonia Emergency Response Epidemiology “The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China.” Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi 41.2 (2020): 145.
    OpenUrl
  11. ↵
    Lai, Chih-Cheng, et al. “Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): Facts and myths.” Journal of Microbiology, Immunology and Infection (2020).
  12. ↵
    Zu, Zi Yue, et al. “Coronavirus disease 2019 (COVID-19): a perspective from China.” Radiology (2020): 200490.
  13. ↵
    Guan, Wei-jie, et al. “Clinical characteristics of 2019 novel coronavirus infection in China.” MedRxiv (2020)
  14. ↵
    Qi, Furong, et al. “Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses.” Biochemical and biophysical research communications (2020).
  15. ↵
    Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non□randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712□716.
    OpenUrl
  16. ↵
    Hung IF, Cheng VC, Wu AK, et al. Viral loads in clinical specimens and SARS manifestations. Emerg Infect Dis 2004;10:1550–7.
    OpenUrlCrossRefPubMedWeb of Science
  17. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-COV2 infection. Gut. 2020;69(6):997–1001. doi:10.1136/gutjnl-2020-321013
    OpenUrlAbstract/FREE Full Text
  18. Pan, Lei MD, PhD.1,2; Mu, Mi MD. 3,4; Yang, Pengcheng MD. 5; Sun, Yu MD. 6; Wang, Runsheng MS. 7; Yan, Junhong MD. 8; Li, Pibao MD. 9; Hu, Baoguang MD, PhD. 10; Wang, Jing MS. 1; Hu, Chao MS. 7; Jin, Yuan MD. 6; Niu, Xun MD. 6; Ping, Rongyu MD. 2; Du, Yingzhen MD. 7; Li, Tianzhi MD. 2; Xu, Guogang MD, PhD2.; Hu, Qinyong MD. 5; Tu, Lei MD., PhD11 Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China, The American Journal of Gastroenterology: 2020;115(5): 766–773. doi: 10.14309/ajg.0000000000000620
    OpenUrlCrossRefPubMed
  19. ↵
    Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X, Effect of gastrointestinal symptoms on patients infected with COVID-19, Gastroenterology (2020), doi: https://doi.org/10.1053/j.gastro.2020.03.020.
  20. ↵
    Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30;:]. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
    OpenUrlCrossRefPubMed
  21. ↵
    Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi:10.1001/jama.2020.1585
    OpenUrlCrossRefPubMed
  22. Lu, Roujian et al. “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.” Lancet (London, England) vol 395,10224 (2020): 565–574. doi:10.1016/S0140-6736(20)30251-8
    OpenUrlCrossRefPubMed
  23. Wu, Zunyou, and Jennifer M. McGoogan. “Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention.” Jama 323.13 (2020): 1239-1242.
  24. Kang, Shuntong et al. “Recent progress in understanding 2019 novel coronavirus (SARS- COV2) associated with human respiratory disease: detection, mechanisms and treatment.” International journal of antimicrobial agents vol. 55,5 (2020): 105950. doi:10.1016/j.ijantimicag.2020.105950
    OpenUrlCrossRef
  25. Benvenuto, Domenico, et al. “The global spread of 2019-nCoV: a molecular evolutionary analysis.” Pathogens and Global Health 114.2 (2020): 64–67.
  26. “WHO Coronavirus Disease (COVID-19) Dashboard.” World Health Organization, World Health Organization, 30 May 2020, covid19.who.int/?gclid=CjwKCAjwiMj2BRBFEiwAYfTbCs-zYYng4rwUJqKD946CSFHwJgC2YP9erGKVDphwwdudJsa3uWTxaBoCdLUQAvD_BwE.
  27. Luo, Chao, et al. “Possible transmission of severe acute respiratory syndrome coronavirus 2 (SARS-COV2) in a public bath center in Huai’an, Jiangsu Province, China.” JAMA network open 3.3 (2020): e204583–e204583.
