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Abstract  

Introduction Projecting disease spread is challenging because of the heterogeneous nature of human 

interactions, including both natural societal interactions and how they change in response to pandemics. 

Simulations can provide important guidance regarding the likely impact of interventions on an assumed 

base case. Methods This paper uses assumptions based on the COVID-19 pandemic to construct a 

Susceptible-Infectious-Recovered model representative of US society, focusing on the interrelationships 

of groups with differing contact networks (essential/non-essential workers and urban/non-urban 

populations). The model is used to explore the impact of interventions (reduced interactions, vaccinations 

and selective isolation) on overall and group-specific disease spread. Results In the absence of herd 

immunity, temporary interventions will only reduce the overall number of disease cases moderately and 

spread them over a greater period of time unless they virtually eliminate disease and no new infections 

occur from exogenous sources. Vaccinations can provide stronger benefit, but can be limited by efficacy 

and utilization rates. Conclusions While a highly effective and broadly utilized vaccine might halt disease 

spread, some combination of increased long-term surveillance and selective isolation of the most 

vulnerable populations might be necessary to minimize morbidity and mortality if only moderately 

effective vaccines are available. 
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Introduction 

During 2020, the novel coronavirus SARS-CoV-2, the etiological agent for COVID-19, 

spread from initial detection in Wuhan, China to virtually every region of the world 1. A variety 

of efforts have been made to model disease trajectory in the United States 2, but the resulting 

models are challenged by substantial uncertainties with regard to disease parameters, inconsistent 

official policy and the unpredictability of human behavior. While these factors may make 

absolute prediction of disease spread difficult, understanding parameters that influence disease 

spread and the relative impact of interventions can provide important qualitative public health 

learnings. The goal of this paper is to explore factors that influence or mitigate airborne disease 

spread using a baseline model that generally reflects current assumptions about COVID-19. 

Modeling the spread of any airborne disease typically relies heavily on R0, the disease’s 

basic reproductive number. R0 reflects the average number of new cases that arise from every 

infected individual 3. If R0 is greater than 1, the disease will be spreading exponentially (more 

newly infected individuals in each infected generation), while if R0 is less than 1, the spread will 

be slowing. If individuals who survive an infection are immune to reinfection or individuals can 

be rendered immune through vaccination, the effective R0 for the disease will fall over time 4, 

providing a natural barrier to further spread of disease (herd immunity). Initial R0 for COVID-19 

was estimated to be about 2.5 5; other early estimates ranged from about 2 to more than 6, with 

most falling between 2 and 4 6. 

R0 may vary because of a number of factors, including mechanics of transmission, length 

of infectivity, magnitude of infectivity relative to symptoms, heterogeneity in number of 

contacts, likelihood that a contact leads to disease transmission, underlying nature of human 
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contacts and disease control mechanisms. Importantly, human society is not structured such that 

individuals have equal chances of contacting any other individuals. Most contacts (particularly 

close and prolonged contacts) are with close friends and family, leading to increased odds of 

transmission within such close core groups 7. Highly infectious “super-spreaders” may also play 

a significant role in disease transmission 8. Some individuals may be relatively isolated; if they 

have few close contacts and those contacts either never become infected or fail to transmit 

disease when infected, they may remain disease naïve. Herrmann et al. 9 have shown the impact 

of modeling societies as networks rather than homogeneous groups with relatively random 

contacts and Britton et al. 10 have shown that considering societal subgroups can influence 

requirements for herd immunity.  

Absent interventions, pandemics can be divided into three phases for modeling purposes: 

A ramp-up phase where the initially infected individuals may be few and localized, an 

exponential phase where the number of infected individuals is increasing rapidly and infection is 

extensive, and a post-exponential phase where the number of cases is declining. If a disease 

spreads poorly (low R0) or early infected individuals are isolated/fail to spread disease, disease 

spread may never become extensive. 

