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Abstract 

Background 

The course of coronavirus disease 2019 (COVID-19) seems to be aggravated by air pollution, and some 

industrial chemicals, such as the perfluorinated alkylate substances (PFASs), are immunotoxic and may 

contribute as well.  
Methods 

From Danish biobanks, we obtained plasma samples from 323 subjects aged 30-70 years with known SARS-

CoV-2 infection. The PFAS concentrations measured at the background exposures included five PFASs known to 

be immunotoxic. Register data was obtained to classify disease status, other health information, and 

demographic variables. We used ordinal and ordered logistic regression analyses to determine associations 

between PFAS concentrations and disease outcome. 

Results 

Plasma-PFAS concentrations were higher in males, in subjects with Western European background, and tended 

to increase with age, but were not associated with the presence of chronic disease. Of the study population, 

108 (33%) had not been hospitalized, and of those hospitalized, 53 (16%) had been in intensive care or were 

deceased. Among the five PFASs considered, perfluorobutanoic acid (PFBA) showed an odds ratio (OR) of 2.19 

(95% confidence interval, CI, 1.39-3.46) for increasing severities of the disease, although the OR decreased to 

1.77 (95% CI, 1.09, 2.87) after adjustment for age, sex, sampling site and interval between blood sampling and 

diagnosis.  

Conclusions 

Measures of individual exposures to immunotoxic PFASs included PFBA that accumulates in the lungs. Elevated 

plasma-PFBA concentrations were associated with an increased risk of more severe course of CIVID-19. Given 

the low background exposure levels in this study, the role of PFAS exposure in COVID-19 needs to be 

ascertained in populations with elevated exposures.   
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Introduction 

Elevated exposure to air pollution is associated with a worsened outcome of coronavirus disease 

2019 (COVID-19).
1-4

 While replicated in different populations, the evidence relies on ecological study 

designs without measures of individual levels of exposure. Several industrial chemicals can suppress 

immune functions
5,6

 and worsen the course of infections.
7
 In particular, the perfluorinated alkylate 

substances (PFASs) are persistent, globally disseminated chemicals known to be immunotoxic.
8
 Thus, 

elevated PFAS exposure is associated with lower antibody responses to vaccinations in children
9
 and 

in adults.
10

 Also, infectious disease occurs more frequently in children with elevated background 

exposure.
11-13

 Further, major PFASs are suspected interfering with proteins involved in critical 

pathways associated with severe clinical outcomes of the COVID-19 infection.
14

 

Substantial differences occur in the clinical course of the disease, and the reasons for this 

variability are only partially known.
15,16

 As a possible contributor, weak specific antibody responses 

may be an important contributor to a  more severe clinical course of the infection,
17

 as also suggested 

by the poorer prognosis in patients with bacterial co-infection.
18

 The most serious clinical 

consequences are associated with male sex, older age, and the presence of co-morbidities, including 

obesity and diabetes.
19-23

 In parallel, serum-PFAS concentrations are higher in men than in women 

and also tend to increase with age.
8,24

 Because PFAS exposure has been linked to both obesity and 

diabetes,
25,26

 PFAS exposure may potentially affect the progression of COVID-19 directly as well as 

indirectly.  

Several PFASs can be reliably determined in human blood samples, where they show a long 

biological half-life of 2-3 years or more,
27

 thereby providing a measure of cumulated exposure. Still, 

blood concentrations may not accurately reflect the retention in specific organs, e.g., the short-chain 

perfluorobutanoic acid (PFBA), which accumulates in the lungs.
28

  

To assess if elevated background exposures to immunotoxic PFASs are associated with the 

clinical course of the infection, a study was undertaken in Denmark to determine individual plasma-

PFAS concentrations in adults confirmed to be infected with severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) and examine the association with the severity of COVID-19 development.  
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Methods 

Population 

Plasma samples for PFAS analysis were obtained from medical biobanks that store excess material 

from diagnostic tests, viz., the Danish National Biobank at the Statens Serum Institut (SSI) and Odense 