  28. Guan, Wei-jie, et al. “Clinical characteristics of coronavirus disease 2019 in China.” New England journal of medicine 382.18 (2020): 1708-1720.
  29. Lidia Morawska, Donald K Milton, It is Time to Address Airborne Transmission of COVID-19, Clinical Infectious Diseases, 2020; ciaa939, https://doi.org/10.1093/cid/ciaa939
  30. Bai, Yan, et al. “Presumed asymptomatic carrier transmission of COVID-19.” Jama 323.14 (2020): 1406–1407.
  31. Novel, Coronavirus Pneumonia Emergency Response Epidemiology “The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China.” Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi 41.2 (2020): 145.
  32. Lai, Chih-Cheng, et al. “Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): Facts and myths.” Journal of Microbiology, Immunology and Infection (2020).
  33. Zu, Zi Yue, et al. “Coronavirus disease 2019 (COVID-19): a perspective from China.” Radiology (2020): 200490.
  34. Guan, Wei-jie, et al. “Clinical characteristics of 2019 novel coronavirus infection in China.” MedRxiv (2020)
  35. Qi, Furong, et al. “Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses.” Biochemical and biophysical research communications (2020).
  36. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non, Äêrandomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712, Äê716.
  37. Hung IF, Cheng VC, Wu AK, et al. Viral loads in clinical specimens and SARS manifestations. Emerg Infect Dis 2004;10:1550–7.
    OpenUrlCrossRefPubMedWeb of Science
  38. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-COV2 infection. Gut. 2020;69(6):997–1001. doi:10.1136/gutjnl-2020-321013
    OpenUrlAbstract/FREE Full Text
  39. Pan, Lei MD, PhD. 1,2; Mu, Mi MD. 3,4; Yang, Pengcheng MD. 5; Sun, Yu MD. 6; Wang, Runsheng MS. 7; Yan, Junhong MD. 8; Li, Pibao MD. 9; Hu, Baoguang MD, PhD. 10; Wang, Jing MS. 1; Hu, Chao MS. 7; Jin, Yuan MD. 6; Niu, Xun MD. 6; Ping, Rongyu MD. 2; Du, Yingzhen MD. 7; Li, Tianzhi MD. 2; Xu, Guogang MD, PhD.2; Hu, Qinyong MD. 5; Tu, Lei MD., PhD11 Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China, The American Journal of Gastroenterology: 2020;115(5): 766–773. doi: 10.14309/ajg.0000000000000620
    OpenUrlCrossRefPubMed
  40. Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X, Effect of gastrointestinal symptoms on patients infected with COVID-19, Gastroenterology (2020), doi: https://doi.org/10.1053/j.gastro.2020.03.020.
  41. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30;:]. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
    OpenUrlCrossRefPubMed
  42. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi:10.1001/jama.2020.1585
    OpenUrlCrossRefPubMed
  43. Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the
  44. United States. N Engl J Med. 2020;382(10):929–936. doi:10.1056/NEJMoa2001191
    OpenUrlCrossRefPubMed
  45. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-COV2. Gastroenterology. 2020;158(6):1831-1833.e3. doi:10.1053/j.gastro.2020.02.055
    OpenUrlCrossRefPubMed
  46. Chen L, Luo JH, Bai Y, Wang M. COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests. Am J Gastroenterol 2020. In press.
  47. Liang W, Feng Z, Rao S, Xiao C, Xue X, Lin Z, Zhang Q, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coro2navirus. Gut 2020. In press.
  48. American college of gastroenterology Joint GI Society Statement: Use of Personal Protective Equipment in GI Endoscopy. 2020; https://gi.org/2020/04/01/joint-gi-society-message-on-ppe-during-COVID-19/
  49. Zhou J, Li C, Zhao G, et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv 2017;3:eaao4966.
    OpenUrlFREE Full Text
  50. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019;200:e45–e67.
    OpenUrlCrossRefPubMed
  51. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506
    OpenUrlCrossRefPubMed
  52. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020.
