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ABSTRACT

Statistical network analysis plays a critical role in managing the coronavirus disease (COVID-19)
infodemic such as addressing community detection and rumor source detection problems in social
networks. As the data underlying infodemiology are fundamentally huge graphs and statistical in
nature, there are computational challenges to the design of graph algorithms and algorithmic speedup.
A framework that leverages cloud computing is key to designing scalable data analytics for infodemic
control. This paper proposes the MEGA framework, which is a novel joint hierarchical clustering
and parallel computing technique that can be used to process a variety of computational tasks in
large graphs. Its unique feature lies in using statistical machine learning to exploit the inherent
statistics of data to accelerate computation. Our MEGA framework consists of first pruning, followed
by hierarchical clustering based on geodesic distance and then parallel computing, lending itself
readily to parallel computing software, e.g., MapReduce or Hadoop. In particular, we illustrate how
our MEGA framework computes two representative graph problems for infodemic control, namely
network motif counting for community detection and network centrality computation for rumor
source detection. Interesting special cases of optimal tuning in the MEGA framework are identified
based on geodesic distance characterization and random graph model analysis. Finally, we evaluate
its performance using cloud software implementation and real-world graph datasets to demonstrate
its computational efficiency over existing state of the art.

Keywords COVID-19 · Infodemic · Big graph analytics ·Machine learning · Cloud computing

1 Introduction

The rapid global spread of coronavirus disease 2019 (COVID-19) leads to a proliferation of data inventory. At the
same time, infodemiology (i.e., the epidemic of misinformation spread over social networks) is acknowledged by the
World Health Organization (WHO) as a critical problem for COVID-19 pandemic control [1, 2]. The evolution of an
infodemic can be modeled as dynamic processes on large-scale networks, and statistical network analysis is therefore
playing an important role in infodemic control. Examples of such control measures are network motif enumeration for
community detection [3, 4] or rumor source detection [5, 6] in online social networks. Online social networks such as
Facebook that boasts of over 2.7 billion monthly active users may want to identify important communities or count user
clusters efficiently. However, as data underlying infodemiology are fundamentally huge graphs and statistical in nature,
there are computational challenges to the design of graph algorithms and algorithmic speedup.

Network-structured data are complex in nature, coupling both network topological structure and relational data. For
instance, new relationships in online social networks can be discovered by knowing who is connected to whom and
how information flows between users. Using graph theory, one can model users and relationships between users (e.g.,
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friendships) as vertices and edges respectively that result in huge graphs that need to be processed. The volume of these
huge graph data may reach a point that limits a direct use of standard graph algorithms. For example, a well-known
algorithmic enabler for the aforementioned infodemic control measures is breadth-first search (BFS). However, running
a BFS algorithm for every single vertex of a large graph becomes computationally impractical. Cloud computing can
alleviate this data volume challenge to some extent [7, 8, 9]. Cloud computing software framework, e.g., MapReduce
and Hadoop, decomposes computation into subproblems that are mapped to parallel computers (i.e., mappers in
MapReduce) before combining the solution of the subproblems (i.e., the reducer in MapReduce).

Infodemic control (and, in fact, most data science) problems however have important statistical features that are
not easily mapped to a cloud computing framework. Network topology of infodemic data are generated and then
evolved statistically. This data have local and global statistical dependence that affect the problem-solving approach
and its solution quality [10, 11]. For instance, the aforementioned community detection requires counting network
motifs (given subgraphs) in graphs generated by a model whose statistical features can affect the speed of detecting
communities. The aforementioned rumor source detection can be modeled as maximum-likelihood estimation problems
whose optimal solution depends on graph algorithms whose parameters are related to the data statistics. In general,
the inherent statistics of data influences algorithmic tuning and consequentially computational performance. Thus,
it is important to understand how to exploit statistical features for algorithmic speedup without incurring significant
information loss or degraded solution quality.

In this paper, we propose a novel scalable graph analytics framework leveraging large-scale cloud computing, called
MEGA, to address some of aforementioned issues. A novelty of our MEGA framework is to use statistical machine
learning for algorithmic parameter tuning, implicitly exploiting the underlying statistics in the data. MEGA contains
three major steps: pruning, hierarchical clustering and computing. In MEGA, we first reduce irrelevant information via
pruning, and then group the data with similar properties into the same cluster so as to retain the important relationships
among data and minimize information loss via hierarchical clustering. We then develop theoretical results of geodesic
distance bounds related to the importance of vertices that enable parallel processing in the hierarchy property for solving
a statistical network problem. As a case in point, we illustrate how MEGA can be used for two representative anti-
infodemic applications, namely network motif counting for community detection and network centrality computation
for rumor source detection. Lastly, as MEGA is quite generic, it can be extended to accelerate other graph algorithms
for infodemic control.

Overall, the contributions of the paper are as follows:

• We propose a machine learning-enhanced framework called MEGA that decomposes a large graph into smaller
components that are mapped to parallel computing software for computing acceleration. We demonstrate
that our MEGA framework can be tuned using statistical machine learning techniques to learn the statistics
underlying graph data.

• Inspired by Tarjan’s breadth-first search (BFS) graph decomposition technique [12, 13], the proposed hierar-
chical clustering step in MEGA framework builds a geodesic distance-based hierarchy of clusters that yields
highly-parallelizable structure for parallel implementation in cloud computing software, e.g., MapReduce.

• We demonstrate its performance over the state of the art for two representative statistical problems of infodemic
control by extensive performance evaluations using graph datasets from the public domains (e.g., Stanford
SNAP website) and also synthetic random graphs generated from Barabási-Albert and Erdős-Rényi model.
For random graphs, we demonstrate that optimal tuning parameters can be achieved.

• For search (BFS) graph decomposition, we also incorporate top-k ranking to reduce the number of BFSs
invoked on the graph which significantly improves the performance of the MEGA framework. This provides a
fast method to compute network centrality for solving statistical inference problem on large networks [5].

This paper is organized as follows. In Section 2, we generally present the MEGA framework, and outline the network
motif (given subgraph) counting and network centrality computation problem for infodemic control. In Section 3, we
apply MEGA to solve the network motif counting problem, and analyze its computational complexity. In Section 4, we
apply MEGA to find the distance-based rumor center in a large-scale graph, and demonstrate how the new discovery of
BFS scalable computation approach reduces the computational complexity of finding a rumor center in a given rumor
subgraph. Performance evaluation results can be found in Section 5. We conclude the paper in Section 6.

2 Machine Learning-Enhanced Framework for Scalable Computing

In this section, we introduce the aforementioned MEGA framework and study the network motif counting and network
centrality computation problem. We focus on scalable framework design for parallel computation to handle large graphs.
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Table 1: Key terms and symbols

Symbol Definition
G The original input graph.
G′ The graph obtained after pruning G.
V (G) The set of vertices of G.
E(G) The set of edges of G.
N The number of vertices in G, i.e., |V (G)|.
N ′ The number of vertices in G′, i.e., |V (G′)|.
θ The threshold used in pruning.

deg(v) The degree of vertex v.
dist(u, v) The distance between vertex u and v.
NG(v) The vertex set which contains all neighbors of vertex v in G.
maxC The number of clusters in G′.
P (G) The set of pruned vertices of G.
S(v,G) The distance centrality of vertex v in G.

SLR(v,G
′) The lower bound on the distance centrality of vertex v in G′.

Cdist(G) The distance center of G.
dia(G) The graph diameter of G.

Note that we can always add more constraints in each step of the framework so as to specify the network computational
task. Table 1 summarizes the key mathematical notations used in this paper.