University Hospital (OUH). Eligible subjects were identified from the Danish cohort of COVID-19 

patients.
29

 All cases were tested by quantitative polymerase-chain-reaction (PCR) and had a positive 

response for SARS-CoV-2 infection, as recorded in the Danish Microbiology Database (MiBa), a 

national database that contains both positive and negative results of the majority of microbiology 

testing done in Denmark.
30

  

The study included non-pregnant subjects aged 30-70 years at the time of the positive test by 

early March 2020 through early May 2020, provided that the biobanks could provide a plasma sample 

of 0.15 mL. Although most blood samples were obtained soon after SARS-CoV-2 infection was 

identified, we also included subjects, mainly those not hospitalized, whose plasma in the SSI biobank 

had been obtained up to 28 months earlier, i.e., less than a half-life for major PFASs.
27

  

All samples were coded, and the Personal Identification Number for each subject was separately 

transferred to the Danish Health Data Authority (FSEID-00005000) for linkage to demographic and 

medical information from the Danish Civil Registration System (CRS),
31

 the Danish National Register of 

Patients (DNRP),
32

 and the National Health Insurance Service Register.
33

 By linkage to the national 

patient register, we classified disease status as follows: no hospital admission and completed 

infection within 14 days of testing positive, hospitalization with COVID-19 up to or above 14 days, 

admission to intensive care unit, or death. The linked data set was analyzed via secure server without 

access to information on the identity of the subjects involved. For confidentiality reasons, all tabular 

information was based on no less than five subjects.  

The protocol was approved by the Regional Committee on Health Research Ethics (S-20200064), 

which also allowed the project to proceed without seeking informed consent from the subjects 

identified for study participation. Additional approvals were obtained from the Danish Data 

Protection Agency as well as institutional and regional authorities for the transfer blood samples and 

linkage of subject information to the PFAS analyses, while protecting confidentiality.  
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Chemical Analysis  

The plasma samples were analyzed in succeeding series for PFAS concentrations, including PFBA, 

perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), 

and perfluoronanoate (PFNA). We used online solid-phase extraction followed by liquid 

chromatography and triple quadropole mass spectrometry (LC–MS/MS) at the University of Southern 

Denmark.
34

 Accuracy of the analysis was ensured by inclusion of quality control (QC) samples 

comprising proficiency test specimens from the HBM4EU program organized by Interlaboratory 

Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS). All results of the QC 

samples were within the acceptance range. The between-batch CVs for the actual series ranged 

between 3% and 14% for all compounds. Both PFOS and PFOA were quantified in all blood samples, 

and all PFASs were detectable in at least 30% of the samples. Results below the limit of detection 

(LOD, 0.03 ng/ml) were replaced by LOD/2 before uploading to the secure server at the Danish Health 

Data Authority, where linkage to other information took place.  

Statistical Analysis 

Correlation between PFASs were examined using Spearman’s correlation coefficient. The PFAS 

concentrations were compared between demographic groups and presence of comorbidities and 

tested using Kruskal-Wallis test of variance and Wilcoxon rank-sum test.  Furthermore, associations 

between demographic groups and COVID-19 severity were tested using χ
2 

test. Associations between 

comorbidities, place of inclusion, and COVID-19 severity could not be displayed and tested due to 

confidentiality concerns, as some cells contained less than five individuals. 
 

The association between plasma-PFAS concentrations and COVID-19 severity were tested in 

ordered logistic regression models. Because more than half the PFBA and PFBS concentrations were 

below the LOD, they were included as binary variables (below/above LOD). Potential confounding 

variables were identified based on a priori knowledge and included age (continuous, years) sex, and 

national origin (Western European yes/no). Among those of Western European national origin, 94% 

were Danish, while subjects born in or of parents from Somalia (20% of the group), Pakistan (13%), 

Iraq (12%), Morocco (11%), Eastern Europe (9%), and Turkey (9%) constituted most of the participants 

of non-Western European national origin. Because past PFAS exposure could potentially increase the 
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risk of certain chronic diseases that may affect COVID-19 severity, chronic disease (yes/no) was 

considered a potential confounder to allow estimation of the direct, rather than the total effect of 

PFAS exposure. Place of inclusion (OUH/SSI) and timing of blood sampling were associated with both 

PFAS concentrations and COVID-19 severity and were therefore included as covariates. 