  53. Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal Manifestations of SARS-COV2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis, Gastroenterology, 2020 March [Epub ahead of print]
  54. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020;323:1061–69.
    OpenUrlCrossRefPubMed
  55. An PaC, Hongbin and Jiang, Xiaoda and Su, Juan and Xiao, Yong and Ding, Yijuan and Ren, Haixia and Ji, Mengyao and Chen, Yifei and Chen, Wei and Lv, …and yu, Honggang,. Clinical Features of 2019 Novel Coronavirus Pneumonia Presented Gastrointestinal Symptoms But Without Fever Onset. The Lancet. 2020;https://ssrn.com/abstract=3532530 or http://dx.doi.org/10.2139/ssrn.3532530
  56. Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet. 2020;395(10223):514–523.
    OpenUrl
  57. Chang D, Lin M, Wei L, et al. Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China. JAMA. 2020;doi:10.1001/jama.2020.1623.
    OpenUrlCrossRef
  58. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507–513.
    OpenUrlCrossRef
  59. Chen Q, Quan B, Li X, et al. A report of clinical diagnosis and treatment of nine cases of coronavirus disease 2019. Journal of Medical Virology. 2020;DOI: 10.1002/jmv.25755.
    OpenUrlCrossRef
  60. Chen Q, Zheng Z, Zhang C, et al. Clinical characteristics of 145 patients with corona virus disease 2019 (COVID-19) in Taizhou, Zhejiang, China. Infection. 2020;doi:10.1007/s15010-020-01432-5.
    OpenUrlCrossRef
  61. Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal Manifestations of SARS-COV2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis. Gastroenterology. 2020;doi:10.1053/j.gastro.2020.03.065.
    OpenUrlCrossRefPubMed
  62. Cholankeril G, Podboy A, Aivaliotis VI, et al. High Prevalence of Concurrent Gastrointestinal Manifestations in Patients with SARS-COV2: Early Experience from California. Gastroenterology. 2020;doi:10.1053/j.gastro.2020.04.008.
    OpenUrlCrossRef
  63. COVID-19 National Emergency Response Center E CMTK, Prevention. Early Epidemiological and Clinical Characteristics of 28 Cases of Coronavirus Disease in South Korea.. Osong Public Health Res Perspect 2020. 2020;11:8–14.
    OpenUrlCrossRefPubMed
  64. Team C-NIRS. COVID-19, Australia: Epidemiology Report 7 (Reporting week ending 19:00 AEDT 14 March 2020). Commun Dis Intell (2018). 2020;44.
  65. Fan H, Zhang L, Huang B, et al. Retrospective Analysis of Clinical Features in 101 Death Cases with COVID-19.2020;https://doi.org/10.1101/2020.03.09.20033068.
  66. Fernandez-Ruiz M, Andres A, Loinaz C, et al. COVID-19 in solid organ transplant recipients: A single-center case series from Spain. Am J Transplant. 2020;doi:10.1111/ajt.15929.
    OpenUrlCrossRefPubMed
  67. Gritti G, Raimondi F, Ripamonti D, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. MedRxiv.2020; https://doi.org/10.1101/2020.04.01.20048561.
  68. Guan W-j, Ni Z-y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine. 2020.
  69. Hajifathalian K, Krisko T, Mehta A, et al. Gastrointestinal and Hepatic Manifestations of 2019 Novel Coronavirus Disease in a Large Cohort of Infected Patients From New York: Clinical Implications. Gastroenterology. 2020;doi:10.1053/j.gastro.2020.05.010.
    OpenUrlCrossRef
  70. Han C, Duan C, Zhang S, et al. Digestive Symptoms in COVID-19 Patients With Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am J Gastroenterol. 2020;doi:10.14309/ajg.0000000000000664.
    OpenUrlCrossRef
  71. Hsih W-H, Cheng M-Y, Ho M-W, et al. Featuring COVID-19 cases via screening symptomatic patients with epidemiologic link during flu season in a medical center of central Taiwan. Journal of Microbiology, Immunology and Infection.2020; https://doi.org/10.1016/j.jmii.2020.03.008.
