
8 

 

50% for those testing positive on the two-stage screening test with 99.7% specificity, and is 75% 

for those testing positive on the diagnostic test (either after qualifying by being symptomatic or 

as the second stage following a positive screening test). 

 

2.2 Simulation baseline and testing counterfactuals 

 

BFMS has two baseline scenarios, both exhibiting a second wave of infections starting mid-

summer 2020. In BFMS, the second wave was induced by a relaxation of social distancing, 

masks, and other protections, combined with a full return to school in the fall. The difference 

between the two scenarios was the strength of the feedback from deaths and the growth rate of 

deaths to activity. The baseline here uses feedback parameters that are a mid-point between the 

two baseline scenarios considered in BFMS.  

 

We estimate the model using data through June 12, 2020. The simulation period begins June 1, 

2020 and ends on January 1, 2021. Thus, the simulations reflect alternative, counterfactual paths 

for the virus and the economy for the final seven months of 2020. 

 

Figure 2. Actual and simulated paths for deaths and GDP: No-screening baseline 

 
Notes: Quarterly GDP (green step function) is shown in real levels, indexed to 1 in 2019Q4. 

Total deaths (actual in black dashed, simulated in red) under the baseline simulation are 359,000 

by January 1, 2021. Bands denote 67%, 90%, and 95% confidence bands using standard errors 

for the estimated model parameters. 

 

Figure 2 shows the time path of actual deaths (black dashed), simulated deaths (red), and the 

level of GDP (green) indexed to its level in February 2020, under our baseline calibration with 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.22.20217984doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.22.20217984
http://creativecommons.org/licenses/by/4.0/


16 

 

Figure 8. Costs and benefits for program C (no confirmatory PCR testing) 

 
GDP gains fall between the tests in programs A and B, a consequence of the assumed lower 

adherence rates. Although net economic benefits are less for program C than for program B, the 

benefit-cost ratios are greatest for program C because the tests are less expensive. 
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3.4. Sensitivity checks 

 

Table 3 summarizes the results of various sensitivity checks. 

 

Table 3. Economic and mortality impacts of three screening programs 

Testing 

frequency (days) 

Additional 

testing costs ($B) 

GDP 

benefit ($B) 

Federal revenue 

benefit ($B) 

Deaths 

averted (thou) 

D. Program A, except no confirmatory testing 

30 11 -10 -3 2 

14 24 58 16 -17 

7 47 170 47 -50 

4 79 266 73 -84 

E. Program A, except 97% screening test specificity 

30 13 4 1 -2 

14 27 85 23 -24 

7 54 205 56 -59 

4 91 294 81 -93 

F. Program A, except screening-alone adherence 50% 

30 12 171 47 -45 

14 26 290 79 -83 

7 51 366 100 -121 

4 88 363 99 -142 

G. Program B, except $100 diagnostic test cost 

30 14 262 72 -65 

14 31 429 118 -112 

7 63 544 150 -153 

4 109 593 163 -172 

Notes: See the notes to Table 1. 

 

Single-stage screening test with 98.5% specificity with no confirmatory testing. A common 

critique of widespread screening is that low specificity can lead to a large number of health 

individuals, including health workers, needlessly entering isolation (e.g., Pettengill and McAdam 

(2020)). Panel D in Table 3 considers this case, for the 98.5% specificity screening test.  

 

Eliminating confirmatory PCR testing entirely from program A increases the number of healthy 

people, including healthy workers, in isolation. It also reduces overall adherence because the 

low-PPV screening test has no follow-up diagnostic testing. These two effects substantially 

reduce the gains from the screening testing program. In fact, without any confirmatory PCR 

testing the screening testing program does not pay for itself in most of the cases considered. With 
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no confirmatory testing, there are approximately 1.8 billion proscribed isolation-days with 

weekly testing, approximately 2.5% of all person-days. 

 

Single-stage screening test with 97% specificity with partial confirmatory testing. Panel E 

modifies program A by considering a screening test with twice the false positive rate of the test 

in program A. For comparison purposes we hold adherence constant although plausibly it would 

be lower for the panel E test. The reduced specificity increases the number of healthy individuals 

proscribed to isolate. Testing costs increase because there are more screening false positives that 

need confirmation, and isolating so many healthy workers provides an additional drag on GDP. 

As a result, net economic benefits are less than for program A. 

