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The association between socioeconomic status 

and mobility reductions in the early stage of 

England’s COVID-19 pandemic 
 

 

Abstract 

This study uses mobile phone data to examine how socioeconomic status was associated with the 

extent of mobility reduction during the spring 2020 lockdown in England in a manner that considers 

both potentially confounding effects and spatial dependency and heterogeneity. It shows that 

socioeconomic status as approximated through income and occupation was strongly correlated with 

the extent of mobility reduction. It also demonstrates that the specific nature of the association of 

SES with mobility reduction varied markedly across England. The methodological implication is that 

conventional, spatially naïve econometric analysis of the links between an area’s socioeconomic 

status and mobility reduction is inadequate. Spatial regression modelling, and preferably multi-scale 

geographically weighted regression analysis, should be used instead. Finally, the analysis suggests 

that the ability to restrict everyday mobility in response to a national lockdown is distributed in a 

spatially uneven manner, and may need to be considered a luxury or, failing that, a tactic of survival 

for specific social groups. 

Key words: COVID-19; England; Everyday mobility; Lockdown; Socio-economic status; Spatial 

complexity. 
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1. Introduction 

Across the planet, government-mandated lockdowns, including restrictions on everyday mobility, 

are one of the most common policy measures to prevent and reduce the rapid spread of COVID-19 

and avoid healthcare services being overwhelmed. While the specific nature of lockdowns varies 

across and within countries, evidence suggests that they have slowed down the spread of infections 

(Flaxman et al., 2020; Jarvis et al., 2020; Kraemer et al., 2020; Scally et al., 2020). Lockdowns are, 

however, drastic interventions with significant economic implications and disproportionally 

disadvantaging socially and economically vulnerable population groups (Bradbury-Jones and Isham, 

2020; Proto and Quintana-Domeque, 2020; Usher et al., 2020). This is why governments in European 

countries facing a ‘second wave’ of infections hesitate to re-instate nationwide lockdowns. 

Not everybody is able or willing to restrict their everyday mobility when lockdowns are in place. 

Studies using large mobile phone datasets (Oliver et al., 2020; Pepe et al., 2020) have demonstrated 

significant differences in response to restrictions on everyday mobility. Comparing 65.5m mobile 

phone GPS traces on 15-17 April with a pre-COVID-19 baseline in the USA, Dasgupta et al. (2020) 

have found more people staying at home in counties (n=2,633) with more healthcare resources, 

greater wealth and less social deprivation. Bushman et al. (2020) utilised a different dataset with Call 

Detail Records (CDRs) for ±18m mobile phones across the USA and established that the increase in 

time spent at home after stay-at-home orders was significantly smaller in Census Block Groups 

(CBGs) dominated by Blacks, Hispanics and Natives/Other than in those dominated by White and 

Asians. However, the smaller effect size for the former groups disappeared after income was 

controlled. The increase was also smaller for CBGs with more individuals aged over 50 than in areas 

with more younger people, an effect that was independent of income. Finally, a study using spatially 

more aggregated mobile phone data for 13 regions in France has shown a positive correlation 

between the prevalence of high standards of living and the percent reduction in mobility after 

lockdown. It also demonstrates greater mobility reductions in regions with more people aged 24-59, 

more highly impacted workers and greater numbers of hospitalised people per 1,000 residents 

(Pullano et al., 2020).    

These studies imply that the extent of mobility reduction in an area under lockdown increases as its 

socioeconomic status (SES) is higher. If true, then this finding can have significant implications for 

the implementation of future lockdowns and help explain spatial and socioeconomic inequalities in 

infection, hospitalisation and mortality. The objective of this paper is to provide rigorous proof for 

the relationship between mobility reduction and SES. Since mobile phone data can be used to 

monitor people’s response to COVID-19 related restrictions on people’s everyday mobility effectively 

and on an unprecedented scale (Poom et al., 2020), we use GDPR-compliant CDRs to analyse the 

relationships between SES and mobility reduction across England while 1) controlling for critical 

confounding factors and 2) considering spatial complexities in the examined relationships.  

England moved to a full government-mandated lockdown later than most other North West 

European countries. It was only from 23 March 2020 that the Government ordered a reduction of 

people’s everyday mobility to trips for essential purchases, medical needs and care-giving to others 

as well as to essential work travel and one stint of exercise per day (Iacobucci, 2020). Gatherings of 

more than two people who did not live together were prohibited, and all but essential retail 

premises such as supermarkets were closed. The original restrictions were gradually lifted after 11 
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May 2020 and have increasingly been replaced by a system of locally specific restrictions (HM 

Goverment, 2020).  

Confounding factors can be identified from the extensive literature in transportation research. 

Levels of mobility as represented by distance covered or travel time are conditioned strongly by 

accessibility levels, which are a combination of the resources (e.g. cars) people have for travel and 

the configuration of transportation and land-use systems (Fransen et al., 2018; Hanson and Schwab, 

1987; Neutens et al., 2010). That configuration can be approximated using the spatial distribution 

and intensity of people, residences, employment, retail, healthcare facilities, etcetera (Ewing and 

Cervero, 2010; Newman and Kenworthy, 1996). Everyday mobility is also shaped by commitments 

on people’s time use demanding they are at certain places in physical space at particular times are 

also shaping everyday mobility (Cullen and Godson, 1975; Schwanen et al., 2008; Van Acker et al., 

2010). The health of people in a given area should also be controlled when the relationship between 

SES and reduction in mobility is analysed. This is because COVID-19 tends to pose greater risks to 

people with underlying health conditions (Fletcher et al., 2020; Jordan et al., 2020), and such 

conditions are likely to be correlated with both SES and mobility levels (O’ Lenick et al., 2017; Yoo et 

al., 2018). It is also vital to consider SES as a multi-dimensional construct in the analysis of spatial 

variation in everyday mobility (Hanson and Hanson, 1981; van de Coevering and Schwanen, 2006; Xu 

et al., 2018). This is why the analysis considers not only household income but also education and 

skills, occupation level, housing tenure and crime levels in residential areas. In short, this paper 

analyses the relationships between multiple indicators of SES and the reduction in everyday mobility 

during the spring 2020 lockdown in England, while controlling for the effects of accessibility, activity 

commitments and population health. 

Relevant spatial complexities include spatial dependencies and spatial heterogeneity (Anselin, 1988). 