This paper will start by exploring how connectivity impacts the spread of disease through 

a population, use this understanding to build a model that reasonably reflects the US population, 

and then look at the impact of potential interventions in this model. While no claims are made 

that the model accurately reflects COVID-19 spread, assumptions were chosen based on general 

current knowledge of this disease. General learnings are important with regard to current public 

policy choices on this disease, such as the controversy regarding whether a policy of accepting 
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disease spread among those less likely to have severe disease consequences in order to develop 

some herd immunity and protect the most vulnerable is a good idea (Great Barrington 

Declaration11) or not (John Snow Memorandum12, 13). 

 

Methods 

Modeling was conducted using Microsoft Excel Professional Plus 2016.  

Simulations used Visual Basic. Unless otherwise specified, 100,000 simulations were 

performed for each example using a sample population of 1000 individuals, of whom one 

random individual was initially infected. In most scenarios, additional infections from exogenous 

sources were permitted. 

For the purposes of this simulation, a simple Susceptible-Infectious-Recovered (SIR)-

type model was used for viral transmission. Time was divided into periods intended to represent 

the primary infectivity period of individuals. During each period, currently infected individuals 

had disease-spreading contacts with a number of individuals pulled from a Poisson distribution 

that varied based on the infected individual’s characteristics. If the other individuals were 

susceptible, they would become infected and be part of the next cohort of infected individuals. 

Disease-spreading contacts were most likely to be with close members of the infected 

individual’s network, reflecting both the higher number and greater intensity of those 

interactions. Individuals were assumed to be infectious for only one period. The primary 

infectivity period might proxy a real-world period encompassing late asymptomatic and early 
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symptomatic phases (perhaps five to nine days for COVID-19 in the real world 14, 15), and 

simulations were allowed to run for up to 146 periods (~2+ years). 

Note that in a population with homogenous individuals and random association, the 

population-level parameter R0 and the number of disease-spreading contacts by an individual are 

the same, but for heterogeneous populations, R0 will reflect a blend of the properties of 

individuals. As the number of previously infected individuals in the population rises, disease-

spreading encounters are increasingly likely to be with immune individuals, leading to a 

reduction in individual-level disease spread paralleling the population-level shift from an initial 

R0 to effective R0. 

Parameters that varied by simulation included the average number of infectious events, 

likelihood of contact between any two individuals, and likelihood of additional infections from 

outside the system. Factors could also vary between differently situated individuals within a 

scenario or over time (interventions). For example, one individual might be more isolated and 

have a smaller contact network and fewer infectious encounters, or might self-isolate after a 

pandemic starts. 

For the examples using a representation of the US society, individuals were placed into a 

hierarchy that comprised a “core” group representing their most frequent contacts (household), a 

broader group of less frequent contacts that formed a subset of their class (e.g. urban essential 

workers), their class overall, and overall society. Parameters were chosen such that all 

individuals had similar likelihoods of transmitting disease to members of their closest “core” 

group (household), but members of different classes had different likelihoods of interacting 

outside of their core group (See Table 1). Urban individuals were assumed to have more contacts 
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overall and essential workers were assumed to have both more contacts and more contacts with 

individuals outside of their close network. Assumptions were roughly adjusted to give an early 

disease spread rate similar to what was observed for COVID-19 in the US. 

Limited disease spread is defined as situations where disease does not spread broadly 

through the population despite parameters that could support broad spread. Disease spread may 

be limited due to chance (early infected persons do not spread disease broadly) or the nature of 

the societal connections (individuals serve as bottlenecks). In simulations, cases where disease 

spread is 10% or less of the initial population were characterized as limited (as opposed to 

extensive) disease spread. 

For the analysis of time to elimination of disease from a cohort through isolation alone, a 

simple cohort model with a homogeneous population was used wherein each individual had an 

identical probability of infecting one individual in the next period. The initial cohort had 250,000 

infected individuals and results were the average of 1000 simulations. There were no infections 

from exogenous sources and the population size was deemed sufficient large such that the 

number of previously infected (and presumptively immune) individuals was not relevant. 