Let G = (V (G), E(G)) be a simple graph. MEGA has three main steps:

Step 1. PRUNING
Decompose the given graph G into connected components and obtain the resultant graph G′. In this step, we set a
threshold parameter θ using statistical learning theory, and then remove vertices from G until

∀v ∈ V (G′), θ < deg(v). (1)

Step 2. HIERARCHICAL CLUSTERING
Cluster vertices in a connected component in a hierarchical manner using the breadth-first search algorithm (BFS)
[12, 13] and utilize statistical learning approaches to find an optimal approximation to the root for BFS tree traversal.

Step 3. COMPUTING
Solve a network computational task in parallel using the hierarchy property.

The three main steps in MEGA can be parallelized using techniques like MapReduce and Hadoop when MEGA is
applied to practical problems (cf. Section 3 and 4). Fig. 1 gives an overview of MEGA applied to solve the network
motif counting and network centrality computation problem.

2.1 Preliminaries of Network Motif Counting

Network motif enumeration in community detection is to identify and count a given subgraph (related to subgraph
isomorphism problem in computer science). This paper studies its special case when the subgraph is particularly a
triangle [14]. Other subgraphs such as clique can also be counted by MEGA with different verification schemes.
Problem 1 (Counting network motif). Given a simple graph G = (V (G), E(G)), if there exists three vertices vi, vj
and vk such that (vi, vj), (vi, vk) and (vj , vk) are all in E(G), then we say vi, vj , vk form a subgraph. The goal is to
compute exactly the size of the set in G characterized by

|{(vi, vj , vk)|vi, vj , vk form a subgraph where i < j < k}|. (2)

Beyond the computational challenge, there are useful applications of network motif counting techniques found in
anti-infodemic applications such as web spamming detection [15], community detection [16] and web recommendation
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Figure 1: Overview of MEGA applied to solve the network motif counting (left) and network centrality computation
problem (right). We use machine learning approaches to perform parameters tuning so as to optimize the performance
of MEGA. The threshold θ in the pruning step and the root in the hierarchical clustering step are two critical parameters
that can significantly affect the overall performance of MEGA. For network motif counting, we use linear regression
to compute an optimal threshold θ∗ and find an optimal approximation to the root based on the statistical features
underlying graph data. We then use statistical data analysis to obtain θ∗ for network centrality computation and apply
decision tree algorithm to find an optimal root for MEGA.

[17]. Furthermore, since the given subgraph we considered in this paper is the most basic structural unit in a graph,
network motif counting can be adapted to address other graph-theoretic problems such as the maximum clique problem
[18] or the k-truss computation problem [19, 20] that are practically relevant to biological network analysis [21] for
pandemic control.

We briefly discuss some of the recent works on subgraph counting. For a given graph G with N vertices, a naive method
that exhaustively checks every group of three vertices has a computational time complexity O(N3) since there are(
N
3

)
groups altogether. This is however impractical for large graphs that often have more than hundreds of millions of

vertices. Even if there is an efficient method to list down all subgraphs, this is still time consuming when the graph is
dense since there are overwhelmingly many subgraphs need to be stored. There are works that use graph embedding
with O(N) subgraphs [22] or approximate counting techniques [23]. To address the scalability issues, some works
propose parallel algorithms to compute an exact or approximate solution [24, 25]. Other works employ linear algebraic
computational methods that use the adjacency matrix A of a given graph, whereupon the number of subgraphs in the
graph can be obtained from the diagonal of A3 [26, 27].

2.2 Preliminaries of Network Centrality Computation

The measure of network centrality is another classic graph theory problem. It is a fundamental concept in network
analytics for the purpose of identifying critically important vertices in a graph. To compute network centrality, it often
involves several BFS tree traversals [5], and each has O(|V (G)|2) or O(|V (G)|+ |E(G)|) time complexity [28]. Thus,
reducing the number of BFSs invoked on the graph is usually an efficient way to improve the algorithmic performance.
This paper aims to identify different network centers accurately and efficiently. In particular, we focus on the rumor
center of a large graph. Note that MEGA is also able to compute other centrality measures such as betweenness
centrality with different constraints.

Problem 2 (Computing network centrality for rumor source detection). Assume that a rumor was spread in an online
social network based on the susceptible-infected (SI) model. Given a rumor subgraph (all vertices in the subgraph knew
the rumor), how to accurately identify the rumor culprit?

We model how a user spreads a rumor over an online social network with the SI model as follows. At the beginning
of the spreading, a user v ∈ V (G) starts to spread a rumor in a social network G = (V (G), E(G)) where users
and relationships between users are represented by vertices and edges respectively and we assume that G is a simple
connected graph. The rumor spreading follows the SI model which is simplified from the well-known susceptible-
infected-recovered (SIR) model. In the SI model, once a vertex is “infected”, it stays in this state forever. Let Nxt
denote the set of vertices such that each vertex in Nxt has at least one infected neighbor. In each time slot, one vertex
is uniformly chosen from Nxt to be the next infected vertex. Given a snapshot of N infected vertices, the question of
interest is to find out which vertex is the rumor monger.
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In [5], a network centrality called rumor centrality was proposed to solve this statistical inference problem and the
problem was solved optimally when G is a infinite size regular tree. The algorithm in [5] computes the rumor
centrality of a tree vertex with time complexity O(N), where N is the size of the infected graph. However, it becomes
computationally hard to compute the maximum-likelihood estimator of the rumor source when the infected graph is not
a tree [29]. A BFS heuristic algorithm for general graph in [5] was then proposed to resolve this issue but it needs to do
BFS tree traversal starting from every vertex in the infected graph. Thus, the total time complexity to find the rumor
center becomes O(N2). The authors in [5] then proved that the distance center of the rumor subgraph was shown to
be a good approximation to the rumor source. In particular, the distance center is exactly the maximum-likelihood
estimator of the rumor source when the rumor subgraph is a degree regular tree [6]. Thus, we focus on utilizing MEGA
to find the distance-based rumor source estimator.

Let G = (V (G), E(G)) be a simple connected graph. We denote the shortest distance between two vertices, say u and
v, by dist(u, v) and the distance centrality of vertex v ∈ G, S(v,G), is defined as

S(v,G) =
∑

w∈V (G)

dist(v, w). (3)

The distance center, Cdist(G), of G is a set of vertices such that each vertex in the set has the minimum distance
centrality, i.e., we have

Cdist(G) = {v|S(v,G) = min
w∈V (G)

S(w,G)}. (4)

The most straight-forward way (textbook algorithm) to find the distance center is to compute the distance centrality for
all vertices in the graph based on BFS tree traversal starting from every vertex, and then pick the one with minimum
distance centrality as the distance center. This approach is similar to solving the all-pairs shortest-path problem
which has complexity of at least O(N3), where N is the number of vertices in the graph. Therefore, when the
size of graphs increases to billions of vertices, computing distance centrality becomes prohibitively expensive. To
overcome such computational issue, some works propose approximate algorithms instead of exact computation [30, 31].
These approximation techniques however require a high-accuracy approximation scheme. Other works enable parallel
computing on all-sources BFS that costs a huge memory space [32, 33, 34].

3 Network Motif Counting

In this section, we describe how MEGA solves the network motif counting problem when the subgraph is particularly a
triangle (cf. Problem 1).

3.1 Pruning

We remove vertices such that θ < deg(u) < N ′ − 1 for all u ∈ V (G′), where G′ is the pruned graph. When a vertex u
is removed from G, then for each pair (a, b), where vertex a and b both belong to NG(u), we check if (a, b) ∈ E(G). If
(a, b) ∈ E(G), we count {u, a, b} as a subgraph. Hence, there are

(
deg(u)

2

)
pairs need to be checked for each removed

vertex u. When a vertex with degree N ′ − 1 is removed, there are |E(G′)| − (|V (G′)| − 1) subgraphs counted. If
N ′ < 3, then MEGA ends here. Otherwise, we go to the next step.