  72. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506.
    OpenUrlPubMed
  73. Huang R, Xia J, Chen Y, Shan C, Wu C. A family cluster of SARS-COV2 infection involving 11 patients in Nanjing, China. Lancet Infect Dis. 2020;20(5):534–535.
    OpenUrlCrossRefPubMed
  74. Huang WH, Teng LC, Yeh TK, et al. 2019 novel coronavirus disease (COVID-19) in Taiwan: Reports of two cases from Wuhan, China. J Microbiol Immunol Infect. 2020 10.1016/j.jmii.2020.02.009.
  75. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-COV2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020;doi:10.1016/j.tmaid.2020.101606:101606.
    OpenUrlCrossRef
  76. Jin X, Lian JS, Hu JH, et al. Epidemiological, clinical and virological characteristics of cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002–1009.
    OpenUrlAbstract/FREE Full Text
  77. Kim ES, Chin BS, Kang CK, et al. Clinical Course and Outcomes of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: a Preliminary Report of the First Patients from the Korean Cohort Study on COVID-19. J Korean Med Sci. 2020;35(13):e142.
    OpenUrlCrossRefPubMed
  78. Klopfenstein T, Kadiane-Oussou NJ, Royer PY, Toko L, Gendrin V, Zayet S. Diarrhea: An underestimated symptom in Coronavirus disease 2019. Clin Res Hepatol Gastroenterol. 2020;doi:10.1016/j.clinre.2020.04.002.
    OpenUrlCrossRef
  79. Kluytmans M, Buiting A, Pas S, et al. SARS-COV2 infection in 86 healthcare workers in two Dutch hospitals in March 2020 https://doi.org/10.1101/2020.03.23.20041913. medRxiv. 2020.
  80. Kuang Y, Zhang H, Zhou R, et al. Epidemiological and Clinical Characteristics of 944 Cases of 2019 Novel Coronavirus Infection of Non-COVID-19 Exporting City, Zhejiang, China. Zhejiang, China (February 20, 2020). 2020;doi.org/10.2139/ssrn.3543604.
  81. Kui L, Fang Y-Y, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chinese medical journal. 2020; doi: 10.1097/CM9.0000000000000744.
    OpenUrlCrossRefPubMed
  82. Kujawski SA, Wong KK, Collins JP, et al. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States https://doi.org/10.1101/2020.03.09.20032896. MedRxiv. 2020.
  83. Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mildto-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;doi:10.1007/s00405-020-05965-1.
    OpenUrlCrossRefPubMed
  84. Li K, Wu J, Wu F, et al. The Clinical and Chest CT Features Associated With Severe and Critical COVID-19 Pneumonia. Invest Radiol. 2020;55(6):327–331.
    OpenUrlPubMed
  85. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-COV2 infection. Gut. 2020;69(6):997–1001.
    OpenUrlAbstract/FREE Full Text
  86. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364–374.
    OpenUrlCrossRefPubMed
  87. Luo S, Zhang X, Xu H. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clinical Gastroenterology and Hepatology. 2020;doi: 10.1016/j.cgh.2020.03.043.
    OpenUrlCrossRef
  88. Nobel YR, Phipps M, Zucker J, et al. Gastrointestinal Symptoms and COVID-19: Case control Study from the United States. Gastroenterology. 2020;doi:10.1053/j.gastro.2020.04.017.
    OpenUrlCrossRef
  89. Pan F, Ye T, Sun P, et al. Time Course of Lung Changes On Chest CT During Recovery From 2019 Novel Coronavirus (COVID-19) Pneumonia. Radiology. 2020:200370.