 

Results 

Designing an Appropriate Model to Represent US Society 

In a simple homogeneous model where individuals have equal chances of spreading 

disease to any other individuals, disease spread is based primarily on the average number of 

contacts an individual has that transmit disease (“infectious contacts”), a proxy for the 
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population-level R0 (See Methods). If early cases have few infectious contacts, disease spread 

may remain limited, but if disease spreads beyond a few individuals or new cases continue to 

arise from exogenous sources, disease spread will generally be extensive given a sufficiently 

high average number of infectious contacts (data not shown).  

From a modeling perspective, situations where initial disease is not contained are the 

relevant public health scenarios. The pace of disease spread and average number ultimately 

infected increase with the average number of infectious contacts (See Figure 1). Over time, the 

number of susceptible individuals in the population declines (assuming that previously infected 

individuals are resistant to reinfection) and an increasing proportion of contacts that would 

otherwise spread disease can no longer do so (matching the population-level decline in effective 

R0). The length of time until peak increases with the log of the population size (data not shown). 

There are multiple ways to model more heterogeneous individual contacts in real 

societies. Most contacts are likely to be with a small group of close family and friends, with a 

broader set of secondary contacts that varies by individual. One could model the core groups as 

relatively isolated, with only a small number of individuals having significant contacts outside of 

the inner group (See Figure 2A), core groups that have common external contacts (Figure 2B) or 

core groups where individuals have diverse external contacts (Figure 2C). Each of these 

structures has analogs in real societies: Elderly individuals with few contacts outside the house, 

common secondary associations with social groups (e.g. churches) or those geographically 

proximal, and differing places of employment or schools for different family members. Models 

where specific individuals are key intermediaries (Figure 2A) lead to substantial bottlenecks that 

limit spread of the disease when core connecting individuals either do not become infected or do 
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not happen to infect individuals in other groups (data not shown), while models with very broad 

contact networks if not substantially constrained become similar to societies with homogeneous 

contacts. This paper uses a hybrid three-level model of society, wherein individuals have most of 

their contacts with a small group, a smaller number of contacts with a broader shared group, and 

a still smaller number of contacts with any other members of society. 

As the US society is extremely heterogeneous, it is challenging to construct a model that 

represents all aspects of society while remaining manageable and providing clear learnings with 

regard to how intercessions might impact it. However, a relatively simple model can prove 

informative. Two factors were chosen as most important for modelling: Population density and 

breadth of interactions. Generally, it appears that spread of disease is correlated with population 

density (See Appendix 1). While urban individuals do not have dramatically larger core contact 

groups based on average household sizes 16, 17, there are more opportunities to interact outside of 

the core group (e.g. apartment common areas, street crowds). Breadth of interactions reflects 

individual proclivities, but was significantly reduced in many individuals other than essential 

workers after the start of the pandemic. Table 1 shows parameters that were chosen for the base 

model before any interventions (See Methods for details), recognizing that some of these 

parameters were relatively arbitrary and chosen to make the model resemble real-world 

experience; a replication with a different set of parameters for sensitivity yielded virtually 

identical qualitative results to those shown below (data not shown). 

In the absence of any behavioral changes to limit the spread of disease, this set of 

parameters leads to rapid spread of disease through the population, with urban classes typically 

hit faster and harder because of their larger typical number of contacts per individual and broader  
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contact groupings (See Figure 3), despite random initiation of the disease that tends to be outside 

of urban areas due to the overall population distribution. Because of greater relative isolation of 

individuals, spread through non-urban areas also tends to be less complete, with 60% of the non-

urban/non-essential population ultimately affected compared to at least 96% of the other three 

classes. Note that in the US as a whole, overall population is approximately 218 times larger than 

the simulated population (1000), leading to a substantial increase in the time spent in each stage 

in a real population. 