The assumption of PFAS linearity was tested by including PFAS squared along with PFAS in the 

regression models. No significant (p<0.05) deviation from linearity was found. The proportional odds 

assumption in the ordinal logistic regression was tested using a likelihood-ratio test using the Stata 

omodel package. The test could not be fitted on the full model, but in a model adjusting for age, place 

of inclusion, and timing of blood sampling, the hypothesis of proportional odds was accepted (p>0.05) 

in all analyses. Odds ratios (ORs) between groups of COVID-19 severity were calculated using logistic 

regression models.  

Results 

The predominant PFAS in plasma was PFOS, with an average concentration of 6.1 ng/mL (median, 4.7 

ng/L), approximately equally distributed between the normal and branched isomers. Other PFASs 

quantified showed averages below 1 ng/mL. In a sensitivity analysis, one extreme PFHxS outlier at 

12.9 ng/mL was omitted. The PFAS concentrations correlated well, with Spearman correlation 

coefficients generally above 0.5 (Table 1), except for PFBA. PFOS on average contributed 69% of the 

total PFAS concentrations and correlated particularly well with the most other PFASs quantified.  

In general, serum-PFAS concentrations were higher at older ages, in men, and among those of 

Western European origin, though not in the presence of chronic disease (Table 2). PFBA was lower, 

but the origin of the samples was only weakly associated with plasma-PFAS concentrations (Table 2).  

In the study population, males, older subjects, and those with chronic disease, were more 

frequently represented among subjects with severe COVID-19, while there was no difference in 

regard to national origin for disease severity (Table 3).  

A more severe disease outcome was associated with higher plasma-PFBA concentrations, also 

after adjustment for all covariates (Table 4). None of the other PFASs showed such tendency, and 

some were associated with lower risk. The PFAS-associations with disease severity were similar in 

Western Europeans and subjects with other backgrounds (P > 0.2 for population differences). In 
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additional analyses, marginal changes in the ORs occurred when plasma samples obtained more than 

60 days before diagnosis were excluded. If not adjusted for the presence of chronic disease, the 

adjusted OR for PFBA was 1.77 (95% CI, 1.09, 2.87); other ORs also changed only marginally.  

In dichotomous analyses comparing severities of the disease, detectable PFBA in plasma also 

showed a clear association with a more severe clinical course of the disease, most pronounced for 

odds between hospitalization and admission to intensive care unit/death (data not shown). The 

association between PFBA and severity was similar for men and women (Figure 1). 

Discussion 

The present study aimed at determining the potential aggravation of COVID-19 associated with 

elevated exposures to PFASs. Several of these substances are known immunotoxicants in laboratory 

animals
35

 and in humans.
8,9

 In addition to immunotoxicity, major PFASs can potentially interfere with 

major pathways that are predictive of a serious clinical outcome of the infection.
14

 An association of 

PFAS exposure with disease severity therefore appears biologically plausible.  

Among the PFASs, presence of detectable PFBA in plasma showed the strongest association 

with the severity of the disease. This finding may at first seem surprising, as this PFAS has a short 

elimination half-life in the blood and is often considered of less importance to health.
27

 However, in 

tissue samples from autopsies, PFBA is the only PFAS that is substantially accumulated in the lungs.
28

 

Given the persistence of the PFASs in general, the unique retention of PFBA in lung tissue may offer a 

clue to interpreting the findings in this study.  

The associations of PFASs with a more serious course of COVID-19 are weakened after 

adjustment for covariates, and some regression coefficients and ORs are below 1. However, 

adjustment for all covariates may result in over-adjustment bias. Thus, older age and male sex are 

known to be strong predictors of higher blood-PFAS concentrations, and simple adjustment for these 

factors could potentially result in a bias toward the null. As PFAS exposure has been linked to 

important comorbidities, such as diabetes and obesity,
25,26

 both of which may exacerbate the virus 

infection, adjustment for chronic disease may also not be justified. Leaving it out slightly strengthened 

the PFBA association with the disease severity. Also, in consideration of the low background exposure 
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levels, the fully adjusted results should therefore not be interpreted as evidence that most PFASs do 

not contribute to a worsened clinical course of COVID-19. 