In general, the threshold θ is a tunable parameter and its optimal value depends on the graph topology and the problem
we wish to solve. We say θ is optimal if it can largely decompose a given graph and θ � N (cf. Section 3.4). We
provide bounds on the optimal threshold θ∗ for some special cases based on their inherent structures.

Arbitrary graph The graph properties of an arbitrary graph are all arbitrary that all the settings are non-deterministic.
Lemma 1. For any arbitrary graph G = (V (G), E(G)), if we remove all vertices with degree less than or equal to θ to
obtain the pruned graph G′ = (V (G′), E(G′)), we have

|V (G′)| ≤ 2|E(G)|
θ + 1

. (5)

Proof. According to the degree sum formula, the sum of the degrees of all vertices in a finite graph is twice the number
of edges in that graph. Since the degree of every vertex in G′ must be at least θ + 1, the sum of the degrees of all
vertices in G′ must be greater than or equal to θ + 1 times the number of vertices in G′. That is,

(θ + 1) · |V (G′)| ≤
∑

v∈V (G′)

deg(v) = 2|E(G′)|.
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Since G′ is a pruned graph of G, the number of edges in G′ must be less than or equal to that in G. Hence, we have

|V (G′)| ≤ 2|E(G′)|
θ + 1

≤ 2|E(G)|
θ + 1

.

Barabási-Albert (BA) network The generation of a BA network starts with an initial complete network (a clique) of
m0 vertices. Subsequently, it connects new vertices to the network and each new vertex is connected to m existing
vertices, where m ≤ m0, with a probability that is proportional to the degrees of the existing vertices. BA network is
scale-free, and its degree distribution follows the power law.
Lemma 2. For any BA network G with parameters m0 and m, where m0 is the size of the initial complete network
and m is the degree of each newly added vertex, the optimal value of the threshold θ∗ to efficiently decompose G is m,
and the size of the pruned graph must be at most m0.

Proof. We denote a BA network with parameters m0 and m as G and the initial complete network of m0 vertices in G
as Gm0

, where m0 > m. Then, we have
∀v ∈ G \Gm0

, deg(v) ≤ m.
If we set θ∗ = m, it is obvious that the size of the pruned graph must be equal to m0 which is the size of Gm0

. If
m = m0 − 1, then we can completely decompose G.

Corollary 1. For network motif counting in a BA network G with parameters m0 and m, if the given subgraph is a
triangle, then the optimal threshold θ∗ is given by

θ∗ = m =

⌈
|E(G)|
|V (G)|

⌉
. (6)

Erdős-Rényi (ER) random network We use two parameters (N, p) to generate a random network in ER model,
where N is the number of vertices and p is the probability of each possible edge to be existed.
Lemma 3. For any ER random network G(N, p), if we set θ∗ = k · degavg , where k is a positive integer and degavg is
the average degree of G(N, p), then the size of the pruned graph decreases exponentially with increasing k.

Proof. Let G(N, p) be an ER random network. We can leverage the fact that the distribution of the degree of any
particular vertex is Poisson as the graph size N goes to infinity. Thus, we can use the Chernoff bound [35] to compute
the upper bound of the size of the pruned graph. Let v be any vertex in G(N, p) and θ∗ = kNp be the optimal threshold
for pruning, where k is a positive integer, then we have

Pr(deg(v) ≥ θ∗) ≤ (eNp)θ
∗
e−Np

(θ∗)θ∗

=
(Np
θ∗

)θ∗
· eθ

∗−Np

=
(1
k

)kNp
· e(k−1)Np

< e−Np ·
( e
k

)kNp
.

Therefore, we can have a simple upper bound for the size of the pruned graph N ′,

N ′ < e−Np ·
( e
k

)kNp
·N.

Note that for an ER random network G(N, p), the value Np is the average degree of the graph which is a constant.
Hence, the size of the pruned graph decreases exponentially as k increases. It is worth noting that the key property to
prove Lemma 3 is that the probability distribution of a vertex has degree k satisfies the Poisson distribution when the
size of the graph is large enough.

Planar graph A graph is called planar if it can be drawn on the plane in such a way that any point of intersection of
two distinct edges is at their endpoints.
Lemma 4. For any planar graph G, the optimal value of the threshold θ∗ to completely decompose G is 5.

Proof. Let G = (V (G), E(G)) be a planar graph. It is known that the average degree of G is strictly less than 6. It
implies that there must be at least one vertex with degree less than or equal to 5 in G. After removing such vertices from
G, there is always at least one new vertex to prune since any subset of a planar graph is also a planar graph. Ultimately,
G can be completely decomposed.
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3.2 Hierarchical Clustering

We leverage a hierarchical clustering algorithm proposed by [12, 13] to split vertices based on the BFS tree traversal.
Note that G′ may not be a connected graph even if G was. We denote the ith connected component in G′ as Gi. Then,

we have V (G′) =
l⋃
i=1

V (Gi), where l is the number of connected components (i.e., l = 1 if G′ is a connected graph).

Let vir be the root of the BFS tree traversal for the connected component Gi for i = 1, . . . , l. For each Gi, vertices are
in the same cluster if their distances to vir are equivalent. Hence, the jth cluster of Gi, Ki,j , is defined as

Ki,j = {v ∈ V (G′)|dist(v, vir) = j}, (7)

where Ki,0 = {vir} and Ki,1 = NG′(v
i
r).

We call a root an optimal root if it can maximize the computational efficiency of MEGA. In the computing step, there
are two schemes to verify whether a subgraph is formed: one based on the number of edges in Ki,1 (see (8)) and
one that checks every two neighboring vertices of any vertex (see (9)). In the view of algorithmic implementation,
the former is way more straightforward since we do not need to loop over all the vertices in each cluster. Therefore,
we choose the degree center (a vertex with maximum degree) of each connected component as an optimal root. Our
intuition is that the degree center maximizes the number of vertices in Ki,1, and minimizes the average number of
vertices in other clusters. Also, degree information is a local property of every vertex that do not need complicated
calculations. It can potentially increase the algorithmic efficiency of MEGA.

3.3 Computing

To accelerate the counting process of the remaining subgraphs in G′, we propose Lemma 5 to characterize different
types of subgraphs based on the hierarchy property.
Lemma 5. For each subgraph {a, b, c} in G′, either three vertices of {a, b, c} are in the same cluster, say Ki,j , or two
of them are in Ki,j and the remaining one is in a neighboring cluster Ki,j−1 or Ki,j+1.

Proof. First, we know that for each edge (u, v) ∈ E(G′), where u ∈ Ki1,j1 and v ∈ Ki2,j2 , i1 must be equal to i2 and
0 ≤ |j1 − j2| ≤ 1 based on (7). For a given subgraph {a, b, c}, since (a, b), (b, c), and (a, c) are edges, if we assume
that a ∈ Ki1,j1 , b ∈ Ki2,j2 , and c ∈ Ki3,j3 , then we have

i1 = i2 = i3,

0 ≤ |j1 − j2| ≤ 1,

0 ≤ |j2 − j3| ≤ 1,

0 ≤ |j1 − j3| ≤ 1.

If |j1 − j2| = |j2 − j3| = |j1 − j3| = 0 (i.e., j1 = j2 = j3), then all of the three vertices are in the same cluster Ki,j .
Otherwise, two of them are in cluster “j” and the other one is either in cluster “j − 1” or cluster “j + 1”. This implies
that {a, b, c} must be located in two neighboring clusters.