 

Single-stage screening test with 98.5% specificity, partial confirmatory testing, and increased 

adherence. This scenario, shown in Panel F, modifies program A by increasing adherence from 

25% to 50% for those receiving a positive screening test but not taking a confirmatory test. 

Higher adherence substantially increases deaths averted, GDP, and revenues, and slightly 

decreases total testing costs because the greater suppression of the virus reduces symptomatic 

testing costs. Net economic benefits are large, even for biweekly testing. 

 

More expensive diagnostic tests. Panel G in Table 3 considers program B (98.5% specificity, 

universal confirmatory testing) except with a more expensive confirmatory test. The cost of the 

diagnostic testing is borne by the Federal government so in the model does not affect private 

decisions and thus does not affect mortality, employment, or GDP. Despite the doubling in the 

cost of the PCR test, the overall increase in testing cost reduction is modest, for example rising 

from $56 million for weekly testing in program A (Table 1) to $63 million. The reason is that, 

with universal PCR confirmatory testing, the expected cost of administering the combined test to 

an uninfected individual increases only slightly from $5 + .015×$50 = $5.75 for a $50 

confirmatory test to $6.50 for a $100 confirmatory test. 

 

3.5. Dynamics for selected scenarios 

 

Figure 9 displays the simulated time path of deaths and quarterly GDP, along with standard error 

bands and actual deaths, for four counterfactual scenarios: parts (a), (b), and (c) show 

respectively programs A, B, and C for a weekly testing rate, and panel (d) shows program C for a 

four-day testing rate. All cases in Figure 9 have a lower path for deaths and higher path for GDP 

than the no-screening baseline in Figure 2. Program A slows the spread of the virus but does not 

suppress it. The other panels, however, approach suppression and two-step testing (program C) at 

a 4-day cadence essentially suppresses the virus, supporting a strong economic recovery. At a 

weekly testing cadence, programs B and C could have avoided the second wave of the summer 

and fall. 
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Figure 9. Actual and simulated paths for deaths and GDP 

(a) Program A: 98.5% specificity, 50% 

confirmatory PCR testing, testing frequency 7 

days 

(b) Program B: 98.5% specificity, 100% 

confirmatory PCR testing, testing frequency 7 

days 

  

(c) Program C: Two-step screening, 99.7% 

specificity, no confirmatory PCR testing, 

testing frequency 7 days 

(d) Program C: Two-step screening, 99.7% 

specificity, no confirmatory PCR testing, 

testing frequency 4 days 

  

Notes: Screening programs A, B, and C are the same as in in Table 1. See the notes to Figure 2. 

 

 

4. Age-Targeted Screening  

 

It might be more efficient to target screening testing based on individual characteristics than 

having population-wide random screening. Because contacts and mortality differ by age, this 

section considers screening that is random within an age category with testing rates differing 

across categories. Specifically, we calculate the age-based testing rates that maximizes net total 

benefits (economic plus monetized mortality) of the screening test, subject to the constraint that 

the population-wide screening testing rate equals a given value.  
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The results of the first calculation – optimized age-specific testing rates – for screening program 

B (screening test with 98.5% specificity and universal confirmatory PCR testing) are shown in 

Figure 10, where each line is the probability of testing for a given age. The optimal age-varying 

testing rates are highest for young adults (ages 20-44) followed by ages 45-64, followed by ages 

65-74. These results indicate that the screening testing and isolation is being used to break the 

chain of transmission from middle-aged adults to the elderly, either through family or service 

workers serving the elderly. The mortality benefits of this targeting outweigh the economic costs 

of isolating relatively higher fractions of the working-age population than other ages. 

 

Figure 10. Age-specific screening testing rates that maximize net economic benefits 

 

Note: dots are optimization estimates for given overall population testing rate , lines are 

smoothed through the estimate by age group. 