The results of this study are parallel to findings in regard to other environmental toxicants, viz., 

air pollutants
1-4

 and suggests a need to ascertain the impact of relevant occupational or 

environmental exposures on COVID-19 severity. Of note, the evidence on air pollution relies solely on 

ecological study designs without measures of individual levels of exposure, while the present study 

benefitted from measurements of plasma-PFAS concentrations of all study subjects.  

In regard to limitations, the study population is not representative of corona-positive subjects, 

as inclusion in the study depended solely on the existence of plasma from diagnostic blood samples at 

the hospitals. Thus, subjects with chronic disease or more severe COVID-19 likely had more frequent 

hospital visits or longer admissions and thereby a greater chance of having plasma available for 

inclusion in this study. With a corona-related fatality rate of Danish blood donors below 70 years of 

age at 89 per 100,000 infections,
36

 the presence of 17 deaths in the present material (i.e., against 0.3 

deaths expected) confirms that the blood samples represent a highly selected population. Still, a total 

of 108 subjects were known to have been infected, though not hospitalized. In many cases, their 

plasma had been stored on previous occasions, and the PFAS concentrations may reflect slightly 

higher exposures in the recent past.
8
 Although adjustment for the time interval since sample 

collection was included in the analyses, its impact on the results was negligible.  

The study population included relatively older subjects who were more frequently male, and a 

large proportion of foreign-born subjects and second-generation immigrants (Table 3), thereby 

possibly also deviating from the background population of corona-infected patients in Denmark. Still, 

such biases will not necessarily affect the PFAS exposure and its association with COVID-19 outcomes.  

Among immigrants, adverse associations appeared slightly stronger, also after adjustments, 

thus suggesting that national origin, perhaps as related to demographic or social factors, may result in 

a greater vulnerability to PFAS-associated aggravation of the infection. Difference in age, sex, or 

comorbidities did not explain this tendency, but is in agreement with previous findings of ethnic 

differences in vulnerability.
37

 However, national origin may be a surrogate marker for other factors, 

such as exposure at work or exposure within crowded households, as immigrant origin tends to be 
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associated with certain occupations including front-line workers and living in areas with higher 

population density.
38

  

Conclusions 

Increased plasma-PFBA concentrations were associated with a greater severity of COVID-19 

prognosis, and this tendency remained after adjustment for sex, age, comorbidities, national origin, 

sampling location and time. Although PFBA occurred in lower plasma concentrations than most other 

PFASs determined, it is known to accumulate in the lungs. Thus, given the immunotoxicity of the 

PFASs, exposure to these persistent industrial chemicals may contribute to the severity of COVID-19. 

These findings at background exposure levels suggest a need to ascertain if exposures to 

environmental immunotoxicants may worsen the outcome of the SARS-CoV-2 infection.  
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Figure 1. Proportion of plasma samples with detectable PFBA concentrations at different disease 

severities. 

Results are shown for 44 men and 64 women with up to two weeks of hospitalization, 94 men and 68 

women with longer hospitalization, and 36 men and 17 women admitted to the intensive care unit 

(ICU) or deceased (P = 0.003).  
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Table 1. Spearman’s correlation coefficients for pairwise comparisons of detectable PFASs in plasma from 323 

subjects included in the study  

 PFBA PFHxS  PFOS PFOA 

PFHxS  0.0520    

PFOS  0.0591   0.8406   

PFOA  0.0617 0.7072   0.7248    

PFNA  0.0127 0.7133 0.8406 0.7759 
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Table 2. Median plasma-PFAS concentrations (25
th

, 75
th

 percentiles) in ng/mL by population characteristics 

Population 

characteristics 

No. of persons 

(%) 

PFBA PFHxS PFOS PFOA PFNA 

Total 323 (100) 

<LOD (<LOD, 

0.04) 