The former follows from Tobler’s (1970) claim that geographical phenomena that are near to each 

other are often related to each other, and which still resonates in the current era of unprecedented 

global interconnections (Miller, 2004). Spatial dependencies manifest as spatial autocorrelations in 

linear models, potentially resulting in inaccurate conclusions about the associations between 

dependent and independent variables. This risk is particularly salient when spatial dependencies 

occur in the dependent variable (as correlations in the levels of mobility reduction in adjacent or 

near areas in our case) or the residuals (as correlations in the values of unobserved variables in 

adjacent or near areas). Spatial heterogeneity refers in the current context to geographical scale: the 

relationships between SES and mobility reduction may not be the same across all parts of the study 

area (England) but exhibit regional variations (Bonaccorsi et al., 2020; Scala et al., 2020). This 

suggests that the national level is not necessarily the appropriate scale at which to evaluate the 

relationship. Both spatial dependencies and spatial heterogeneity will be considered below as 

various studies have suggested they shape the relationships of demographic, environmental and 

healthcare factors with COVID-18 infection, hospitalisation and mortality across regions (Harris, 2020; 

Mollalo et al., 2020; Xiong et al., 2020; Perone, 2021). 

 

 

2. Data and methods 

2.1 Data and variables 
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The analysis uses anonymised and aggregated GDPR-compliant CDRs for 1,119,449 users of a large 

British mobile phone provider1. The data have been obtained from CKDelta, an affiliated data 

innovation company. They span the period 1 March-18 April 2020. Using CDRs, we compute the daily 

radius of gyration, which is a generic metric of the spatial extent of everyday mobility practices for a 

user. It measures total mobility through summation of the n observations of distances the mobile 

phone of user � travels among the time-stamped (�) locations ��,�,� on day � from the centroid � – i.e. 

the weighted mean location as ��,�
� � 1/n ∑ ��,�,����  on that day.

2
 The radius of gyration is widely 

employed in studies using mobile phone data (González et al., 2008; Pappalardo et al., 2019, 2015). 

Locations �  are approximated by the nearest mobile phone tower, and mobility will be 

underreported if individuals do not take their phone along. Formally, the radius of gyration r�,	 can 

be expressed as:  

r�,	 � �1 �
��,�,����,�
� 

�

���

 (1). 

User-level r�,	 values are aggregated to the spatial level of the Clinical Commissioning Group (CCG) 

areas (n=191) in which individuals reside.3 This is partly for privacy protection reasons and because 

CCGs decide what healthcare services are needed to meet the specific needs of the population in 

their area, and make sure those services are provided. While NHS England hold primary 

responsibility for the commissioning of primary care services such as general practitioner (GP) and 

dental care services, CCGs commission most hospital care, including urgent and emergency care. 

They thus play a critical role in the healthcare response to COVID-19; their services will be 

overwhelmed first if compliance with a government-mandated lockdown is (very) low. We use the 

median r�,	 across users in a given CCG area in the analysis below, because the median is less 

sensitive to right-skewed distributions and outliers than the mean. Because the study concentrates 

on mobility reductions, it does not analyse the median radius of gyration of residents across CCG 

areas � on a given day, ��,� It rather analyses the reduction in mobility ��,� relative to a reference 

day, ���: 

��,� � ���,����,�	
 

��,�	

� � 100   (2). 

Tuesday 3 March is chosen as REF, because it was the last ‘normal’ Tuesday before mobility levels in 

England started to drop in connection with COVID-19. Prior to the pandemic Tuesday was the day of 

the week on which mobility levels tended to be very high because the share of people commuting to 

employment or education was larger than on most other days (Department for Transport, 2020a). As 

explained in Section 3.1, we study population movement on four consecutive Tuesdays starting on 

the 24 March, which is the day after the national lockdown commenced, until the 14 April.  

The information on mobility reductions across England is augmented with data on SES, accessibility, 

                                                           
1
 One percent of the population has been sub-sampled from the users of an established British mobile phone provider, 

stratified by the 191 Clinical Commissioning Groups (CCG19CD Clinical Commissioning Group boundaries) in England. 
2

 The number of observations n varies by user and day.  
3
 The computation of home region of users exploits the night-time location when users are most likely to be at home. 

Home region detection followed three steps: a) filter observations from 10 pm to 6 am, b) finding the most common cell 

phone tower used at night-time, c) dropping users with fewer than 30 night-time observations per month. Each cell phone 

tower is assigned to its Clinical Commissioning Group area according to its location. 
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activity commitments and population health from the 2011 Census and other sources provided by 

the Office for National Statistics (ONS). While the Lower Super Output Area (LSOA) level is the spatial 

resolution of non-mobility datasets, we aggregate data to the CCG area level by using an official 

lookup table retrieved from ONS geography portal. The creation of variables from the available data 

has been based on the authors’ knowledge of relevant literature on the spatial variation in everyday 

mobility (see Introduction). In total, we use 28 operational variables in the regression analyses 

described below (Table 1). Originally, a series of indicators of the racial/ethnic composition of the 

CCG areas were included but these had to be dropped because of multicollinearity with the 

percentage of people who do not speak English and resident population density. Spatially 

disaggregated data on COVID-19 incidence rates were also excluded from the analysis because of 

low reliability in March and April 2020 when diagnostic testing for the disease was very limited in 

England. 

 

[Insert Table 1 here] 

 

2.2 Modelling 

A series of econometric models of increasing spatial complexity has been specified to understand 

the relationships of SES, accessibility, activity commitments and population health with mobility 

reduction ��,�. The first model is a Stepwise Linear Regression Model (SLRM) in which the values for 

the dependent variable and regressors are treated as independent from each other is given by ��,� � �� � ���� � �� , where �� is the intercept, � a vector of regressors, � a vector of regression 

coefficients, and � the error term. We used a combination of forward and backward elimination of 

potential explanatory variables to achieve a specification that combines model parsimony with 

goodness-of-fit and plausibility of interpretation. All variables have been standardised with a mean 

of zero and variance of unity to facilitate interpretation (Oshan et al., 2020). The contribution of 

each regressor in the SLRM to the statistical explanation of mobility reduction is demonstrated with 

the help of Lindeman et al.’s (1980) relative importance metric (LMG), which identifies the average 

incremental improvement of each predictor based upon the decomposition of R
2
.  