  90. Pan L, Mu M, Ren H. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross sectional, multicenter study. 2020.
  91. Pung R, Chiew CJ, Young BE, et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet. 2020;395(10229):1039–1046.
    OpenUrlCrossRefPubMed
  92. Redd WD, Zhou JC, Hathorn KE, et al. Prevalence and Characteristics of Gastrointestinal Symptoms in Patients with SARSCoV- 2 Infection in the United States: A Multicenter Cohort Study. Gastroenterology. 2020;doi:10.1053/j.gastro.2020.04.045.
    OpenUrlCrossRefPubMed
  93. Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020;133(9):1015–1024.
    OpenUrl
  94. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet Infectious Diseases. 2020;20(4):425–434.
    OpenUrlPubMed
  95. Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020; doi:10.1001/jamacardio.2020.0950.
    OpenUrlCrossRefPubMed
  96. Shu L, Wang X, Li M, et al. Clinical Characteristics of 545 Cases Confirmed COVID-19 in Wuhan Stadium Cabin Hospital. Available at SSRN 3552844. 2020; https://ssrn.com/abstract=3552844.
  97. Siegel A, Chang PJ, Jarou ZJ, et al. Lung Base Findings of Coronavirus Disease (COVID-19) on Abdominal CT in Patients With Predominant Gastrointestinal Symptoms. AJR Am J Roentgenol. 2020;doi:10.2214/AJR.20.23232:1-3.
    OpenUrlCrossRef
  98. Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;doi: 10.1148/radiol.2020200274:200274.
    OpenUrlCrossRef
  99. Spiteri G, Fielding J, Diercke M, et al. First cases of coronavirus disease 2019 (COVID- 19) in the WHO European Region, 24 January to 21 February 2020. Euro Surveill. 2020;25(9).
  100. Tabata S, Imai K, Kawano S, et al. The clinical characteristics of COVID-19: a retrospective analysis of 104 patients from the outbreak on board the Diamond Princess cruise ship in Japan https://doi.org/10.1101/2020.03.18.20038125. medRxiv. 2020.
  101. Wan Y, Li J, Shen L, et al. Enteric involvement in hospitalised patients with COVID- 19 outside Wuhan. The lancet Gastroenterology & hepatology. 2020;doi:10.1016/S2468-1253(20)30118-7.
    OpenUrlCrossRef
  102. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; doi:10.1001/jama.2020.1585.
    OpenUrlCrossRefPubMed
  103. Wang L, Gao YH, Lou LL, Zhang GJ. The clinical dynamics of 18 cases of COVID-19 outside of Wuhan, China. Eur Respir J. 2020;55(4).
  104. Wang L, Duan Y, Zhang W, et al. Epidemiologic and Clinical Characteristics of 26 Cases of COVID-19 Arising from Patientto-Patient Transmission in Liaocheng, China. Clin Epidemiol. 2020;12:387–391.
    OpenUrlCrossRefPubMed
  105. Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4- week followup. J Infect. 2020;doi:10.1016/j.jinf.2020.03.019.
    OpenUrlCrossRefPubMed
  106. Wang X, Fang J, Zhu Y, et al. Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital. Clin Microbiol Infect. 2020;doi:10.1016/j.cmi.2020.03.032.
    OpenUrlCrossRef
  107. Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Bioscience trends. 2020;DOI: 10.5582/bst.2020.01030.
    OpenUrlCrossRef
  108. Wei X-S, Wang X, Niu Y-R, et al. Clinical Characteristics of SARS-COV2 Infected Pneumonia with Diarrhea. Available at SSRN 3546120. 2020; http://dx.doi.org/10.2139/ssrn.3546120.
  109. Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;doi:10.1038/s41586-020-2196-x.
    OpenUrlCrossRefPubMed
  110. Wu J, Liu J, Zhao X, et al. Clinical characteristics of imported cases of COVID-19 in Jiangsu province: a multicenter descriptive study. Clinical Infectious Diseases. 2020.
  111. Wu J, Wu X, Zeng W, et al. Chest CT Findings in Patients With Coronavirus Disease 2019 and Its Relationship With Clinical Features. Invest Radiol. 2020;55(5):257–261.