The proof of Lemma 5 is based on the fact that for any two clusters, Ki1,j1 and Ki2,j2 , if i1 6= i2 or |j1 − j2| ≥ 2, then
there is no edge straddling across Ki1,j1 and Ki2,j2 . Therefore, when counting subgraphs in Ki,j , we only need to
consider the vertices in Ki,j and its neighboring clusters. Accordingly, for each subgraph {vi, vj , vk} in G′, there are
only two possible structures:

Inter-cluster subgraph We call {vi, vj , vk} an inter-cluster subgraph, if vi, vj and vk scatter in two neighboring
clusters. In this case, one of the three vertices may be the root.
Intra-cluster subgraph If vi, vj and vk are in the same cluster, then {vi, vj , vk} is regarded as an intra-cluster
subgraph.

In the following, we describe how MEGA counts different structures of subgraphs in the computing step.

1. Rooted inter-cluster subgraphs: Let H1 denote the number of rooted inter-cluster subgraphs in G′. Since each edge
in E(Ki,1) forms a subgraph with the root vir, we have

H1 =

l∑
i=1

|E(Ki,1)|. (8)
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2. Non-root inter-cluster subgraphs: Let H2 denote the number of non-root inter-cluster subgraphs in G′. For each
vertex v ∈ Ki,j , its upper neighbors, N↑G′(v), is defined by

N↑G′(v) = NG′(v)
⋂
Ki,j−1,

and its lower neighbors, N↓G′(v), is defined by

N↓G′(v) = NG′(v)
⋂
Ki,j+1.

Then, for each u↑1 and u↑2 in N↑G′(v), if (u↑1, u
↑
2) ∈ E(G), then {u↑1, u

↑
2, v} forms a subgraph. Similarly, for each w↓1

and w↓2 in N↓G′(v), if (w↓1 , w
↓
2) ∈ E(G), then {w↓1 , w

↓
2 , v} forms a subgraph. Hence, we have

H2 ≤
∑

v∈V (G′)\{vr}

[(
|N↑G′(v)|

2

)
+

(
|N↓G′(v)|

2

)]
, (9)

where vr is the root of the BFS tree in hierarchical clustering.
3. Intra-cluster subgraphs: Let H3 denote the number of intra-cluster subgraphs in G′ and Gi,j = (V (Ki,j), E(Ki,j))
denote the induced subgraph of G′. Then, all intra-cluster subgraphs in Gi,j can be counted in a recursive manner (i.e.,
we apply MEGA to count the number of subgraphs in Gi,j). Let MEGA(G) denote the number of subgraphs in G
counted by MEGA, then we have

H3 =
∑
i,j

MEGA(Gi,j). (10)

Let the number of subgraphs counted in the pruning step be H0. Then, the total number of subgraphs in the original
graph G equals to H0 +H1 +H2 +H3. The computing step of the network motif counting problem is implemented as
Algorithm 1. Note that the parameter, maxC, in Algorithm 1 is the total number of clusters in Gi.

Algorithm 1: Network Motif Counting
Input :Graph G′, vertex sets Ki,j , number H0

Output :sum (the number of subgraphs in G)
sum← H0

for i = 1, 2, . . . , l do
H1 ← |E(Ki,1)|
for j = 1, 2, . . . ,maxC do

Gi,j ← (V (Ki,j), E(Ki,j))
H3 ← MEGA(Gi,j)
for v ∈ Ki,j do

N↑G′(v)← NG′(v)
⋂
Ki,j−1

N↓G′(v)← NG′(v)
⋂
Ki,j+1

for a, b ∈ N↑G′(v) or a, b ∈ N↓G′(v) do
if (a, b) ∈ E(G) then

H2 ← H2 + 1
end

end
end

end
sum← sum+H1 +H2 +H3

end
return sum

3.4 Computational Time Complexity

The computational time complexity of the pruning step depends on the number of pairs of vertices that we need to
verify (whether an edge exists between them). Let P (G) be the set of pruned vertices of G with threshold θ, i.e.,
P (G) = {v ∈ V (G)|v /∈ V (G′)}. Then, the time complexity of the pruning step is bounded above by

(
θ
2

)
· |P (G)|.

Assume that θ � N , where θ is the pruning threshold and N is the number of vertices in G, then the time complexity
of the pruning step is bounded above by O(N) since |P (G)| ≤ N .
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In hierarchical clustering, we select a vertex vir as an optimal root of the BFS for Gi to obtain the distances from vir to
any other vertices in Gi. Hence, the time complexity of the hierarchical clustering step is O(|V (G′)|+ |E(G′)|) =
O(|E(G′)|) since we usually consider graphs in which |V (G′)| ≤ |E(G′)| in the network motif counting problem.

In the computing step, each vertex v has three types of neighbors: the neighbors in the upper cluster N↑G′(v), the
neighbors in the lower cluster N↓G′(v), and the neighbors in the same cluster N→G′(v). Therefore, the number of pairs of
vertices that we need to check for each vertex v is at most(

|N↑G′(v)|
2

)
+

(
|N↓G′(v)|

2

)
+

(
|N→G′(v)|

2

)
≤
(
degmax

2

)
,

where degmax is the maximum degree of G′. Thus, the time complexity of the computing step is O(N ′ ·
(
degmax

2

)
). We

can conclude that the total computational time complexity of the MEGA framework for solving the network motif
counting problem is O(|E(G′)|+N ′ ·

(
degmax

2

)
).

3.5 MapReduce Software Implementation

The parallel computational structure in our MEGA framework can be naturally mapped into existing popular scalable
software framework such as MapReduce. In particular, for the pruning step, a Mapper operation can count the degrees,
and a single Reducer identifies vertices that do not satisfy the pruning conditions. For the hierarchical clustering
step, Mapper operations can be delegated to count subgraphs in each cluster and also subgraphs that straddle clusters.
For this purpose, we create a data structure to store the vertices in each cluster, and set the custom input split size
to ensure that each Mapper can access a complete cluster at any one time. The total count from the Mappers can
then be obtained by a single Reducer. Counting of subgraphs that straddle across clusters requires setting larger input
split size so that a mapper accesses two clusters at any time. Fig. 2 shows an example of using MapReduce on
MEGA to solve the network motif counting problem. For more details of the MapReduce implementation, please see:
https://github.com/MEGA-framework.

4 Network Centrality Computation

In this section, we apply MEGA to compute the distance-based estimator and demonstrate how MEGA solves the
aforementioned network inference problem (see Problem 2) efficiently but without compromising on accuracy comparing
with the BFS heuristic algorithm in [5]. Note that we only consider connected graphs in this section since we are
ranking vertices in the same connected component.

4.1 Pruning

To handle less data, we first remove the trivial vertices that have less chance to be the distance center in the pruning step.
Based on the statistical property of the data, we set the threshold θ to 1 such that all vertices in the pruned graph G′
have degrees larger than 1. Note that if we set θ > 1, G′ will become fragmented, which increases the computational
complexity significantly. Each vertex contains two parameters, subtree size T and sum of distances D. We use a
rewriting system to update these two parameters for every vertex in the input graph G. Note that vertices receive
message from a given vertex are referred to as parents p, and vertices for which a given vertex is parent are the children
of that vertex child(p). Initially, we set the subtree size to 1 and the sum of distances to 0 for every vertex. When
a vertex v with degree 1 is removed from G, it sends the message of (T (v), D(v)) to its parent. Subsequently, the
rewriting system updates the subtree size of each parent by

T (p) = T (p) +
∑

w∈child(p)

T (w), (11)

and the sum of distances by
D(p) = D(p) +

∑
w∈child(p)

[T (w) +D(w)]. (12)

This step continues until all vertices in G′ have a degree greater than 1. Note that it was proved that the rewriting system
in the θ = 1 pruning is equivalent to that in the Election Algorithm [36], and it can find the distance center in a tree
within linear time complexity. In Fig. 3, we use an example to illustrate how the rewriting system of MEGA finds
the distance center in a tree. However, social networks such as Facebook, Twitter have more complex structures that
billions of users (vertices) can form millions of communities (cycles). Thus, finding the distance center in a tree is
regarded as an ideal case.
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(a) Pruning with θ = 2

(b) Counting of intra-cluster subgraphs

(c) Counting of inter-cluster subgraphs

Figure 2: MapReduce implementation on MEGA for solving the network motif counting problem. The highly-
parallelizable structure of MEGA allows us to adjust the custom input split size easily such that each mapper can retain
sufficient information for the reducer.