Next, we consider two distinct spatial regression models that account for spatial autocorrelation at 

the global level of all 191 CCG areas in England, as defined by spatial weights � (Anselin and Arribas-

Bel, 2013). The Spatial Lag Model (SLM) captures the substantial spatial dependency in mobility 

reduction in a given CCG area and the neighbouring CCGs. The SLM model specification includes a 

spatially lagged dependent variable: 

��,� � �� � x��� � ���  � � �� ,   (3), 

where the spatial lag coefficient � indicates the impact of mobility reductions in neighbouring areas 

on the reduction in CCG area �. In contrast, the Spatial Error Model (SEM) addresses spatial error 

autocorrelation. The SEM model specification includes a spatial autoregressive error term:  

 

��,� � �� � x��� � "��#� � �� .   (4), 
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where #�  denotes the spatial component of the error term and " the spatial error coefficient.  

Finally, we use two different Geographically-Weighted (GW) models to examine the local variation in 

the rates of change so that the coefficients in the model are specific to a location %&� , '�( rather than 

being global estimates. Geographically Weighted Regression (GWR) estimates the )th coefficient ��  

for location %&� , '�( through kernel density estimation (Fotheringham et al., 2017). The GWR 

regression specification can be expressed as:   

��,� � � ��%&� , '�(x��

�

���

� �� (5), 

Where * �  � 1 (191 CCG areas+1=192). To obtain the localised parameter estimates ��%&� , '�( 

for each regressor x��, GWR employs the (diagonal) spatial weight matrix �, constructed from the 

weights to define the spatial neighbourhood that provides the best model fit. The kernel density 

estimation approach requires the specification of a kernel function and a bandwidth for � 

(Brunsdon et al., 2010). This study uses the bi-square kernel function and calibrates the bandwidth 

on the basis of )=4 nearest neighbours to generate the local weightings (Li et al., 2020; Oshan et al., 

2019). It also uses a fixed average bandwidth, BW, of 150 across all regressors. The vector of local 

parameters �+  for the matrix of regressors , can be expressed as(6): 

�+%&� , '�( � -,��%&� , '�(,.�� ,��%&� , '�(   (6). 

While the GWR captures spatial heterogeneity in a manner that the global models SLRM, SLM and 

SEM cannot do, it assumes that the spatial scale over which local variations in the effects of 

regressors – and thus the spatial processes they reflect – are identical across regressors. This 

assumption may be unduly limiting and is relaxed in Multiscale Geographically Weighted Regression 

(MGWR). MGWR allows for conditional relationships between the dependent variable and each 

regressor through the selection of an optimal BW for each regressor (Fotheringham et al., 2017) can 

be expressed as Equation (7): 

��,� � � ����%&� , '�(�

���

x�� � �� (7), 

where /0) indicates the BW used for calibration of the )th conditional relationship for MGWR. This 

study also deploys the adaptive kernel with bi-square function for MGWR model calibration to 

update and remove the spatial effects of each regressor outside the neighbourhood as specified by 

bandwidth. All GW models in this study were estimated using the GWmodel package in R software 

(Gollini et al., 2015). 

 

3. Results 

3.1 Spatial and temporal patterning of mobility reduction in England 

Across England, mobility levels as represented by the median radius of gyration declined 70.4% 

between 3 and 28 March (Figure 1). This reduction commenced almost two weeks before the start 

of the government-mandated lockdown on 23 March, and over the course of April gradually 
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reversed. Nonetheless, the England-wide trend in Figure 1 disguises stark local and regional 

variations. Figure 2 depicts hot and cold spots in mobility reduction based on the Gi
* statistic, which 

identifies local pockets where particular values for a given variable are concentrated (Getis and Ord, 

1992; Ord and Getis, 1995). Hot and cold spots are spatial clusters of contiguous CCG areas where 

mobility reductions are significantly (at p<0.05) greater or smaller than the England-level average. 

Figure 2 shows multiple spatial clusters, with the most considerable decrease in everyday mobility 

(i.e. hot spots) occurring in Greater London and the smallest (i.e. cold spots) in the Yorkshire and the 

Humber region and South West England. The locations of hot and cold spots corresponds bear some 

resemblance to the spatiotemporal variation in the COVID-19 incidence rate. According to the Royal 

Berkshire NHS Trust, London recorded the first COVID-19 related death on the 5 March. Yorkshire 

and the Humber and South West England recorded their first deaths only on 17 March and 15 March, 

respectively.   

 

[Insert Figures 1-2 here] 

 

3.2 The association of socioeconomic status with everyday mobility reductions 

To some extent, and across all four dates considered, the hot and cold spots of mobility reduction 

map onto areas where households in respectively the top and bottom quintiles of the national 

income distribution are overrepresented. Greater London clearly has the most households in the top 

income group, and Yorkshire and the Humber has many in the lowest quintile (Figure 3). A visual 

comparison of Figure 2 and 3 suggests a correlation between the reduction in everyday mobility 

levels and SES of CCG areas. It is, however, unclear how strong and linear the association with 

income, as only one marker of SES, is and whether other factors confound that association.  

 

[Insert Figure 3 here] 

 

The Stepwise Linear Regression Model (SLRM) confirms a clear relationship of income with mobility 

reduction and demonstrates that multiple other variables help to explain spatial differences in 

mobility reduction during the government-mandated lockdown across England. Table 2 tabulates 

the regression coefficients. Of the 28 variables considered, only six are significantly (p<0.01) 

correlated with the level of mobility reduction. The selected variables are identical across the four 

consecutive Tuesdays in March and April. Half relate to SES of the resident population: share of non-

English speakers, share of high-income households who belong to the top quintile of the in 

household income distribution in England and Wales, and share in lower-middle class occupation 

(social grade C1). The other three selected variables concern accessibility (resident population 

density), activity commitments (share of population who are self-employed), and population health 

(share of residents with bad health status). Depending on the date considered, these six variables 

explain 70-74% of the variation in the spatial distribution of mobility reduction. 

 

[Insert Tables 1-2 here] 

 

The regression coefficients show that mobility reduction was greater in areas with more high-income 

households, non-English speakers, workers in lower middle-class occupations and people in bad 
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health. Mobility reduction was also greater in areas with higher average population density but 

smaller in those with more self-employed workers. The effect sizes are fairly stable across the four 

dates considered, and sensitivity tests have shown that all relationships are approximately linear in 

nature. According to the LMG values, the household income variable makes the strongest 

contribution to the explanation of spatial differences in mobility reduction, followed by residential 

density, then the share of people who do not speak English. A local area’s SES was strongly 

associated with the extent of the mobility reduction among its residents at the start of the national 

lockdown. 