    OpenUrl
  112. Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-COV2 viral RNA in faecal samples. The lancet Gastroenterology & hepatology. 2020;doi:10.1016/s2468-1253(20)30083-2.
    OpenUrlCrossRef
  113. Xia XY, Wu J, Liu HL, Xia H, Jia B, Huang WX. Epidemiological and initial clinical characteristics of patients with family aggregation of COVID-19. J Clin Virol. 2020;127:104360.
    OpenUrl
  114. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-COV2. Gastroenterology. 2020;doi:10.1053/j.gastro.2020.02.055.
    OpenUrlCrossRefPubMed
  115. Xie H, Zhao J, Lian N, Lin S, Xie Q, Zhuo H. Clinical characteristics of non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: A retrospective study. Liver Int. 2020;doi:10.1111/liv.14449.
    OpenUrlCrossRefPubMed
  116. Xiong Y, Sun D, Liu Y, et al. Clinical and High-Resolution CT Features of the COVID-19 Infection: Comparison of the Initial and Followup Changes. Invest Radiol. 2020;55(6):332–339.
    OpenUrlPubMed
  117. Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-COV2. Eur J Nucl Med Mol Imaging. 2020;47(5):1275–1280.
    OpenUrlCrossRefPubMed
  118. Xu X-W, Wu X-X, Jiang X-G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARSCov-2) outside of Wuhan, China: retrospective case series. Bmj. 2020;368.
  119. Yang F, Shi S, Zhu J, Shi J, Dai K, Chen X. Clinical characteristics and outcomes of cancer patients with COVID-19. J Med Virol. 2020;doi:10.1002/jmv.25972.
    OpenUrlCrossRef
  120. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-COV2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481.
    OpenUrl
  121. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-COV2 in Singapore. Jama. 2020.
  122. Yu P, Zhu J, Zhang Z, Han Y. A Familial Cluster of Infection Associated With the 2019 Novel Coronavirus Indicating Possible Person-to-Person Transmission During the Incubation Period. J Infect Dis. 2020;221(11):1757–1761.
    OpenUrl
  123. Zhang G, Hu C, Luo L, et al. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol. 2020;127:104364.
    OpenUrlCrossRefPubMed
  124. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS CoV-2 in Wuhan, China. Allergy. 2020;doi:10.1111/all.14238.
    OpenUrlCrossRefPubMed
  125. Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J Med Virol. 2020;doi:10.1002/jmv.25742.
    OpenUrlCrossRef
  126. Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID- 19 pneumonia to other pneumonias. Clinical Infectious Diseases. 2020; https://doi.org/10.1093/cid/ciaa247.
  127. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Diseasen(COVID-19) Pneumonia: A Multicenter Study. AJR Am J Roentgenol. 2020;214(5):1072–1077.
    OpenUrlPubMed
  128. Zhao XY, Xu XX, Yin HS, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infect Dis. 2020;20(1):311.
    OpenUrlCrossRefPubMed
  129. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020.
  130. Zhou S, Wang Y, Zhu T, Xia L. CT Features of Coronavirus Disease 2019 (COVID- 19) Pneumonia in 62 Patients in Wuhan, China. AJR Am J Roentgenol. 2020; doi:10.2214/AJR.20.22975:1-8.
    OpenUrlCrossRef
  131. Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of gastrointestinal symptoms on patients infected with COVID-19. Gastroenterology. 2020;https://doi.org/10.1053/j.gastro.2020.03.020.
  132. Zou L, Ruan F, Huang M, et al. SARS-COV2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177–1179.
    OpenUrlCrossRefPubMed
  133. Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. DOI:10.1056/NEJMoa2001191
    OpenUrlCrossRefPubMed
  134. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-COV2. Gastroenterology. 2020;158(6):1831-1833.e3. DOI:10.1053/j.gastro.2020.02.055
    OpenUrlCrossRefPubMed
  135. Chen L, Luo JH, Bai Y, Wang M. COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests. Am J Gastroenterol 2020. In press.