 

Figure 11 shows the total net benefits for age-targeted screening testing and, for comparison, for 

random population screening testing. For small testing rates, there are substantial gains from 

targeting testing using the unconstrained allocations in Figure 10. Those gains diminish at higher 

testing rates as the virus is suppressed, however net benefits are always higher with the age-

targeted strategy. We note, however, that the costs here do not include developmental and 

educational costs of children missing school, and including such costs could provide an 

additional reason to test the young and thus allowing schools to reopen and stay open.  
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Figure 11. Total net benefits from age-specific and age-blind screening testing  

 
 

  

5. Discussion 

 

There are six main arguments against widespread screening testing (e.g., Pettengill and McAdam 

(2020)). First, low specificity undercuts the program validity and leads to low adherence with the 

proscription to isolate if positive. Second, low specificity unnecessarily pulls many healthy 

workers out of the workforce. Third, because antigen tests have lower sensitivity than PCR tests, 

many infected individuals would slip through the cracks and undercut the effectiveness of the 

program. Fourth, if paid for federally, their expense would be massive at a time that the federal 

deficit is already at a postwar high. Fifth, to be effective they would need to be done at an 

infeasible scale, such as daily or every other day. Sixth, having a screening program could 

change behavior, in particularly making individuals who test negative less cautious, for example 

reducing their willingness to wear a mask.  

 

Our analysis addresses the first five of these concerns. Our results underscore the importance of 

these first two concerns: in our analysis, the most important parameter is screening test 

specificity. A screening testing program must have high specificity to be credible and to evoke 

high adherence. This high specificity can be achieved by two-step testing if the tests are 

sufficiently independent. The additional costs of two-step testing, even if the second test is a 

PCR test, are small compared to the benefits, and screening testing with universal PCR 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.22.20217984doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.22.20217984
http://creativecommons.org/licenses/by/4.0/


22 

 

confirmatory testing generates large net benefits. Test specificity is typically estimated in a 

laboratory using a small number of samples, so test specificity in the field could differ 

substantially from laboratory estimates. Because low specificity undercuts the testing program, 

this uncertainty underscores the importance of confirmatory testing to increase specificity. 

 

The third concern, sensitivity, is legitimate in theory, but our modeling (like Larremore et al 

(2020)) finds that even large drops in sensitivity, say to 90%, have a small effect on the 

epidemiological and economic dynamics. The fourth concern, fiscal sustainability, also is 

legitimate in theory, but our estimates suggest that the economic gains from suppressing the 

virus are so large that the testing pays for itself through increased revenue. Regarding the fifth 

concern, scale, we find that weekly testing in a regime with high compliance comes close to 

suppressing the virus, and moving to a four-day cadence is highly effective. Weekly testing with 

a 98.5% specific screening test and universal confirmatory PCR testing would require increasing 

the number of PCR tests by roughly three-quarters of what they are today; a four-day testing 

would require more than doubling PCR testing capacity. 

 

Our analysis does not tackle the final concern, that testing could induce more risky behavior. 

With that caveat, it is not self-evident that this must be the case. Individuals undertake social 

distancing and masking to self-protect, to protect others, and to conform to local norms and laws. 

Testing negative in the morning does not reduce the incentive to self-protect during the day. The 

effect on behavior of testing positive is ambiguous: altruism would lead one to reduce contacts 

even if not isolating, but no longer worrying about one’s own health while caring little about the 

health of others could increase risky behavior. Empirical research on this effect is needed. Given 

the ambiguous nature of this effect, we do not consider it a reason to postpone the deployment of 

inexpensive rapid high-specificity screening testing. 

 

Finally, our study of the economic benefits of COVID-19 screening tests does not consider the 

public health benefits of the data generated from such a testing program for disease surveillance 

purposes. (We note that testing for both diagnostic and public health surveillance purposes is 

already routinely employed for both seasonal influenza and detection of novel strains of 

influenza A.) Although at-home screening test results would not get into a public data system, 

universal confirmatory PCR testing would increase data coverage by overcoming the current 

selection into diagnostic testing of the symptomatic. Thus, our proposed testing regimes would 

allow for much more timely and fine-grained analysis of the response of COVID-19 prevalence 

and transmission to a wide range of public health interventions and disease mitigation strategies 

than is possible with current diagnostic testing data. Presumably, consideration of the utility of 

the data generated from a widespread screening testing regime in shaping the design of effective 

and low-cost mitigation measures would add to the economic benefits that we have calculated 

here. 
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Appendix 1 

 

This appendix provides more details on the model, which extends the model developed in 

Baqaee, Farhi, Mina, and Stock (2020). Our model departs from BFMS in several important 

respects. First, we extend the model to include both a screening test regime and a diagnostic test 

regime. Second, we assume that individuals are instructed to isolate upon receiving a terminal 

positive test, either a screening test with no confirmatory test or a positive diagnostic test. 