 

3.3 Spatial complexity I: The importance of spatial dependency 

While useful, the models in Table 2 are spatially naïve because they do not account for spatial 

dependency or heterogeneity. The spatial clustering of mobility reduction levels across England in 

Figure 2 gives reason to expect unobserved factors may be creating spatial dependencies that 

potentially bias the regression coefficients. The SLM models, in which a spatially lagged dependent 

variable – i.e. the average mobility reduction in surrounding areas – is included as an additional 

regressor, confirms the existence of upward bias in the standard regression model. Not only does 

Table 3 show a significant spatial lag coefficient on all four dates; it also displays smaller coefficients 

for the six previously selected variables. The Akaike Information Criterion (AIC), which measures the 

extent of information loss for a given model, can be used to compare different model specifications 

with each other (as long as the more restricted version is nested in the other). The smallest 

difference ∆234���  occurs for 31 March with a value (2.0) that still offers, in the words of Burnham 

and Anderson (2004, page 70), “substantial” evidence in favour of the SLM specification; for the 

other dates the evidence favouring the SLM specification is considerably stronger. 

 

[Insert Table 3 here] 

 

Controlling for spatial dependency in the residuals does not improve the results in Table 2 to the 

same extent. Only for 7 April is there considerably strong evidence to favour the SEM specification, 

though this offers still a markedly smaller improvement relative to the linear regression model 

specification than the SLM variant does. These findings indicate that is more important to account 

for spatial spill-over effects in mobility reduction (as in the SLM specification) than to control for 

spatial dependencies due to unobserved independent variables (as in SLM) when explaining the level 

of mobility reduction during the spring 2020 lockdown across England. 

 

3.4 Spatial complexity II: The relevance of spatial heterogeneity 

The SLM and SEM specifications remain global models that cannot fully capture variations in the 

associations of mobility reduction with SES, accessibility, activity commitments and public health at 

sub-national levels. The fact that the values for ∆234���  and ∆234�����  (Table 5) are markedly 

greater than for ∆234���  indicates that considering spatial heterogeneity is more important than 

accounting for spatial dependency in analyses of the extent of mobility reduction during England’s 

lockdown. Together the values of the adjusted R2, ∆234 and ∆234�  indicates that GWR and MGWR 

specifications clearly outperform the OLS specification for all four days. The values for ∆234, and ∆234�  are clearly >10, which means there is “essentially no support” (Burnham and Anderson, 2004, 
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p. 71) for the SLRM specification.  

 

[Insert Table 4 here] 

 

The ∆234 and ∆234�  values indicate that the MGWR specification is also superior to its GWR 

counterpart on 7 April. The case is less clear-cut for the other three dates although the ∆234 and ∆234�  marginally favour the MGRW models. There is also the conceptual advantage that the latter 

provide more insight into the scale at which spatial heterogeneity plays out for different regressions. 

Determining that scale as part of the modelling rather than deciding it a priori is useful since Table 5 

shows that for three out of six regressors – non-English speakers, social grade C1 and poor health – 

the estimated bandwidth equals 190 and is thus estimated at the England-wide level on all days 

considered. It is the share of households in the top income quintile and resident population density 

– the two most important regressors according to Table 2 – for which effects are more spatially 

restricted. The models fit the data best in East England, mainly Norfolk and surroundings, followed 

by the South East; adjusted R2 values are substantially lower in North England, typically more than 

20 percent points than in the Norfolk and surrounding areas (Figure 4).  

 

[Insert Figure 4 here] 

 

The mean effects for the six regressors (Table 5) are stable over the four dates considered and 

broadly comparable to those for the SLRM specification (Table 2). The model for 7 April tends to 

exhibit the greatest differences from other days when attention is directed towards the mean values. 

In addition, variation around the estimated mean value is markedly larger for the households in the 

top income quintile, residential density and the intercept. This indicates that spatial variation in the 

strength of the association with mobility reduction is most pronounced for the two strongest 

correlates (Table 2) plus the intercept. In relative terms, the variation around the mean is largest on 

three out of four days for residential density, but this is due to CCG areas with unusually high 

coefficients in the Lincoln-Hull region, followed by the North East. The right-skewed distribution of 

estimated coefficients can also be observed for households in the highest income quintile. Here the 

highest coefficients are observed for the area around Newcastle, followed by the rest of the North. 

In contrast, the lowest coefficients for the income and density variables can be found in South and 

East England. In those areas, the share of people in the lower middle classes (social grade C1) and 

with bad health are, relatively speaking, much more important to the explanation of mobility 

reduction. Greater London and its commuter belt also have high intercept values from 31 March 

onwards, suggesting that the base level of mobility reduction that is independent of any variable in 

the model has been rather high. 

 

[Insert Table 5 here] 

 

This discussion indicates substantial local variation in the correlates of mobility reduction in March 

and early April (Table 6). Consider, for instance, Newcastle upon Tyne in North East England for 

which the model explanatory power is comparatively low and spatial differences in mobility 

reduction are primarily a function of the share of households in the top quintile, residential density 

and the share of self-employed workers. This is different from London where there is a much more 
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consistent base level reduction (i.e. intercept coefficient), and the explanatory power is distributed 

much more equally across all independent variables although bad health is relatively important and 

density and the self-employment less so. The implication of the local differences shown in Table 6 is 

that, whereas SES is important everywhere, the role of individual variables varies spatially.  

 

[Insert Table 6 here] 

 

4. Discussion 

The reduction in everyday mobility across CCG areas in England in response to COVID-19 has been 

large, with a 70% reduction in the median radius of gyration, but broadly comparable with 

observations in other studies (Apple Inc, 2020; Google LLC, 2020). This headline figure occludes 

substantial variation at the individual or household level, which is where decisions about which trips 

to make or to forego are made. This is why the regression models presented in this article do not 

offer evidence of causal effects. Interpreting them in this manner would amount to ecological fallacy 

(Robinson, 1950). This does not, however, invalidate those models. After all, decisions about public 

health interventions as well as assessments of their effects and effectiveness take place at the level 

of populations and territories and not at the level of individuals or households.  

The nature of the correlations of mobility reduction across England’s CCG areas with socio-economic 

status, accessibility, activity commitments and population health is in line with expectations. The 

strong influence of share of people in the top income quintile is not surprising, given that high-

income workers tend to have greater discretion over when and where they work (Witteveen and 

Velthorst, 2020) and thus greater ability to work from home. In addition, people on high incomes 

tend to travel more than those on low incomes: individuals in the lowest household income quintile 

made 859 trips and covered 4,138 km in 2019 against 995 trips (+16%) and 9,236 km in the highest 

quintile (+223%) according to the UK National Travel Survey (Department for Transport, 2020b). The 

inclusion of the share of people in social grade C1 indicates that, once spatial differences in income 

are taken into account, CCG areas with more lower-middle workers experienced a lower total need 

to commute to/from work than territories with more working class individuals and households. 