Interventions to Limit Disease Spread 

Interventions can affect disease spread through a population in four ways. First, they can 

temporarily reduce interactions to minimize current disease spread and the number of near-term 

affected individuals (“flatten the curve”). Second, they can make more permanent changes in 

interaction patterns that reduce overall speed of spread, such as tracking disease, reducing 

contacts and decreasing incentives for working sick. Third, they can decrease the number of 

people who are susceptible to disease, reducing both near-term and long-term infection (e.g. by 

vaccination). Finally, they can try to impact which individuals are infected, such as by making 

special provisions for those who are most likely to have serious disease consequences.   

Figure 4 shows the impact of a temporary reduction in interactions. Interactions were 

virtually eliminated for non-essential workers from period 6-12, and reduced for essential 

workers. When restrictions were removed, the disease spread resumed because residual cases had 

remained in the population, recapitulating the initial ramp-up to exponential phases of disease 

spread, though cases were likely to be scattered and thus more challenging to control. More 

stringent or longer controls had greater opportunity to eliminate all cases in the absence of new 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20221820doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20221820
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page  10 

 

infections from exogenous sources (Figure 5). After the interruption, the urban/essential group 

had substantially reduced number of cases due to many having already been infected in the first 

peak, helping to mitigate the overall spread across all groups by about 11%. 

Permanent changes in interaction patterns are likely to be more modest in nature, such as 

reductions in sick individuals outside of the house 18 and increases in working from home. These 

could reduce disease transmission in general, lowering R0, but likely not significantly enough to 

have major impact on COVID-19 except in combination with other control methods (See Figure 

1). Aggressive use of testing and isolation of sick individuals could be used to control subsequent 

spread after a temporary reduction in cases down to a manageable level. 

Vaccines are unlikely to be 100% effective. The FDA has proposed a 50% minimum 

point estimate of effectiveness for approval 19, in line with the 40-60% effectiveness seen for 

influenza vaccines 20. In addition, surveys suggest that 20-50% of individuals might refuse 

vaccination 21, with as many as 67% likely to delay vaccination 22. Figure 6 shows the reduction 

in benefit from vaccines that would result from less than complete coverage due to some 

combination of unvaccinated or ineffectively vaccinated individuals (but ignoring the loss due to 

delays in vaccination). Any reductions in susceptible individuals due to prior exposure would be 

synergistic with the vaccine benefit. 

When only vulnerable groups such as older and less healthy individuals are isolated, 

infections will occur in other segments of the population during initial exponential disease spread 

and later provide some herd immunity for the vulnerable population. Figure 7 shows the impact 

of taking populations with initially similar transmission patterns (Figure 7A) and sequestering 

25% of the population for various periods of time. The curve for the less vulnerable population 
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shifts because there are assumed to be fewer interactions overall rather than a replacement of 

some interactions that would otherwise have occurred with the sequestered population. If the 

population that is sequestered emerges before the disease has run its course, there will be a 

resurgence of disease in both populations (Figure 7B), leading to a modest benefit of 19% and 

3% reduction in infections in the vulnerable and less vulnerable groups respectively. However, if 

the vulnerable population remains sequestered until the disease has run through most of the less 

vulnerable segment of the population, the less vulnerable population will provide herd immunity 

for the more vulnerable population and reduce spread in the two groups by 60% and 14% (Figure 

7C).  

 

Discussion 

Simulation can provide a useful tool for understanding disease spread and the impact of 

potential interventions, both for a population as a whole and for specific defined subgroups of 

interest. In this paper, we built a simple model that provides a useful proxy for the spread of 

disease through the US population. While the stages of the model are much shorter than they 

would be in a larger population, interactions between individuals lead to spread of disease in 

patterns that are generally similar to how disease behaves in the US population. Populations 

where interaction networks are broader (urban populations and essential workers in this model) 

see faster spread of disease and can exacerbate spread in other populations. 

Interventions can provide temporary or more permanent declines in the infected 

population. Ideally, early efforts can reduce the number of infected individuals and 
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identify/isolate remaining cases or those newly introduced from exogenous sources. Societies 

where it is possible to maintain the extent and time of isolation until there are no more active 

cases can eliminate disease (Figure 5), but this level of control is very challenging in the US; 

proposals for virtually complete shut downs in the US, which could eliminate all endogenous 

cases, are opposed by approximately 36% of the population 23. However, in the absence of 

vaccines, disease is likely to reemerge and development of herd immunity through careful 

balance is difficult 24. 

Vaccination can reduce disease spread both by protecting specific individuals and by 

reducing the number of interactions that spread disease (herd immunity). However, if vaccines 

are not completely effective or widely used, they will not fully contain the disease. A vaccine 

that is 50% effective would reduce effective R0 from about 2.5 to 1.25 if used by essentially the 

entire population; this would slow, but not halt the spread of the disease. However, many might 

refuse to take a vaccine, and it is unclear that a vaccine–or previous infection—will provide 

long-lasting protection. Estimates of 43% overall vaccine efficacy (combination of utilization 

and efficacy) in a very heterogenous population 10 or 60% or higher efficacy in a general 

population 25 have been suggested to provide substantial benefit in line with what would be 

necessary to reduce effective R0 sufficiently to minimize disease spread, generally in line with 

the above modeling. 

Ultimately, it is likely that a variety of methods will be necessary to reduce the extent and 

spread of COVID-19 and reach the best achievable outcomes. Short-term plans to control spread 

need to serve feasible longer-term objectives; they will not lead to substantial reductions in the 

overall number of disease cases by themselves unless they virtually eliminate all disease 
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reservoirs. If they can provide a bridge to highly effective vaccines, they can reduce overall 

morbidity and mortality. If the first generation of vaccines are not sufficiently effective, it is 

important to consider some combination of shorter-term extreme isolation, development of 

vaccine and natural immunity in less vulnerable populations, and heightened disease 

tracking/quarantine of local outbreaks. 

 

Limitations 

Simulations and modeling are highly dependent on the assumptions and approaches that 

underlie them. Assumptions in this model were guided by preliminary real COVID-19 data for 

both inputs and reasonableness testing on outputs, but this does not guarantee that the system 

will behave similarly to the real world when variables are perturbed; relative effects (changes 

from baseline) are likely to be more robust than absolute projections. Also, these parameters are 

preliminary and in many cases have not been peer reviewed and thus results should be 

interpreted cautiously. The model utilized a small population that may have exaggerated some 

effects and certainly impacted stage timing relative to larger groups, and the nature of cohorts 

(rounds of sick patients) may have impacted model behavior. Random infection from exogenous 

sources does not reflect the varying likelihoods of international contacts by differently situated 

individuals. There remains substantial uncertainty regarding key parameters for COVID-19, 

including how easily it is spread between individuals and whether infected individuals become 

(and remain) immune to reinfection over the long term. The modeling of the US population 

utilized convenient important subpopulations, but does not reflect the real heterogeneity of the 

US population, as one might more appropriately do with an agent-based model. Patients are not 
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distinguished by severity of disease, including the large group of individuals who may be 

asymptomatic. Excel random number generation is imperfect and can marginally affect results. 
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Appendix 

Hamidi et al. 26 and Wheaton and Thompson 27 explored whether density is an important 

factor in the rate of spread of SARS-CoV-2 and came to opposite conclusions. Both used county 

level data from early in the pandemic that may be influenced by the non-uniform distribution of 

early cases and challenges created (as noted by Hamidi et al. 26) with urban sprawl and the 

potential for spread to regions close to urban hotspots.  