Let G′ = (V (G′), E(G′)) be the graph after pruning with N ′ vertices. Then, G′ is a connected graph containing
cycle(s) and deg(v) > 1 for all v ∈ V (G′). If N ′ > 1, we continue the process in the next step. Otherwise, G′ is the
distance center. Note that the distance center may be deleted in pruning for some graphs. For example, when G is a
pseudo-tree (connected graph containing a single cycle), the remaining vertices of G after pruning are those on the
cycle. To resolve this issue, we propose Theorem 1 to characterize the cases when the distance center is in G′ and use
Corollary 2 to find the distance center when it was deleted in pruning.

Theorem 1. Let Cdist(G) be the distance center of G. If N ′ ≥ N/2, then G′ must contain Cdist(G). If N ′ < N/2
and Cdist(G) /∈ G′, then Cdist(G) can be found in the complexity of O(dia(G)), where dia(G) is the graph diameter
of G.

Proof. First, we show that G′ must contain Cdist(G) whenever N ′ ≥ N/2. We prove this part by contradiction.
Assume that N ′ ≥ N/2 and the distance center vc ∈ G\G′.
To prove this theorem, we define an edge (u, v) as a bridge if the removal of (u, v) disconnects G. Assume (u, v) is a
bridge. Let Cvu and Cuv denote the connected component containing u and v respectively after removing (u, v).
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(a) Initial State (b) Message Passing

(c) State 2 (d) Message Passing (e) Final State

Figure 3: Example of how the rewriting system in the θ = 1 pruning finds the distance center in a tree. Initially, we
set T = 1 and D = 0 for every vertex. The rewriting system then removes the leaves (in black color) and passes their
messages (T,D) to the parents. We then update T and D of each parent based on (11) and (12) respectively. Pruning
continues until all leaves are removed. The final state shows the distance center of this example with distance centrality
equals to 10.

Lemma 6. If edge (u, v) is a bridge in G, then we have

S(u,G) = S(v,G) + |Cuv | − |Cvu|. (13)

Proof. Let u and v be two vertices of G such that (u, v) is a bridge in G. Then, for any vertex vi ∈ Cuv and uj ∈ Cvu,
we have

dist(vi, uj) = dist(vi, v) + 1 + dist(uj , u).

Hence, the distance centrality of u in G, S(u,G), can be rewritten in terms of the distance centrality of u and v in Cvu
and Cuv respectively. We have

S(u,G) =
∑
w∈G

dist(u,w)

=
∑
w∈Cv

u

dist(u,w) + 1 +
∑
w∈Cu

v

dist(u,w)

= S(u,Cvu) + 1 +
∑
w∈Cu

v

[dist(v, w) + 1]

= S(u,Cvu) + 1 + S(v, Cuv ) + |Cuv |.

By following the same approach, we have

S(v,G) = S(u,Cvu) + 1 + S(v, Cuv ) + |Cvu|.

Combining two results above, we have

S(u,G)− S(v,G) = |Cuv | − |Cvu|.

Lemma 7. Let G′ be the pruned graph and v ∈ G\G′, then v is either a degree 1 vertex or an endpoint of a bridge.
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Proof. Assume that v is not an endpoint of a bridge. Then, v must be contained in a cycle of G. The degree of v must be
larger than or equal to 2 during pruning, which implies that v ∈ G′ and contradicts the assumption that v ∈ G\G′.

By Lemma 7, we conclude that vc must be an endpoint of a bridge in G. We consider two distinct cases based on the
distance between vc and G′ in the following. We define the distance from vc to G′ by

dist(vc, G
′) = min

w∈G′
{dist(vc, w)}.

Case 1: Assume that dist(vc, G′) = 1. Then, there is only one vertex u ∈ G′ such that dist(vc, u) = 1 and (u, vc) is a
bridge by Lemma 7. Moreover, we have S(vc, G) = S(u,G) + |Cvcu | − |Cuvc | by Lemma 6. Since |Cvcu | ≥ N ′ ≥ N/2,
we have S(vc, G) ≥ S(u,G), which contradicts the assumption that vc is the distance center.

Case 2: Assume that dist(vc, G′) ≥ 2. From Case 1, we can deduce that for any two vertices u and v in G\G′
and (u, v) is a bridge with dist(u,G′) < dist(v,G′), then S(u,G) < S(v,G). This implies that, for all v with
dist(v,G′) ≥ 2, there is a neighbor u of v such that S(u,G) < S(v,G), which is a contradiction.

Therefore, we can conclude that if N ′ ≥ N/2, then G′ must contain the distance center.

Now, let us consider the case that Cdist(G) /∈ G′. Note that for each pruned neighbor u of v′ ∈ G′, we have the fact
that (v′, u) is a bridge of G. Hence, we can compute S(u,G) immediately by using Lemma 6. In particular, since v′ has
the minimum distance centrality on G′, there is a unique pruned neighbor of v′, say u′, such that S(u′, G) < S(v′, G).
Since Cv

′

u′ is a tree, we can apply the result of Theorem 3 in [6] to complete the rest of the proof.

Corollary 2. If N ′ < N/2 and the unique vertex v′ with the minimum distance centrality in G′ is not Cdist(G),
then there is a unique path from v′ to Cdist(G). Moreover, the distance centrality of each vertex along the path is a
monotonically decreasing sequence.

Let dia(G) denote the graph diameter of G. Based on Corollary 2, MEGA is guaranteed to find Cdist(G) within
O(dia(G)) times when Cdist(G) was deleted in pruning.

4.2 Hierarchical Clustering

In this step, we partition vertices in G′ into different clusters based on the BFS tree traversal. Let vr be the root of the
BFS tree traversal for G′. Similar to (7), we use the distance between vr and all other vertices in G′ to define each
cluster. Since G′ must be a connected graph, we use Ki to denote the ith cluster of G′. We rewrite (7) by

Ki = {v ∈ V (G′)|dist(v, vr) = i}. (14)

That is, vertex v is in cluster Ki if its distance from vr is i. We can then find S(vr, G′) by

S(vr, G
′) = D(vr) +

maxC∑
i=1

{ |Ki|∑
j=1

[T (vj) · i+D(vj)]

}
, (15)

where maxC is the number of clusters in G′ and |Ki| is the number of vertices in ith cluster. We can also calculate
the total subtree size and the sum of distances for each cluster by T (Ki) =

∑
v∈Ki

T (v) and D(Ki) =
∑
v∈Ki

D(v)

respectively.

The initial root vr affects not only the number of clusters, but also the lower bound computation of every vertex in the
next step (i.e., the overall performance of MEGA). We define a root as an optimal root if it has the highest chance to be
the distance center. Note that if we can select an optimal root in this step, it can possibly minimize the number of BFSs
to find the distance center in the next step. We apply decision tree algorithm to predict an ideal initial point for the first
BFS in this step (cf. Fig. 4). We specify three test conditions for three attributes respectively:

Degree: Since we focus on lower bound calculation in the next step, let S be the exact distance centrality and SLR be
the lower bound on the distance centrality. Then, we have

S − SLR ≤ i · |Ki|, (16)

where i is the cluster level and |Ki| is the number of vertices in cluster Ki. Thus, a smaller i can produce a tighter
bound. As we have S(vr, G′) from (15), and we know that vertices in K1 must have a tighter bound based on (16) and
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Figure 4: Schematic of decision tree for finding an optimal root in hierarchical clustering. Note that we can use a
data-driven approach to obtain the hyperparameters, α and β, of the classifier.

vertices with maximum degree can maximize the number of vertices in K1, choosing vertices with maximum degree as
the root will provide more information about the degree bounds. Based on this property, our intuition is that vertices
with maximum degree are more likely to be an optimal root. Indeed, our evaluation in Section 5 shows that the distance
centers of 75.3% synthetic networks have maximum degree.

Subtree Size: Based on Lemma 7 and the rewriting system in pruning, we know that vertices in G′ can either have a
subtree size equals to 1 or be an endpoint of a bridge. If a vertex v is an endpoint of a bridge, we can then compute the
exact distance centrality of v to all removed vertices along its subtree based on Lemma 6. Thus, the larger the subtree
size a vertex has, the tighter the bound we can compute. Also, it is easy to deduce that vertices with a larger subtree size
have a higher chance of being the center of a graph.

Sum of Distances: Based on (4), distance center has minimum distance centrality. Combining the results from the two
attributes above, then vertices with a smaller sum of distances have a higher chance of being the distance center.

We use decision tree classification to estimate an optimal root based on the selection criteria above. Note that our
decision tree focuses on the property of each vertex in the graph instead of the generic graph property. Thus, our
approach is different from the traditional decision tree learning. Note that we can always tune the hyperparameters of
the classifier using a data-driven approach to prevent overfitting and optimize the classification performance.

4.3 Computing

To avoid doing BFS starting from every vertex in G′, we propose Algorithm 2 to minimize the number of BFSs. We use
the idea of computing top-k closeness centrality in [37] as a basis, which is to trace the lower bound on the distance
centrality of each vertex. We denote the lower bound on the distance centrality of vertex v in G′ as SLR(v,G′). Note
that if S(v,G′) < SLR(u,G

′) or S(v,G′) ≤ S(u,G′) for all u ∈ V (G′), then we can say v is the distance center of
G′.

In this step, we first compute SLR for each vertex in G′ and insert it into a min-priority queue Qs sorted in ascending
order of SLR. Then, we use DeQueue to obtain the smallest SLR in Qs and check if SLR = S. That is, if SLR(v,G′)
is the smallest in Qs, then we do hierarchical clustering for G′ using v as the root and compute S(v,G′) with (15). If
S(v,G′) = SLR(v,G

′), then we say v is the distance center of G′. Otherwise, we use EnQueue to put S(v,G′) into
Qs and repeat the whole process until we get the distance center of G′. Lastly, we apply Theorem 1 to verify our result
and use Corollary 2 to bring back the distance center if Cdist(G) /∈ G′.
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Algorithm 2: Distance Center Calculation
Input :Graph G, graph G′, lower bounds SLR
Output :distance center of G, Cdist(G)
Qs ←EnQueue(vr, S(vr, G′))
foreach v in V (G′)\{vr} do

Qs ←EnQueue(v, SLR(v,G′))
end
while continue = true do

(v, SLR(v,G′))← DeQueue(Qs)
if S(v,G′) = SLR(v,G

′) then
Cdist(G

′)← v
continue←false

else
Qs ←EnQueue(v, S(v,G′))

end
end
if N ′ ≥ N/2 then

Cdist(G)← Cdist(G
′) (see Corollary 2)

end
return Cdist(G)

To calculate SLR(u,G′), where u ∈ Ki, we propose Theorem 2 based on the triangle inequality to characterize the
lower bound in terms of clusters, T (Ki) and D(Ki). Note that all information about the pruned vertices are already
stored in T (v) and D(v) for all v ∈ G′.
Theorem 2. Let G′ be a pruned graph and u ∈ Ki, we have

S(u,G′) ≥
∑

0≤j≤maxC
[|i− j| · T (Kj) +D(Kj)].

Proof. Let v ∈ Kj , where j is an integer such that 0 ≤ j ≤ maxC. Let ṽ denote the set of pruned vertices such that v
is the ancestor of these pruned vertices (e.g., v5 ∈ ṽ4 in Fig. 6). First, we consider the distance from vertex u to all the
vertices in ṽ including v itself. Without loss of generality, we assume that the common ancestor w of u and v is in level
h. Then, we have

d(u, v) = |h− i|+ |h− j| ≥ |i− j|,
where the equality holds if u = w or v = w. Then, for other vertices in ṽ, we have∑

x∈ṽ
d(u, x) =

∑
x∈ṽ

[d(u, v) + d(v, x)]

= T (v) · d(u, v) +D(v)

≥ T (v) · |i− j|+D(v).

Hence, we have

S(u,G) ≥
∑

0≤j≤maxC

{ ∑
v∈Kj

[T (v) · |i− j|+D(v)]

}

=
∑

0≤j≤maxC

[
|i− j| ·

∑
v∈Kj

T (v) +
∑
v∈Kj

D(v)

]
=

∑
0≤j≤maxC

[|i− j| · T (Kj) +D(Kj)].

The two terms, T (Kj) and D(Kj), in Theorem 2 were computed in hierarchical clustering, and thus the complexity of
computing the lower bound of vertex u is only a linear function of maxC. Note that in Theorem 2, the lower bound on
the distance centrality of every vertex in the same cluster must be the same. Therefore, to tighten the lower bound of
each vertex, we characterize two cases when |i− j| < 2:
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Case 1: We have
∑
u∈NG′ (v)

[T (u) +D(u)] as the exact distance for v since dist(u, v) = 1 for all u ∈ NG′(v).

Case 2: If u 6∈ NG′(v), then we have 2 · T (u) +D(u) as the lower bound for v since dist(u, v) must be at least 2.

We propose Algorithm 3 to compute the cluster-based lower bound on the distance centrality of each vertex in G′
by leveraging the results in Theorem 2. Note that the initialization of the parameter, sum, in Algorithm 3 is the
distance between the root vr and the cluster Ki. Although the lower bound of each vertex is supposed to be tighter after
considering Case 1 and 2, the computational cost of looping over all the vertices becomes so much higher. To address
this problem, we can use MapReduce to enable parallel processing such that the lower bound of each vertex can be
computed simultaneously (cf. Fig. 5).

Algorithm 3: Cluster-based Lower Bound Calculation
Input :Graph G′, vertex vr, vertex sets K
Output :Lower bound SLR for every vertex in G′
for i = 1, 2, . . . ,maxC do

sum← T (vr) · i+D(vr)
Kneighbour ← [ ]
for j = 1, 2, . . . ,maxC do

if |i− j| < 2 then
Kneighbour.insert(j)

else
sum← sum+ T (Kj) · |i− j|+D(Kj)

end
end
for v ∈ Ki do

SLR(v,G
′)← sum+D(v)

for u ∈ NG′(v) and u 6= vr do
SLR(v,G

′)← T (u) +D(u) + SLR(v,G
′)

end
for j in Kneighbour do

for u ∈ Kj and u 6∈ NG′(v) do
SLR(v,G

′)← T (u) · 2 +D(u) + SLR(v,G
′)

end
end

end
end
return SLR

It is worth noting that if v is the root in the first hierarchical clustering and S(v,G′) is the smallest in Qs, then we
only need to do BFS once. Otherwise, in the worst case, we have to do BFS for all vertices in G′. Thus, if we can
further tighten the lower bound on the distance centrality for each vertex, we can then omit the computation of the exact
distance centrality of every vertex. To achieve this goal, we recompute the lower bound of every vertex in each BFS and
update it if the bound is found to be tighter. That is, if the recomputed lower bound of a vertex appears to be larger than
its current bound, then we update it. As we do more BFS, the lower bound should be updated to be tighter.

4.4 Illustrative Example

In the following, we use an example to illustrate the difference of finding the rumor source estimator between MEGA
and the algorithm in [5]. Using the same example as in [5], we have a rumor subgraph as shown in Fig. 6(a). There are
5 infected vertices (v1 to v5) and we want to find the BFS heuristic rumor center of this rumor subgraph using MEGA.

In the θ = 1 pruning, we remove v5 and update its parent v4 such that T (v4) = 2 and D(v4) = 1, then we obtain the
pruned graph G′ as shown in Fig. 6(b). We then select an optimal root (which is v4 based on the selection criteria in Fig.
4) for the BFS tree traversal in hierarchical clustering. But in this example, we use every vertex in the rumor subgraph
as the root and see, in the worst case, how many BFSs we need to perform. In Fig. 6(c), we first use v1 as the root, then
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Figure 5: Example of how we use MapReduce to reduce the computational cost of MEGA. We leverage the key-value
pair property of MapReduce and the hierarchy property of MEGA to calculate the lower bound on the distance centrality
of each vertex based on Theorem 2.

we have
S(v1, G

′) = 0 + 1 + 3 + 2 = 6

SLR(v2, G
′) = 1 + 0 + 1 + 5 = 7

SLR(v3, G
′) = 2 + 1 + 0 + 3 = 6

SLR(v4, G
′) = 1 + 2 + 1 + 1 = 5.

Since SLR(v4, G′) is the smallest, we need to check if S(v4, G′) = SLR(v4, G
′) by using v4 as the root for the second

BFS tree traversal. As we have S(v4, G′) = SLR(v4, G
′) and the lower bound of every vertex remains unchanged, we

can say v4 is the BFS heuristic rumor center of G′. Since N ′ > N/2, based on Theorem 1, we conclude that v4 is the
BFS heuristic rumor center of G.

Similarly, for root v2 (Fig. 6(d)) and v3 (Fig. 6(e)), we also need to do BFS tree traversal twice. However, for root v4
(Fig. 6(f)), we have

S(v4, G
′) = 1 + 2 + 1 + 1 = 5

SLR(v1, G
′) = 0 + 1 + 2 + 3 = 6

SLR(v2, G
′) = 1 + 0 + 1 + 5 = 7

SLR(v3, G
′) = 2 + 1 + 0 + 3 = 6.

Since S(v4, G′) is already the smallest, we can then conclude that v4 is the rumor center of G by using only one BFS
tree. As such, in the worst case, we only need to perform BFS twice for finding the distance-based heuristic rumor
center of the rumor subgraph. Meanwhile, v4 is also identified as the rumor center using the BFS heuristic algorithm in
[5] but it requires to construct BFS trees starting from every vertex in the rumor subgraph. Thus, in this example, the
number of BFSs performed and the number of edges visited by MEGA are both less than that of the algorithm in [5].

5 Experimental Performance Evaluation

In this section, we assess the performance of MEGA on simple graphs with different degree distributions. All the
experiments are conducted on a 64-bit computer running a Windows 10 system with Intel(R) Core(TM) i7-9700K CPU
3.60GHz and 64.00 GB of RAM configuration.

5.1 Network Motif Counting

We evaluate the performance of MEGA on the network motif counting problem using the graphs provided by Stanford
Large Network Dataset Collection (SNAP) [38].

5.1.1 Optimal Threshold Tuning

The threshold θ is a critical parameter in the pruning step. Once θ is set, there are at most
(
θ
2

)
· |P (G)| pairs of vertices

need to be checked. Hence, a larger θ leads to a longer time spent for pruning. On the other hand, if more vertices
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(a) Rumor Graph G (b) Pruned Graph G′

(c) Root v1 (d) Root v2 (e) Root v3 (f) Root v4

Figure 6: Example of how MEGA finds the BFS heuristic rumor center of a rumor subgraph. There are totally 5 infected
vertices (in gray color). After pruning, we have a pruned graph G′. We then select v1 to v4 as the root in hierarchical
clustering respectively and see how many BFSs we have to build for each root.

are pruned off from G, then the graph becomes more fragmented. Thus, there is a trade-off between pruning and
hierarchical clustering, and it depends on the threshold θ. Fig. 7 shows how the threshold θ affects the computation
time of MEGA on nine real-world networks provided by SNAP. We also compare the performance of MEGA using the
optimal root and the random root in hierarchical clustering since other centrality measures such as PageRank require
global information from all other vertices that must increase the computational complexity. We see that MEGA with
the optimal root performs better than that with the random root. We also note that finding an optimal threshold for an
arbitrary graph is not a straight-forward task unless we further exploit the inherent structure of the graph.

Based on Lemma 1, we use a data-driven (statistical) model to approximate the optimal threshold θ∗ for MEGA. We
generate 6,000 synthetic networks in which the optimal thresholds θ∗ are computed. Each network has 1,000 vertices,
and the number of edges of each network is not fixed. Note that the number of vertices of the input graph is not a critical
parameter for computing θ∗. In Fig. 8, we see that the gradient of the blue line, which is a linear regression model that
fits the results, is relatively small that keeps θ∗ always less than 100, even the graph size starts to increase. We also note
that noisy data only appear when the graph size is comparatively small. Therefore, the optimal threshold θ∗ computed
by this model must satisfy the condition of θ∗ � N and balance the trade-off for large-scale networks.

5.1.2 Evaluation on Real-world Networks

We compare MEGA with the algorithm in [39], which is an award-winning work of the MIT/Amazon/IEEE Graph
Challenge [14]. The algorithm in [39] assigns direction to each edge based on the degree of each vertex. It implies that,
for each vertex v, there are

(
deg+(v)

2

)
pairs of vertices need to be checked, where deg+(v) is the outdegree of v. Hence,

its computational time complexity is O(|E(G)|+N ·
(
deg+max

2

)
), where |E(G)| is the time complexity of the direction

assignment and deg+max is the maximum outdegree. This time complexity is the same as that of MEGA (cf. Section
3.4). However, in Fig. 9, we see that MEGA with θ∗ outperforms the algorithm in [39] on different real-world networks
by averagely 2.97 times faster. Therefore, we conclude that if we can find an optimal threshold θ∗ that leverages the
structure of the graph in advance, then MEGA can complete the counting task in pruning with a computational time
complexity of O(N) and beat the algorithm in [39].
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(a) facebook (b) CA-CondMat (c) ca-HepPh

(d) com-dblp (e) email-Enron (f) com-amazon

(g) loc-gowalla (h) com-youtube (i) as-skitter

Figure 7: The performance of MEGA on nine real-world networks with different thresholds θ ranging from 0 to 100.
The y-axis is the running time in seconds, and the x-axis is the value of θ. We also compare the performance of MEGA
using the optimal root (red) and the random root (blue).

5.1.3 Evaluation on Synthetic Random Networks

We compare the performance of MEGA and the algorithm in [39] on ten synthetic random networks generated by the
BA model and the ER model respectively. We compute the optimal threshold θ∗ for MEGA based on Lemma 2 and 3 to
decompose the random networks.

For BA network, we randomly generate the two parameters (m0, m) for the BA model such that we can obtain ten
random networks, and each network contains 1 million vertices and 9, 999, 945 edges. We use Corollary 1 to compute
the optimal threshold θ∗ of each BA network such that MEGA can optimally decompose the BA networks in pruning. In
Fig. 10(a), we see that although some vertices have a large degree, MEGA can still be able to decompose the networks
with θ∗ and outperform the algorithm in [39]. Moreover, since we only execute the pruning step with a small threshold
(θ∗ � N ), the computational time complexity of MEGA is simply O(N).