Differences in ability to work from home are again relevant here, as is the observation that many key 

workers are employed in low-education, low-pay and precarious jobs associated with working class 

status in domains such as supermarkets, logistics and last-mile delivery, and construction.  

The postive regression coefficients for the share of non-English speakers in Tables 2, 3 and 5 suggest 

that this variable may not be as much an indicator of SES as initially expected. As indicated above, 

the of non-English speakers is greatest in CCG areas where many people from non-Western heritage 

live. These individuals and households are comparatively likely to be excluded from car access and 

ownership (Lucas and Jones, 2009). They are thus strongly dependent on public transport, even 

when their concentration in higher-density locations (Badoe and Miller, 2000; Schimek, 1996) is 

taking into account. At the same time, it rapidly became clear over the spring of 2020 that ethnic 

minorities in the UK were at higher risk of COVID-19 infection and hospitalisation and mortality 

because of the virus (Proto and Quintana-Domeque, 2020). The coefficients in Tables 2, 3 and 5 may 

therefore also reflect a strong inclination to stay at home among groups from non-Western heritage 

because of perceived health risks. 
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Among the remaining variables, the postive coefficients for percent of the population in bad or very 

bad health and the negative coefficients for the share of population that is self-employed are as 

expected. The former most likely reflects a greater prevalence of government-encouraged shielding 

by clinically (extremely) vulnerable individuals and their households during the early stages of the 

pandemic. Yet, it may also reflect differences in local information campaigns, with health authorities 

in areas with large number of people with underlying health conditions perhaps placing greater 

emphasis on the need to shield and/or being more effective in reaching vulnerable individuals and 

households. It is also possible that greater and more effective community networks were in place or 

emerged in places with more clinically vulnerable households. Further research would be necessary 

to probe these conjectures. The result for share of self-employed workers seems to reflect 

autonomy over working hours and locations as well as discretion to engage in work- and business-

related travel. Yet, a lack of choice also seems to be involved: for their business to survive and to 

make a living, many self-employed individuals may have to travel to suppliers and customers, 

whether they like it or not. Factors such as these may push up the (median) mobility at the CCG area 

level once differences in SES, accessibility and population health are taken into account. 

The strong effect of population density is somewhat surprising but the positive correlation certainly 

not. Public transport use increases substantially with density (Badoe and Miller, 2000; Schimek, 1996) 

and this form of travel has been affected severely during the COVID-19 pandemic. Not only is it 

widely seen as a site where infection risk is particularly high, the capacity of service provision was 

dramatically reduced in the early stages of the pandemic and the Government’s official 

communication actively discouraged UK residents from using buses, trams, metros and trains. In 

addition, it is in high-density areas that the availability of local shops and delivery of groceries and 

other shopping bought online was most common before the pandemic (Brand et al., 2020). The need 

to travel for everyday needs is thus lower and can be satisfied locally more easily. Finally, the 

correlation of density with share of population of non-Western heritage may suggest a stronger 

inclination to stay at home due to perceived health risks in CCG areas with high population densities. 

The above interpretations suggest that population composition may be more important than 

context at CCG area level. Nonetheless, the effects of resident population density seems to have a 

strong contextual element, and the effects of share of population in (very) bad health may also hint 

at contextual effects if there have indeed been differenses in how CCGs have overseen the provision 

of spatially differentiated information to vulnerable individuals and their households. In addition, the 

relative prominence of compositional factors may reflect the scale at which mobility reductions have 

been analysed. The CCG level is an approriate choice in light of the healtcare sector’s response to the 

COVID-19 pandemic in England, but that does not mean that analysis conducted at another spatial 

level or using another classification of zones would have rendered the same results. The findings in 

this study remain subject to the modifiable areal unit problem (Fotheringham and Wong, 1991), and 

further work at different scales and with different spatial zones would enhance the understanding of 

how SES and other factors have shaped mobility reductions during the England-wide lockdown in 

early 2020. 

The above analysis warrants two further conclusions. First, as the spatial regression models (Table 3) 

have suggested, mobility reduction in a given territory – even at the relatively aggregate level of the 

CCG area – is not independent from what happens in that territory’s neighbourhood. Figure 2 shows 

multiple, spatially extensive hot and cold, and the SLM specifications show that the spatially lagged 
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dependent variables become statistically significant and meaningful regressors. Moreover, the 

inclusion of the latter reduces the coefficients of regressors measuring the attributes of the CCG 

area for which mobility reduction is analysed. This should come as a surprise: many people’s 

everyday mobility and activity spaces are not contained within the administrative territories on the 

basis of which healthcare services are provided. A comparison of Tables 2 and 3 suggests that SES, 

accessibility, activity commitments and population health in surrounding areas have, to some extent 

shaping, shaped the extent of mobility reduction in a given CCG area. Had a spatial classification at a 

finer resolution been deployed, then the influence of neighbouring areas – and the need for spatially 

advanced econometrics – would have been even larger than in the present study. 

Second, the relationships of mobility reduction with SES, accessiblity, activity commitments and 

population health at the CCG level area vary significantly across England. As Table 4 demonstrates 

unambiguously, a spatially naïve linear regression model is simply not appropriate if the aim is to 

capture the spatial heterogeneity of the correlates of mobility reduction at the CCG area level. This is 

because on the one hand the relative importance of the regressors discussed above differs markedly 

across CCG areas, and on the other hand the underlying spatial processes play out over different 

spatial scales. The effects of the share of households in the top income quintile and resident 

population density – income and density – have the most pronounced geographies. Table 7 indicates 

that they have the strongest discriminatory effects in the post-industrial effects in North England, 

given that the coefficients for these variables are largest in Manchester, Leeds and Newcastle-on-

Tyne while the overall goodness-of-fit (R
2
) for those cities is at most 72% of what it is in the City of 

London. These results are not altogether unexpected, given that spatial differences in the prevalence 

of high-income households (Figure 3) and resident population density are more pronounced across 

North England than across most of the North East. 