State level data can provide additional insight into this question. While not claiming to 

resolve this issue, an analysis of the state-level correlation of population density and number of 

virus-related deaths per million (See Figure A1) is supportive of the hypothesis that population 

density is related to viral spread. Factors like typical travel patterns (within and between states), 

healthcare resources, levels of comorbidities and interventions to control spread are important, 

but beyond the scope of this paper. While not sufficient to conclude that density is the critical 

factor, its use as a proxy for factors that increase the typical number of contacts for some classes 

of individuals is plausible. 
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Tables 

Table 1. Simulation parameters representative of US society (See Methods for rationales).  

  

% Urban 31% Parker et al. 28  
Essential  55M McNicholas and Poydock 29  
     

 

Urban 
Non-Essential 

Urban 
Essential 

Non-Urban 
Not-Essential 

Non-Urban 
Non-Essential 

N 250 50 550 150 
Core Interaction Group 5 5 5 5 
Broader Interaction Group 25 25 10 25 
Average Infectious Contacts 4 6 2.5 4 
     % to Core 50% 33% 80% 50% 
     % to Broader 40% 47% 10% 30% 
     % to others in class 8% 16% 8% 16% 
     % other classes 2% 4% 2% 4% 

     
Exogenous Infections 50% (chance of one new infection per period) 
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Figure Legends. 

Figure 1. Differences in disease spread with average infectious contacts (AIC). Each curve 

represents the results of 100,000 simulations of 1000 homogeneous individuals with the 

specified number of average infectious contacts (the individual-level proxy for R0). Only 

simulations with extensive disease spread (>=10% of overall population) were included, 

representing 57%, 79%, 90%, 94%, 97% and 98% of simulations respectively for AIC of 1.5-4. 

Average number of individuals ultimately infected were 582, 796, 893, 940, 966 and 980 

respectively. 

Figure 2. Potential models for interactions between members of a core interaction group (e.g. a 

family) and the broader community. A) Most individuals have few external contacts with one 

individual serving as the primary link to the external community. B) Individuals have most of 

their contacts within the core interaction group, and external interactions are similar among all 

members of the group. C) Individuals have most of their contact within the core interaction 

group, but external interactions differ by group member. 

Figure 3. Spread of disease through different segments of the population. Simulations used the 

parameters described in Table 1, with initiation of disease in a random individual for each of the 

100,000 simulations of 1000 individuals.  

Figure 4. Spread of disease through the population with reduced interactions from period 4 to 

period 11 (80% reduction in essential classes and 99% reduction in other classes). Exogenous 

sources of infection were eliminated after period 4. 
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Figure 5. Time to elimination of disease through social distancing alone. Based on a simple 

cohort model (See Methods), 250,000 current cases of disease can be reduced to zero through 

draconian reductions in interactions, but an exponentially increasing number of periods are 

necessary if the decrease in contacts is not extreme. 

Figure 6. Spread of disease through the population with vaccination broadly administrated during 

period 4, showing the sum of new cases across all groups. Relative to no vaccination, the total 

number of infected individuals declines subsequent to period 4 by 19% (essential workers only 

vaccinated with 100% efficacy), 40% (50% effective vaccination), 58% (75% effective 

vaccination), and 74% (100% effective vaccination). 

Figure 7. Spread of disease through populations with identical characteristics, classifying 25% of 

individuals as vulnerable to worse disease outcomes. A) Baseline model with simple interaction 

pattern (most contacts with core group, 10% with rest of population). B) Vulnerable individuals 

have 99% reduced contacts from period 4 to 15. C) Vulnerable individuals have 99% reduced 

contacts from period 4 to 24.  

Appendix Figure A1. Relationship between population density 30 and COVID-19 deaths through 

August 8, 2020 1 for the 50 states. R2 for the fit line = 0.64. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20221820doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20221820
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page  22 

 

Figure 1 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20221820doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20221820
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page  23 

 

Figure 2A 
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Figure 2B 
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Figure 2C 
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Figure 3 
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Figure 4 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20221820doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20221820
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page  28 

 

Figure 5 
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Figure 6 
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Figure 7A 
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Figure 7B 
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Figure 7C 
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