Individuals awaiting diagnostic test results are instructed to quarantine. Third, we distinguish 

between individuals who have recently recovered and fully recovered from the disease to capture 

that individuals may still test positive on a PCR test after they are no longer infectious. Finally, 

we allow for imperfect adherence to quarantine and isolation. 

 

The Epidemiological Model 

 

There are five age groups indexed by a, representing ages 0-19, 20-44, 45-64, 65-74, and 75+. 

There are 66 private sectors in the economy indexed by i. Individuals are either S (susceptible), E 

(exposed), I (infected), R (recently recovered), F (fully recovered), or D (dead). In addition, 

individuals who are not dead are either actively circulating (A), awaiting diagnostic test results 

(D), awaiting screening test results (S), or in isolation following a positive test (Q). Thus, the 

population is partitioned into 21 states. For example, 𝑆𝐴2 𝑆𝑆2, 𝑆𝐴𝐷2, and 𝑆𝑄2 denote the number 

of persons aged 20-44 that are susceptible and actively circulating, susceptible and awaiting 

screening test results, susceptible and awaiting diagnostic test results, and susceptible and in 

isolation, respectively.  We assume that the recovered (either recently recovered or fully 

recovered) are immune through the end of our simulation period. 

 

The rates of screening and diagnostic testing are given by the parameters 𝜇, 𝜌0, and 𝜌1, described 

in Table 2. We assume that these parameters are equal to zero in the estimation period of our 

model, which runs through June 1st, and thereafter calibrated according to the main text of this 

paper. 

 

The state variables (i.e. SA) are all five-dimensional vectors. Let 𝑋𝑎 denote the ath element of 

any state X (the ath age group). The epidemiological side of the model has 21 transition 

equations: 
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where 𝑁𝑎 denotes the number of individuals of age a (summing across all 21 states) and 𝐼𝑛𝑓𝑎 

denotes the effective number of infected individuals actively circulating, 𝐼𝑛𝑓𝑎 = 𝐼𝐴𝑎 + 𝐼𝑆𝑎 +
𝛼𝑆𝐼𝐷𝑎 + 𝛼𝐼𝑄𝑎. In this final expression we treat the signal value of taking a diagnostic test as 

being the same as receiving a positive screening test (these would be the same for the screening-

test positives taking a confirmatory PCR test), so non-adherence with quarantine is the same as 

non-adherence with a terminal positive screening test. 

 

The parameter 𝛼 is a weighted average of the parameters 𝛼𝑆 and 𝛼𝐷, which are the isolation 

adherence rates for those who received screening tests and diagnostic tests, respectively. The 

weights are endogenously determined and given by the relative share of those instructed to 
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isolate who arrived from screening tests versus diagnostic tests. Thus, 𝛼 is the effective 

adherence rate of those in isolation. If those in isolation mainly through the screening test 

regime, then 𝛼 will be close to 𝛼𝑆, the quarantine adherence rate for the screened population.  

 

Given the parameters appearing in equations (1) through (21) above and a set of initial 

conditions, the model is straightforward to solve in discrete time by forward iteration. The unit of 

time is a single day and the model is solved 12 steps per day.  

 

The Contact Matrix 

 

The contact matrix C describes the expected number of contacts between each age group in the 

population. An actively circulating individual of age 𝑎 who interacts with an individual of age 𝑏 

has an instantaneous infection probability of 𝛽 times the probability that the age-𝑏 individual is 

infected. The probability that an individual of age a is infected in a given period is therefore 

given by summing across all their contacts. We distinguish between contacts that are made at 

home, at work, and elsewhere. The contact matrix is time-varying, and can change due to, for 

instance, NPIs put in place by the government or personal behavioral adaptations to avoid 

contracting the virus. We have: 

 

𝐶𝑎𝑏 = 𝑝𝑎
ℎ𝑜𝑚𝑒𝐶𝑎𝑏

ℎ𝑜𝑚𝑒 + 𝑝𝑎
𝑜𝑡ℎ𝑒𝑟𝐶𝑎𝑏

𝑜𝑡ℎ𝑒𝑟 + ∑ 𝑝𝑎,𝑖
𝑤𝑜𝑟𝑘

𝑠𝑒𝑐𝑡𝑜𝑟𝑠 𝑖

𝐶𝑎𝑏,𝑖
𝑤𝑜𝑟𝑘 

 