 

5. Conclusion 

This study has used mobile phone data to provide rigorous evidence for an link between 

socioeconomic status (SES) with mobility reduction during the Spring 2020 lockdown in England, 

while considering the potentially confounding effects of other factors and “recognising the 

fundamental spatiality of the current COVID-19 crisis” (Poom et al., 2020, p. 5). Three main 

conclusions can be drawn.  

First, SES has indeed been correlated with the extent of mobility reduction in the early stage of 

England’s COVID-19 pandemic, and strongly so. The headline figure of a 70% reduction in everyday 

mobility obscures marked spatial differences across local areas. All else equal, areas with more high-

income households have seen the largest reductions in mobility, while those with more workers in 

lower middle-class occupations have seen greater reductions compared with those with more 

people in working-class occupations. The finding that areas with more non-English speakers have 

experienced greater reductions in mobility to some extent contravenes the suggestion that higher 

SES is associated with greater mobility reductions, but seems to reflect differences in the risk of 

infection, hospitalisation and death along lines of race/ethnicity. The greater reduction in mobility in 

territories with more non-English speakers appears to be an aggregate-level consequence of more 

shielding in response to the circulation of information about exposure risks, as it is in areas with 

more residents who are in bad or very bad health.  
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Second, the specific nature of the association of SES with mobility reduction varies markedly across 

England. There are both global (England-wide) and local factors that make a spatially naïve, 

conventional regression analysis inadequate and inappropriate. Territories as large as CCG areas are 

not independent as reductions in one area are influenced by those in surrounding areas due to 

everyday mobility patterns’ transgression of administrative boundaries. More importantly, the 

strength of correlations between mobility reduction on the one hand and SES, accessibility, activity 

commitments and population health differs markedly across the country. If anything, the 

significance of SES is larger across North England than in the London and the South East. 

Third, the analysis points towards the spatially uneven distribution of the ability to restrict everyday 

mobility and stay at home in response to a national lockdown. It is tempting to interpret the lower 

mobility reductions in areas with lower SES as a manifestation of non-compliance. Yet, this language 

is already buying into a discourse that assumes people had the autonomy to reduce their everyday 

mobility during the spring of 2020, and paves the way for a demonisation of the (economically) 

disenfranchised. It seems more appropriate to consider the reduction of every mobility in England 

during the spring of 2020 as one of two strategic responses of local populations. For many people it 

was a relative luxury enabled by the nature of their job and/or local availability of facilities and 

services catering to their needs – with delivery at home of online purchases as the limiting case. 

Failing that, and alternatively, it was a survival tactic for those at risk of serious illness and 

potentially worse. It is very well possible that local areas in which many residents could not afford 

the relative luxury of staying at home and reduced their mobility as much as in more privileged areas 

are at a disadvantage (e.g., more infections, overwhelmed healthcare services) in later stages of the 

COVID-19. Verification of this conjecture is beyond the current study but the path-dependent spatial 

differentiation in ability to reduce everyday mobility is an important topic for future research. 
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Enclosure 

 

Figures 

 
Figure 1. Mobility reduction across CCG areas in England, box plots for each day and an estimated local 

polynomial regression function (with span s=0.1) for the period until 18 April. 
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a. 24 March b. 31 March 

  

c. 7 April d. 14 April 

Figure 2. Maps of hot and cold spots in mobility reduction across England. 
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Figure 3. Spatial distribution of the lowest (above) and highest quintiles (below) of household income 

across England. 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20221770doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20221770
http://creativecommons.org/licenses/by-nd/4.0/


  

a. 24 March b. 31 March 

  

c. 7 April d. 14 April 

Figure 4. Local R
2
 in the MGWR model for 7 April. 
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Tables 

 

Table 1. Descriptive statistics of variables. 

Domains Variables  Min. Mean Medi

an 

Max. SD Skew 

Mobility reduction relative to 3 March 2020 24 March 2020 0.37 0.62 0.61 0.82 0.1 0.1 

31 March 2020 0.44 0.66 0.66 0.83 0.09 0.05 

7 April 2020 0.26 0.64 0.63 0.85 0.1 -0.11 

14 April 2020 0.38 0.62 0.61 0.83 0.1 0.17 

Socioeconomic 

status 

Income Share of households in lowest household income quintile 

at national level 

0.13 0.18 0.17 0.4 0.03 2.64 

Share of households in median household income quintile 

at national level 

0.1 0.22 0.22 0.25 0.02 -1.57 

Share of households in top household income quintile at 

national level 

0.03 0.19 0.17 0.4 0.07 0.69 

Education and skills Share with no qualifications 0.11 0.23 0.23 0.35 0.05 0.03 

Share of non-English speakers 0.01 0.08 0.04 0.41 0.08 1.9 

Occupation 

 

Share of Social Grade AB (upper middle class) 0.11 0.31 0.31 0.55 0.07 0.49 

Share of Social Grade C1 (lower middle class) 0.15 0.22 0.22 0.3 0.03 -0.27 

Share of Social Grade C2 (skilled working class) 0.1 0.21 0.22 0.31 0.04 -0.52 

Share of Social Grade DE (semi-skilled working class and 

non-working) 

0.07 0.17 0.16 0.37 0.05 0.66 

Housing type Share of social rented housing 0.06 0.18 0.15 0.44 0.07 1.39 

Share of dwellings with ≥4 bedrooms 0.06 0.19 0.18 0.33 0.05 0.19 

Crime level Incidents of crime (per 1,000 inhabitants) 0.02 8.16 8.07 28.35 3.47 0.86 

Accessibility Residential density Resident population density (1,000 inhabitants per km
2
) 0.02 0.84 0.34 6.23 1.22 2.39 

Car availability Share of households with 0 vehicle 0.1 0.26 0.23 0.65 0.12 1.47 
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Share of households with 1 vehicle 0.3 0.42 0.43 0.5 0.03 -1.68 

Share of households with 2 vehicles 0.04 0.24 0.26 0.39 0.07 -0.85 

Share of households with ≥3 vehicles 0.01 0.07 0.07 0.14 0.03 -0.18 

Clinical capacity ICU beds (per 1,000 inhabitants) 0 0.07 0.04 0.89 0.11 3.49 

Number of GP practices (per 1,000 inhabitants) 0.07 0.12 0.12 0.3 0.03 1.35 

Hospitals (per 1,000 inhabitants) 0.11 0.18 0.17 0.38 0.03 1.5 

Allowed premises Parks (per 1,000 inhabitants) 0.05 0.17 0.15 0.48 0.08 0.99 

Supermarkets (per 1,000 inhabitants) 0.63 1.07 0.98 2.32 0.3 1.36 

Activity 

commitment 

Economic activity Share of part-time workers in the resident  

population aged 16-74 

0.07 0.14 0.14 0.16 0.02 -1.72 

Share of full-time worker in the resident  

population aged 16-74 

0.22 0.39 0.39 0.51 0.04 -0.2 

Share of self-employed workers in the resident  

population aged 16-74 

0.05 0.1 0.1 0.16 0.02 0.12 

Population Health General health status Share of population in good health  0.74 0.81 0.81 0.88 0.03 -0.11 

Share of population in fair health 0.09 0.13 0.13 0.17 0.02 -0.14 

Share of population in bad health  0.03 0.06 0.05 0.09 0.01 0.49 

Notes: Variables in bold have been included in regression models below; variables for racial/ethnic composition of resident populations had to excluded because of high 

correlations with share of non-English speakers and resident population density 
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Table 2. Linear Regression Modelling for mobility reduction, by date. 

 24 March 2020 31 March 2020 7 April 2020 14 April 2020 

 Coeff (SD) LMG
1
 Coeff (SD) LMG Coeff (SD) LMG Coeff (SD) LMG 

(Intercept) 0.000 

(0.038) 

- 0.000 

(0.039) 

- 0.000 

(0.04) 

- 0.000 

(0.037) 

- 

Socio-economic status 

Share of households in top household income quintile at 

national level 

0.797
***

 

(0.072) 

0.34 0.806
***

 

(0.073) 

0.33 0.785
***

 

(0.075) 

0.34 0.792
***

 

(0.07) 

0.34 

Share of non-English speaker 0.359
***

 

(0.07) 

0.17 0.396
***

 

(0.072) 

0.18 0.331
***

 

(0.073) 

0.17 0.311
***

 

(0.068) 

0.15 

Share of social grade C1 (lower middle class) 0.509
***

 

(0.061) 

0.08 0.543
***

 

(0.063) 

0.09 0.502
***

 

(0.064) 

0.08 0.527
***

 

(0.059) 

0.09 

Accessibility 

Resident population density (1,000 inhabitants per km
2
) 0.371

***
 

(0.08) 

0.28 0.349
***

 

(0.082) 

0.27 0.399
***

 

(0.083) 

0.29 0.423
***

 

(0.078) 

0.28 

Activity commitments 

Share of self-employed workers -0.208
***

 

(0.063) 

0.06 -0.251
***

 

(0.064) 

0.05 -0.270
***

 

(0.065) 

0.05 -0.224
***

 

(0.061) 

0.06 

Population health 

Share of population in bad health  0.462
***

 

(0.073) 

0.08 0.490
***

 

(0.075) 

0.08 0.411
***

 

(0.076) 

0.07 0.432
***

 

(0.071) 

0.07 

Model fit metrics  

R
2
 0.729 0.714 0.705 0.744 

Adjusted R
2
 0.720 0.705 0.696 0.736 

Residual Std. Error (df = 184) 0.052 0.047 0.053 0.049 

F Statistic (df = 6; 184) 82.4
***

 76.6
***

 73.5
***

 89.3
***

 
1
 Relative importance metric, the contribution of each variable of R

2
 (Lindeman et al., 1980). 

Note: *p<0.1; **p<0.05; ***p<0.01. 
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Table 3. Spatial regression modelling of mobility reduction, by date. 

 24 March 2020 31 March 2020 7 April 2020 14 April 2020 

 SLM SEM SLM SEM SLM SEM SLM SEM 

Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) 

(Intercept) -0.007 

(0.037) 

0 (0.042) -0.007 

(0.038) 

-0.001 

(0.041) 

-0.011 

(0.038) 

-0.005 

(0.052) 

-0.009 

(0.036) 

-0.004 

(0.045) 

Socio-economic status 

Share of households in top household income 

quintile at national level 

0.677
***

 

(0.084) 

0.796
***

 

(0.074) 

0.707
***

 

(0.087) 

0.806
***

 

(0.075) 

0.637
***

 

(0.086) 

0.802
***

 

(0.082) 

0.665
***

 

(0.082) 

0.8
***

 (0.074) 

Share of non-English speaker 0.291
***

 

(0.073) 

0.361
***

 

(0.072) 

0.34
***

 

(0.076) 

0.399
***

 

(0.073) 

0.256
***

 

(0.074) 

0.356
***

 

(0.078) 

0.245
***

 

(0.07) 

0.327
***

 

(0.072) 

Share of social grade C1 (lower middle class) 0.435
***

 

(0.062) 

0.485
***

 

(0.062) 

0.48
***

 

(0.065) 

0.526
***

 

(0.063) 

0.41
***

 

(0.064) 

0.444
***

 

(0.068) 

0.447
***

 

(0.06) 

0.486
***

 

(0.062) 

Accessibility 

Resident population density (1,000 inhabitants 

per km
2
) 

0.292
***

 

(0.08) 

0.352
***

 

(0.081) 

0.288
***

 

(0.083) 

0.336
***

 

(0.082) 

0.289
***

 

(0.082) 

0.331
***

 

(0.088) 

0.327
***

 

(0.078) 

0.375
***

 

(0.081) 

Activity commitments 

Share of self-employed workers -0.189
***

 

(0.06) 

-0.194
***

 

(0.063) 

-0.232
***

 

(0.062) 

-0.241
***

 

(0.065) 

-0.248
***

 

(0.062) 

-0.25
***

 

(0.068) 

-0.208
***

 

(0.058) 

-0.207
***

 

(0.063) 

Population health 

Share of population in poor health  0.397
***

 

(0.076) 

0.462
***

 

(0.075) 

0.434
***

 

(0.078) 

0.49
***

 

(0.076) 

0.338
***

 

(0.077) 

0.433
***

 

(0.082) 

0.364
***

 

(0.073) 

0.433
***

 

(0.075) 

Spatial autoregressive parameters 

Spatial lag coefficient (�) 
 

0.202
**

 

(0.077) 

- 0.165
**

 

(0.079) 

- 0.266
***

 

(0.076) 

- 0.224
***

 

(0.074) 

- 

Spatial error coefficient (�) - 0.100
*

 

(0.106) 

- 0.071 (0.107) - 0.269
***

 

(0.095) 

- 0.196
**

 (0.1) 

Model fit metrics  

Log-likelihood -143.0 -145.6 -148.9 -150.7 -148.5 -150.6 -136.2 -138.7 

Pseudo R
2
 0.737 0.730 0.720 0.715 0.721 0.715 0.755 0.748 

������  307.9 317.8 323.5 296.6 

������  303.9 309.2 315.8 319.4 315.0 319.3 290.5 295.5 

∆������ � �������� � ������� 4.0 -1.3 2.0 -1.6 8.5 4.2 6.1 1.1 

Note: *p<0.1; **p<0.05; ***p<0.01.  
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Table 4. Assessment of spatial heterogeneity in regression modelling, by date. 