  136. ↵
    Liang W, Feng Z, Rao S, Xiao C, Xue X, Lin Z, Zhang Q, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coro2navirus. Gut 2020. In press.
  137. ↵
    American college of gastroenterology Joint GI Society Statement: Use of Personal Protective Equipment in GI Endoscopy. 2020; https://gi.org/2020/04/01/joint-gi-societymessage-on-ppe-during-COVID-19/
  138. ↵
    Zhou J, Li C, Zhao G, et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv 2017;3:eaao4966.
    OpenUrlFREE Full Text
  139. ↵
    Metlay JP, Waterer GW, Long AC, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019;200:e45–e67.
    OpenUrlCrossRefPubMed
  140. ↵
    Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506
    OpenUrlCrossRefPubMed
  141. ↵
    Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020.
  142. ↵
    Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal Manifestations of SARS-COV2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis, Gastroenterology, 2020 March [Epub ahead of print]
  143. ↵
    Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020;323:1061–69.
    OpenUrlCrossRefPubMed
View Abstract
Back to top
PreviousNext
Posted November 03, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Gastroenterological and Hepatic Manifestations of Patients with COVID-19, Prevalence, Mortality by Country, and Intensive Care Admission Rate: Systematic Review and Meta-analysis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Gastroenterological and Hepatic Manifestations of Patients with COVID-19, Prevalence, Mortality by Country, and Intensive Care Admission Rate: Systematic Review and Meta-analysis
Mohammad Shehab, Fatema Alrashed, Sameera Shuaibi, Dhuha Alajmi, Alan Barkun
medRxiv 2020.10.29.20207167; doi: https://doi.org/10.1101/2020.10.29.20207167
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Gastroenterological and Hepatic Manifestations of Patients with COVID-19, Prevalence, Mortality by Country, and Intensive Care Admission Rate: Systematic Review and Meta-analysis
Mohammad Shehab, Fatema Alrashed, Sameera Shuaibi, Dhuha Alajmi, Alan Barkun
medRxiv 2020.10.29.20207167; doi: https://doi.org/10.1101/2020.10.29.20207167

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Gastroenterology
Subject Areas
All Articles
  • Addiction Medicine (62)
  • Allergy and Immunology (142)
  • Anesthesia (46)
  • Cardiovascular Medicine (415)
  • Dentistry and Oral Medicine (70)
  • Dermatology (47)
  • Emergency Medicine (144)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (171)
  • Epidemiology (4855)
  • Forensic Medicine (3)
  • Gastroenterology (183)
  • Genetic and Genomic Medicine (676)
  • Geriatric Medicine (70)
  • Health Economics (192)
  • Health Informatics (629)
  • Health Policy (320)
  • Health Systems and Quality Improvement (203)
  • Hematology (85)
  • HIV/AIDS (156)
  • Infectious Diseases (except HIV/AIDS) (5339)
  • Intensive Care and Critical Care Medicine (330)
  • Medical Education (93)
  • Medical Ethics (24)
  • Nephrology (75)
  • Neurology (686)
  • Nursing (42)
  • Nutrition (115)
  • Obstetrics and Gynecology (126)
  • Occupational and Environmental Health (208)
  • Oncology (439)
  • Ophthalmology (140)
  • Orthopedics (36)
  • Otolaryngology (89)
  • Pain Medicine (35)
  • Palliative Medicine (16)
  • Pathology (129)
  • Pediatrics (194)
  • Pharmacology and Therapeutics (131)
  • Primary Care Research (84)
  • Psychiatry and Clinical Psychology (780)
  • Public and Global Health (1816)
  • Radiology and Imaging (324)
  • Rehabilitation Medicine and Physical Therapy (138)
  • Respiratory Medicine (255)
  • Rheumatology (86)
  • Sexual and Reproductive Health (69)
  • Sports Medicine (62)
  • Surgery (100)
  • Toxicology (23)
  • Transplantation (29)
  • Urology (37)