0.48 (0.28, 

0.71) 

4.86 (2.85, 

8.29) 

0.77 (0.43, 

1.18) 

0.38 (0.23, 

0.59) 

Age (years)       

30-39 

37 (11) 

<LOD (<LOD, 

0.03) 

0.32 (0.19, 

0.46) 

3.30 (1.89, 

5.27) 

0.59 (0.43, 

0.86) 

0.29 (0.21, 

0.43) 

40-49 

64 (20) 

<LOD (<LOD, 

0.03) 

0.35 (0.15, 

0.57) 

3.11 (2.24, 

5.06) 

0.58 (0.35, 

0.89) 

0.27 (0.19, 

0.39) 

50-59 

106 (33) 

<LOD (<LOD, 

<LOD) 

0.50 (0.31, 

0.75) 

5.41 (2.79, 

8.84) 

0.83 (0.43, 

1.18) 

0.40 (0.24, 

0.61) 

60-70 

116 (36) 

<LOD (<LOD, 

0.05) 

0.56 (0.39, 

0.89) 

6.11 (3.83, 

9.60) 

0.97 (0.56, 

1.51) 

0.48 (0.30, 

0.70) 

P value 
a
  0.008 <0.001 <0.001 <0.001 <0.001 

Sex       

Male 

174 (54) 

<LOD (<LOD, 

0.04) 

0.59 (0.40, 

0.87) 

5.96 (3.65, 

10.17) 

0.81 (0.51, 

1.26) 

0.40 (0.25, 

0.61) 

Female 

149 (46) 

<LOD (<LOD, 

0.04) 

0.35 (0.17, 

0.52) 

3.43 (2.06, 

5.66) 

0.70 (0.40, 

1.04) 

0.36 (0.22, 

0.56) 

P value 
b
  0.713 <0.001 <0.001 0.011 0.131 

Chronic disease       

Yes 

222 (69) 

<LOD (<LOD, 

0.04) 

0.46 (0.28, 

0.67) 

4.66 (2.88, 

7.87) 

0.71 (0.42, 

1.15) 

0.37 (0.23, 

0.57) 

No 

101 (31) 

<LOD (<LOD, 

0.03) 

0.51 (0.28, 

0.76) 

5.35 (2.72, 

8.41) 

0.87 (0.47, 

1.20) 

0.42 (0.23, 

0.65) 

P value 
b
  0.069 0.262 0.726 0.147 0.309 
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National origin       

Western Europe 

224 (69) 

<LOD (<LOD, 

0.04) 

0.52 (0.35, 

0.76) 

5.61 (3.40, 

9.18) 

0.91 (0.60, 

1.29) 

0.43 (0.29, 

0.64) 

Other 

99 (31) 

<LOD (<LOD, 

0.04) 

0.34 (0.16, 

0.57) 

2.86 (1.61, 

5.13) 

0.44 (0.31, 

0.80) 

0.23 (0.16, 

0.36) 

P value 
b
  0.552 <0.001 <0.001 <0.001 <0.001 

Place of inclusion       

Odense 

48 (15) 

<LOD (<LOD, 

0.06) 

0.45 (0.32, 

0.69) 

4.67 (3.29, 

8.09) 

0.67 (0.42, 

0.95) 

0.36 (0.24, 

0.45) 

Copenhagen area 

275 (85) 

<LOD (<LOD, 

0.03) 

0.48 (0.28, 

0.72) 

4.89 (2.72, 

8.31) 

0.79 (0.44, 

1.20) 

0.39 (0.23, 

0.62) 

P value 
b
  0.003 0.967 0.697 0.203 0.299 

Timing of blood 

sampling 

      

After diagnosis - 1 

month before 

199 (62) 

<LOD (<LOD, 

0.04) 

0.48 (0.30, 

0.71) 

4.63 (2.83, 

7.65) 

0.70 (0.40, 

1.11) 

0.35 (0.23, 

0.56) 

>1 month - 1 year 

before diagnosis 

40 (12) 

<LOD (<LOD, 

0.02) 

0.43 (0.22, 

0.70) 

