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Abstract. We employ individual-based Monte Carlo computer simulations of a
stochastic SEIR model variant on a two-dimensional Newman–Watts small-world
network to investigate the control of epidemic outbreaks through periodic testing
and isolation of infectious individuals, and subsequent quarantine of their immediate
contacts. Using disease parameters informed by the COVID-19 pandemic, we
investigate the effects of various crucial mitigation features on the epidemic spreading:
fraction of the infectious population that is identifiable through the tests; testing
frequency; time delay between testing and isolation of positively tested individuals;
and the further time delay until quarantining their contacts as well as the quarantine
duration. We thus determine the required ranges for these intervention parameters to
yield effective control of the disease through both considerable delaying the epidemic
peak and massively reducing the total number of sustained infections.
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1. Introduction

In December 2019, a novel coronavirus, known as SARS-CoV-2, emerged in the human
population and caused an on-going, widespread pandemic. COVID-19, the disease
caused by SARS-CoV-2, resulted in significant losses in lives, health, and the economy.
With more than 183 million cases and around four million officially confirmed deaths,
at the time of writing, additional methods are needed to accurately understand and
predict the spread of the disease. Mathematical models are important tools to quantify
the non-linear interactions inherent to infectious disease spread, e.g., [1, 2, 3].

The dynamics of an incubation-type disease in a population can be mathematically
captured by variants of the Susceptible-Exposed-Infected-Recovered (SEIR) model
[4, 5, 6]. In the SEIR compartmental model, individuals may assume four distinct states:
S - Susceptible, E - Exposed, I - Infected, and R - Recovered. Mean-field rate equations
are often utilized to encode the SEIR reactions and predict how the total number of
individuals in each state evolves with time. However, these coupled ordinary differential
equations invoke a mass-action like factorization of higher moments into powers of
compartmental population numbers, and hence neglect temporal fluctuations and/or
spatial variations. Specifically, the rate equation description cannot properly account
for the strong number fluctuations that drive the continuous phase transition when
the system is near the epidemic threshold, nor can it account for spatially correlated
clusters and spreading fronts that are induced by the disease’s propagation through
nearest-contact infection [7, 8, 9, 10, 11]. Consequently, the rate equation approximation
cannot capture stochastic extinction events if the disease parameters are set below or
near the epidemic threshold. Furthermore, this approximation severely underestimates
the ultimate prevalence of the above-threshold epidemic in the population [12, 13].

The use of different varieties of network structures has helped epidemiologists better
understand the spread of infectious disease. In a commonly used network modeling
framework, the complexity of the many-body interaction of society can be mapped
with different structures, where each node represents an individual, and edges represent
interaction among individuals [3, 14, 15]. In modern human societies, disease spreading
in a confined spatial environment is more adequately described by a graph model that
represents social contact interactions, and that allows for both short-range diffusive
propagation as well as farther-reaching contacts along travel routes. While direct links
on a lattice would enable the infection to spread from the carriers to their immediate
susceptible neighbors, additional long-range connections emulate ‘express’ routes for
disease transmission to spatially distant regions. For example, a detailed study of
close proximity interactions in an American high school examined more than 700,000
interactions and found a network with small-world properties [16]. Realistic contact
networks are rather complex, and, in fact, tend to vary from one local community to
another [17]. Therefore, it is more convenient and parsimonious to work with a generic
network model that is not constrained by the availability of the real-network data.

The unusual abundance of non-symptomatic infected individuals constitutes a
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major obstacle in containing the spread of SARS-CoV-2 [18, 19]. Such asymptomatic
or pre-symptomatic individuals do not realize they are infected or transmitting and
thus go about their typical daily routine, leading to additional spread of the virus.
Furthermore, a scant availability of tests, delays in the process, and potential reluctance
of undergoing testing and isolation procedures, may substantially undermine mitigation
efforts. In practice, and especially for a highly contagious disease such as COVID-
19 with a sizeable fraction of non-symptomatic infections, even with a repeated and
effective testing regimen, it is impossible to capture and isolate every single infected
individual. To deal with a significant fraction of unidentified infectious individuals,
it is necessary to capture the direct neighborhood of confirmed disease carriers, and
quarantine these individuals. That is, even if a person who had direct contact with
the identified infected individual does not show any symptoms of infection, that person
should still be separated from the general population. Only then can further infection
propagation through unidentified (perhaps asymptomatic) disease carriers be controlled
effectively.

Our goal here is to investigate the robustness of the intervention schemes for
periodic testing and isolation regimen of both infected individuals and their contacts.
While this central idea of repeatedly screening the population, isolating positively tested
individuals, and quarantining their immediate contacts, irrespective of their infection
status, is straightforward and long-established, its efficacy depends on the details of the
spreading environment and on the ability to determine who is infectious in a timely
manner [20, 21, 22]. Since outbreaks usually take place within some smaller-scale
communities, in this work, we consider an isolated population of the size of a small town
or university / college that follows social distancing guidelines and is subject to a mask
mandate, i.e., a pool of individuals of the size of a few tens of thousand individuals with
diminished number of contacts and thus reduced chances of transmitting the infection.
As for the delays in testing and quarantining, for the current epidemic, they occur
mainly due to the following three reasons: (1) there is a time delay before receiving
test results; (2) there is an (unavoidable) time lapse between the identification of
infectious individuals and their placement in isolation; and (3) subsequently it takes
a finite time until all infectious persons’ contacts are identified and quarantined. To
properly incorporate the impact of these distinct delays on disease transmission in a
heterogeneous network, we study the spread of SARS-CoV-2 using a fully stochastic and
properly spatially extended representation of the SEIR model. In order to demonstrate
how the subtle details of a chosen spatial (or network) setting affect our qualitative
observations, we run our individual-based Monte Carlo simulations on three different
variants of small-world networks.

We find that for all three distinct small-world networks that we have considered,
the fraction of identified infectious individuals and the testing period both play decisive
roles in containing the infection outbreak. In contrast, within reasonable bounds, the
delays in testing and quarantining, as well as the quarantine duration, affect the course
of the outbreak in a much more limited manner. In fact, some of the latter mitigation
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Figure 1. Flow diagram for the modified SEIR model. The arrows between different
states represent the stochastic reactions with the appropriate reaction rates. Our
modification entails replacing the infectious state with distinct identified infectious
and unidentified infectious states. The fraction f of identified infectious individuals
constitutes a crucial adjustable parameter in the model.

parameters hardly impact the disease dynamics at all while the others do so more if
the individuals are allowed to move across the network, and vice versa if the network is
static. Therefore, in prioritizing resources to achieve an optimized testing / isolation /
quarantine strategy, primary emphasis should be placed on frequent and comprehensive
testing, less on reducing minor delays in reporting test results and effective contact
tracing. