Abstract
In this paper we compare the models for the detection and segmentation of Ground Glass Opacity and Consolidation in chest CT scans. These lesion areas are often associated both with common pneumonia and COVID-19. We train a Mask R-CNN model to segment these areas with high accuracy using three approaches: merging masks for these lesions into one, deleting the mask for Consolidation, and using both masks separately. The best model achieves the mean average precision of 44.68% using MS COCO criterion for instance segmentation across all accuracy thresholds. The classification model, COVID-CT-Mask-Net, which learns to predict the presence of COVID-19 vs common pneumonia vs control, achieves the 93.88% COVID-19 sensitivity, 95.64% overall accuracy, 95.06% common pneumonia sensitivity and 96.91% true negative rate on the COVIDx-CT test split (21192 CT scans) using a small fraction of the training data. We also analyze the effect of Non-Maximum Suppression of overlapping object predictions, both on the segmentation and classification accuracy. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding involved
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Better figures
Data Availability
All data, algorithms, code, pretrained weights, etc are publicly available.