Modelling approach  Model criterion  24 March 31 March  7 April 14 April 

OLS-equivalent Log-likelihood  -145.9 -150.9 -153.8 -140.3 

Adj. R
2
 0.720 0.705 0.696 0.736 

AIC 307.9 317.8 323.5 296.6 

GWR 

  

Log-likelihood -128.2 -136.3 -126.9 -118.6 

Adj. R
2
 0.754 0.732 0.757 0.778 

AIC 292.2 308.4 289.6 273.0 

∆	
���� � �	
��	�
 �	
����� 15.7 9.4 34.0 23.6 

AICc 296.1 312.3 293.5 276.9 

MGRW Log-likelihood -132.4 -140.2 -122.8 -117.5 

Adj. R
2
 0.750 0.728 0.771 0.780 

AIC 290.5 307.2 281.8 270.6 

∆	
�
���� � �	
��	�
 � 	
�
���� 17.4 10.6 41.8 26.0 

∆	
�
���� � �	
���� � 	
�
���� 1.7 1.2 7.8 2.4 

AICc 
�
 292.5 309.4 287.6 274.4 

∆	
������ � �	
����� � 	
������� 3.6 3.0 5.9 2.5 
�

 AICc is often used when the ratio of estimated coefficients to cases is small. 
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Table 5A. Results for MGWR modelling of mobility reduction, 24 and 31 March. 

 24 March 2020 31 March 2020 

 Mean SD Min Med Max Band 

width 

Mean SD Min Med Max Band 

Width 

(Intercept) 0.109 0.003 0.103 0.107 0.118 190 0.098 0.028 -0.017 0.106 0.155 132 

Socio-economic status  

Share of households in top  

household income quintile at national level 

0.873 0.148 0.723 0.787 1.076 158 0.859 0.122 0.740 0.790 1.030 165 

Share of non-English speaker 0.355 0.005 0.349 0.355 0.364 190 0.398 0.003 0.393 0.397 0.403 190 

Share of social grade C1  

(lower middle class) 

0.460 0.025 0.409 0.473 0.485 190 0.499 0.020 0.453 0.512 0.517 190 

Accessibility 

Resident population density 

(1,000 inhabitants per km
2
) 

0.465 0.151 0.322 0.367 0.724 147 0.403 0.118 0.296 0.326 0.636 149 

Activity commitments 

Share of self-employed workers -0.179 0.048 -0.259 -0.153 -0.131 178 -0.222 0.027 -0.280 -0.209 -0.196 190 

Population health 

Share of population in poor health  0.508 0.018 0.484 0.509 0.532 190 0.536 0.012 0.518 0.537 0.553 190 

Model fit metrics 

Residual sum of squares (RSS) 44.733 48.559 

Effective number of parameters (tr(S)) 11.837 12.371 

Log-likelihood -132.394 -140.230 

AIC 290.462 307.203 

AICc 292.467 309.379 

R
2
 0.766 0.746 

Adj. R
2
 0.750 0.728 

 

  

 . 
C

C
-B

Y
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted N

ovem
ber 3, 2020. 

; 
https://doi.org/10.1101/2020.10.28.20221770

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2020.10.28.20221770
http://creativecommons.org/licenses/by-nd/4.0/


Table 5B. Results for MGWR modelling of mobility reduction, 7 and 14 April. 

 7 April 2020 14 April 2020 

 Mean SD Min Med Max Band 

width 

Mean SD Min Med Max Band 

Width 

(Intercept) 0.249 0.217 -0.087 0.228 0.554 50 0.112 0.202 -0.210 0.136 0.377 68 

Socio-economic status  

Share of households in top  

household income quintile at national level 

0.973 0.330 0.638 0.844 1.457 96 0.862 0.191 0.675 0.752 1.118 154 

Share of non-English speaker 0.345 0.005 0.332 0.348 0.351 190 0.318 0.020 0.271 0.329 0.337 190 

Share of social grade C1  

(lower middle class) 

0.332 0.009 0.315 0.337 0.345 190 0.399 0.007 0.390 0.398 0.412 190 

Accessibility  

Resident population density 

(1,000 inhabitants per km
2
) 

0.300 0.143 0.164 0.199 0.524 151 0.269 0.014 0.255 0.260 0.291 186 

Activity commitments 

Share of self-employed workers -0.238 0.020 -0.273 -0.226 -0.219 186 -0.213 0.050 -0.287 -0.187 -0.130 136 

Population health 

Share of population in poor health  0.636 0.010 0.617 0.640 0.648 190 0.540 0.018 0.515 0.544 0.562 190 

Model fit metrics 

Residual sum of squares (RSS) 38.966 38.285 

Effective number of parameters (tr(S)) 20.665 16.755 

Log-likelihood -119.211 -117.529 

AIC 281.752 270.568 

AICc 287.586 274.434 

R
2
 0.796 0.800 

Adj. R
2
 0.771 0.780 
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Table 6. Locally specific coefficients in MGWR model, 14 April 2020. 

Local authority districts City of London City of Bristol Birmingham Manchester Leeds Newcastle 

upon Tyne 

(Intercept) 0.372 0.095 0.157 -0.097 -0.185 -0.163 

Socio-economic status 

Share of households in top  

household income quintile at national level 
0.676 0.706 0.880 1.090 1.104 1.117 

Share of non-English speaker 0.336 0.331 0.323 0.294 0.294 0.278 

Share of social grade C1  

(lower middle class) 
0.392 0.398 0.401 0.407 0.406 0.410 

Accessibility 

Resident population density 

(1,000 inhabitants per km
2
) 

0.256 0.257 0.265 0.286 0.288 0.290 

Activity commitments 

Share of self-employed workers -0.165 -0.193 -0.214 -0.269 -0.279 -0.287 

Population health 

Share of population in poor health  0.559 0.553 0.537 0.517 0.518 0.516 

Model fit metrics       

Residual sum of squares (RSS) 0.012 0.347 0.169 1.762 0.400 0.028 

Pseudo R
2
 0.817 0.789 0.627 0.577 0.585 0.584 
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