Similarly, we generate ten ER random networks with the same size as the BA networks. In Fig. 10(b), we observe that
MEGA beats the algorithm in [39] with θ∗. Note that the probability of a given vertex has degree greater than θ∗ in the
ER random networks is less than 8%, which implies the random networks are largely decomposed in pruning.
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Figure 8: Optimal threshold tuning on 6,000 synthetic networks based on Lemma 1. The y-axis is the value of the
optimal threshold θ∗, and the x-axis is the graph size |E(G)| of each network. The blue line is a linear regression model
that fits the results.

Figure 9: Comparison between MEGA and the algorithm in [39] (which we denote it as state of the art) on ten real-world
networks. The primary y-axis (blue) is the running time t in seconds, and the secondary y-axis (yellow) is the graph
size |E(G)|. A log scale is used for these two axes, and we multiply t by 10 to avoid negative values (i.e., primary =
log(10 · t) seconds and secondary = log(|E(G)|)). The number on top of each bar is the exact running time of both
algorithms.

(a) BA random networks (b) ER random networks

Figure 10: Comparison between MEGA and the algorithm in [39] (which we denote it as state of the art) on ten
BA random networks (left) and ten ER random networks (right) respectively. Each random network has 1M vertices
and 9.9M edges. The primary y-axis (blue) is the running time in seconds, and the secondary y-axis (yellow) is the
maximum degree of each random network.

5.2 Network Centrality Computation

In this section, we assess the performance of MEGA on network centrality computation for rumor source detection.
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Figure 11: Performance of the decision tree classifier finding the optimal root on 1,000 synthetic networks. We define
the error as the graph distance between the distance center and the predicted vertex.

5.2.1 Methodology

We consider both performance improvement and accuracy on rumor source detection. To maximize the efficiency, we
use two different approaches to reduce the number of BFSs: one based on the cluster-based lower bound and one that
combines the cluster-based lower bound and multi-source BFS. We first compare MEGA with the algorithm presented
in [37] based on the performance improvement, and then compare the accuracy of rumor source detection with the work
in [5]. Note that the work in [37] has been shown to outperform other existing algorithms for finding the exact and
approximate top-k closeness centrality.

We apply MEGA on different real-world networks provided by SNAP [38] and the 10th DIMACS Implementation
Challenge [40]. We use the speedup suggested by [37] to evaluate the performance improvement. The speedup is given

by
|V (G)| · |E(G)|
|Ev(G)|

, where |Ev(G)| is the total number of edges that have been visited by an algorithm in graph G.

5.2.2 Optimal Root Estimation with Decision Tree

We apply decision tree algorithm to approximate the optimal root in hierarchical clustering. We compute the centrality
measures for the 6,000 synthetic networks, and use 80% of data as the training set and the remaining as the test set.
Note that the time required to estimate the optimal starting root for the real-world networks is insignificant as the best
estimator is pre-trained in the preprocessing step.

We specify the selection criteria based on the three selected attributes in Fig. 4 and fit it into our classifier. In Fig. 11,
we see that the average error of our fine-tuned classifier is only 2.031 hops from the center, and the error is always
within 4 hops. Note that we do not use a confusion matrix to evaluate the classifier as we are just ranking vertices with
a higher chance to be the distance center.

5.2.3 Evaluation on Street Networks

The solution in [37] uses the level-based and neighborhood-based lower bound (NBBound) to compute the top-k
closeness centrality of the input graph G directly. Since it calculates the lower bound for every vertex in G, it may take
those trivial vertices (leaves) into consideration when finding the top-k closeness centrality. In Fig. 12(a), more than
15% of vertices are removed from each graph in the pruning step of MEGA. Since the number of vertices and edges we
need to handle is always less than that of NBBound after pruning, the number of edges visited by our framework must
be less than that of NBBound for every BFS tree traversal. As a result, the more vertices we have removed in pruning,
the larger the speedup we can reach. In this case, the speedup on street networks of our MEGA framework must be
better than that of NBBound.

5.2.4 Evaluation on Complex Networks

The efficacy of pruning in complex networks is relatively low since the graph diameter of such networks is usually
small. To further increase the speedup of MEGA on complex networks, we utilize the Multi-Source BFS (MS-BFS)
algorithm introduced in [41]. The idea is motivated by the observation that, when running a large number of BFSs
sequentially, most of the edges are visited multiple times that would deteriorate the overall performance. The MS-BFS
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(a) Street networks (b) Complex networks

Figure 12: Comparison between MEGA and the algorithm in [37] (which we denote it as state of the art) on five street
networks (left) and five complex networks (right) respectively. The primary y-axis (blue) is the speedup y, and the
secondary y-axis (green) is the graph size |E(G)|. A log scale is used for these two axes (i.e., primary = log y and
secondary = log(|E(G)|)). The number on top of each bar is the exact speedup of both algorithms.

algorithm addresses this problem by running BFSs from multiple sources concurrently. When a set of BFSs visits the
same vertex, this vertex will only be visited once, and its information will be shared with all BFSs in the set.

The authors of [41] also pointed out that MS-BFS is most effective in small-world graphs, where the graph diameter is
small compared to the size. Thus, a large number of visits can be shared by multiple BFSs when applying MS-BFS
algorithm on small-world graphs. Since the graph diameter of street networks is usually large, it is meaningless to apply
MS-BFS on such graphs. This is confirmed by the experimental results in Fig. 12(b) that MS-BFS greatly increases the
speedup of MEGA on complex networks.

5.2.5 Rumor Source Detection in Real-world Networks

We perform simulations on six important real networks obtained from KONECT [42] and compare the performance of
our framework with the BFS heuristic in [5]. For each graph, we randomly select a rumor source vertex and let the
rumor spread to 100 vertices. We then apply MEGA and the BFS heuristic in [5] respectively to find a source estimator.
Note that the error indicates the graph distance from the source estimator to the real source vertex. We perform over 500
simulations and calculate the average error and speedup for each graph. In Fig. 13, we can observe that the speedup of
our MEGA framework is significantly larger than that of the BFS heuristic in [5] and there is only a slight difference of
accuracy (average error) between these two approaches.

6 Conclusion

We proposed the MEGA, a machine learning-enhanced framework for judicious pruning and hierarchical clustering
of large graphs for accelerated computation. We demonstrated that machine learning techniques like regression can
effectively learn the inherent statistics of graph data to derive approximately good algorithmic tuning for counting
network motifs and computing network centrality, even outperforming state of the art. Interestingly, particularly for
graphs with distinctive structure, e.g., when the graphs were similar to Barabási-Albert random graph model, we showed
the optimal configuration to completely decompose the large graph with time complexity O(N). In addition, different
machine learning techniques can further reduce the computational complexity of the MEGA framework if we can train
a classifier to find ideal initial point for BFS tree traversal of different graphs in hierarchical clustering. In our current
work, geodesic distance is used to differentiate clusters, and it will be interesting to compare alternative graph-theoretic
metrics for clustering. As future work, we will extend the MEGA framework for other computationally challenging
graph problems and also study the deep learning, e.g., Graph Neural Network (GNN), for optimal parameter tuning of
the hierarchical clustering as well as more efficient parallel software implementation.
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(a) Facebook (b) Hamsterster (c) Infectious

(d) Twitch (e) Twitter (f) Wikipedia Elections

Figure 13: Histograms of the error for MEGA (red) and the BFS heuristic in [5] (blue) on six real networks with 100
infected vertices. The green dotted line is the average speedup for each error and the average error is the average
distance (in terms of hop count) between the real source and the estimators calculated by both methods over 500
simulations.
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