5.06 (2.06, 

8.76) 

0.85 (0.38, 

1.35) 

0.37 (0.21, 

0.67) 

> 1 year before 

diagnosis 

84 (26) 

<LOD (<LOD, 

0.03) 

0.50 (0.30, 

0.72) 

5.48 (3.10, 

10.28) 

0.87 (0.57, 

1.22) 

0.45 (0.28, 

0.65) 

P value 
a
  0.182 0.819 0.204 0.074 0.050 

a 
Variables with more than two categories tested using Kruskal-Wallis rank test 

b 
Binary variables tested using Wilcoxon rank-sum test 
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Table 3. COVID-19 severity by population characteristics 

 COVID-19 severity 

Population characteristics No. of persons 

No 

hospitalization 

Hospitalization 

Intensive care unit 

and/or deceased 

Total No. of persons (%) 323 (100) 108 (33) 162 (50) 53 (16) 

Age (years),  

median (25th,75th percentile) 

55 (46, 62) 49 (41, 57) 57 (51, 63) 62 (53, 67) 

P value
 a
 <0.001    

Sex     

Male, n (%) 174 (100) 44 (25) 94 (54) 36 (21) 

Female, n (%) 149 (100) 64 (43) 68 (46) 17 (11) 

P value
 b

 0.002    

Chronic disease     

Yes, n (%) 222 (100) 55 (25) 120 (54) 47 (21) 

No, n (%) 101 (100) 53 (52) 42 (42) 6 (6) 

P value
 b

 <0.001    

National origin     

Western Europe, n (%) 224 (100) 76 (34) 113 (50) 35 (16) 

Other, n (%) 99 (100) 32 (32) 49 (49) 18 (18) 

P value
 b

 0.844    

Days between blood sampling 

and diagnosis,  

median (25th,75th percentile) 

0 (-1, 393) 

335 (22.5, 

639.5) 

0 (-1, 0) 0 (-2, 1) 

P value
 a
 <0.001    

a
 Associations tested using Kruskal-Wallis rank test 

b
 Associations tested using Pearson's chi-squared test  
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Table 4. Ordered logistic regression OR of increased Covid-19 severity for an increase by 1 ng/mL in plasma-PFAS 

concentrations 

PFAS 

No. of 

persons 

Crude OR (95% 

CI) 

Adjusted OR (95% 

CI)
 a
 

Western 

European origin 

OR (95% CI)
 b

 

Non-western 

European origin 

OR (95% CI)
 b

 

PFBA 

(>LOD/<LOD) 

104/219 2.19 (1.39, 

3.46) 

1.62 (0.99, 2.64) 1.50 (0.83, 2.71) 1.89 (0.80, 4.49) 

PFHxS (ng/mL) 323 0.85 (0.63, 

1.15) 

0.52 (0.29, 0.91) 0.46 (0.23, 0.89) 0.70 (0.25, 1.93) 

PFHxS 
c
 (ng/mL) 322 1.00 (0.62, 

1.61) 

0.52 (0.29, 0.93) 0.46 (0.23, 0.90) 0.70 (0.25, 1.93) 

PFOS (ng/mL) 323 1.00 (0.96, 

1.04) 

0.97 (0.92, 1.02) 0.97 (0.92, 1.03) 0.98 (0.87, 1.10) 

PFOA (ng/mL) 323 0.99 (0.72, 

1.36) 

0.87 (0.60, 1.26) 0.77 (0.50, 1.18) 1.25 (0.61, 2.52) 

PFNA (ng/mL) 323 1.18 (0.67, 

2.09) 

1.11 (0.58, 2.13) 0.97 (0.44, 2.13) 1.52 (0.48, 4.78) 

a
 Adjusted for age (years), sex, chronic disease (yes/no), national origin (western European/non-western 

European), place of testing (Odense/Copenhagen area), and days between blood sampling and diagnosis 

b
 Adjusted for age (years), sex, chronic disease (yes/no), place of testing (Odense/Copenhagen area), and days 

between blood sampling and diagnosis  

c
 PFHxS >10 ng/mL excluded 
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