Where 𝐶𝑎𝑏
ℎ𝑜𝑚𝑒 , 𝐶𝑎𝑏

𝑜𝑡ℎ𝑒𝑟 , 𝐶𝑎𝑏
𝑤𝑜𝑟𝑘 indicate the expected number of contacts in each of home, work, 

and other environments, conditional on being at home, at work, or elsewhere. The parameters 

𝑝𝑎
ℎ𝑜𝑚𝑒, 𝑝𝑎

𝑜𝑡ℎ𝑒𝑟, and 𝑝𝑎,𝑖
𝑤𝑜𝑟𝑘 indicate the probability that an age-a individual is at home, at work, or 

elsewhere. We note that 𝑝𝑎,𝑖
𝑤𝑜𝑟𝑘 is the fraction of employed in the indicated sector: 

 

𝑝𝑎,𝑖
𝑤𝑜𝑟𝑘 =

𝐿𝑎,𝑖

𝑁𝑎
 

 

where 𝐿𝑎,𝑖 is the number of workers of age a employed in sector i. 

 

See Sections 1.2 and 2 of BFMS (2020) for more information on the construction and historical 

estimation of the contact matrix. 

 

Behavioral Feedback and Control Rule 

 

The behavioral component of this model endogenously determines the contact matrix in our 

simulation period (i.e. after June 1). This portion of the model is unchanged from BFMS 2020. 

For completeness, we will briefly describe the key elements of this control rule here. 

 

In our simulation period (June 1st through December 31st), we assume that the contact matrix 

responds endogenously to changes in the course of the pandemic. We formalize this by 

implementing a linear proportional-integral-derivative (PID) control rule, in which feedback 

depends on current deaths, the 14-day change in deaths, the current unemployment rate and the 
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integral of the unemployment rate.  The linear PID control rule can be expressed as: 

 

𝑢𝑡 =  𝜅0 + 𝜅𝑢𝑝𝑈𝑡−1 + 𝜅𝑢𝑖 ∫ 𝑈𝑠𝑑𝑠
𝑡−1

𝑡0

+ 𝜅𝑑𝑝𝐷𝑡−1 + 𝜅𝑑𝑑�̇�𝑡−1 

 

where 𝑈𝑡 is the unemployment rate and �̇� is the time derivative of the death rate. Both 𝑈𝑡 and �̇� 

are generally unknown, available only with time aggregation and/or with reporting lags. We 

therefore use the 14-day average of the unemployment rate, the cumulative daily unemployment 

rate since March 7th, deaths over the previous two days, and the 14-day change in the two-day 

death rate for the various terms on the right-hand side of this equation. 

 

The PID controller determines a sequence of sectoral labor supply shocks, shifted by the GDP-

to-risk index: 

 

𝑠𝑖𝑡 = 𝑠𝑖𝑡𝑅
+ Φ(𝑢𝑡 +  𝜅𝜃𝜃𝑖)(1 − 𝑠𝑖𝑡𝑅

) 

 

where 𝑠𝑖𝑡 is the workforce in sector i at date t as a fraction of the workforce prior to the pandemic 

(i.e. February 2020), 𝑡𝑅 is the date of the beginning of the simulation period (June 1st), and Φ is 

the cumulative Gaussian distribution (which plays no role except as a sigmoid to constrain the 

controller between 0 and 1). 

 

The term 𝜃𝑖 is the GDP-to-risk index: 

 

𝜃𝑖 =  
𝑑 ln 𝑌 / 𝑑𝐿𝑎,𝑖

𝑑 𝑅0 / 𝑑𝐿𝑎,𝑖
 

 

The GDP-to-risk index can be interpreted as measuring the ratio of the marginal contribution to 

output, relative to the marginal contribution of 𝑅0, from an additional worker of age a returning 

to work in sector i. Up to scale, the GDP to risk index does not depend on epidemiological 

parameters except the contact matrix. The units of 𝜃 are not meaningful, so we standardize it to 

mean zero and unit variance across sectors (equally weighted). 

 

Thus, the controller effectively alters the work contacts component of the contact matrix. 

Similarly, we can think of the controller as generating a sequence of labor supply shocks that can 

be used to back out GDP using Hulten’s theorem as a first-order approximation: 

 

𝑑 ln 𝑌 =  ∑ Ψ𝑖𝑑 ln 𝐿∙𝑖 

 

Where the subscript ∙ denotes summation over ages and Ψ𝑖 denotes the labor income share for 

sector i. 
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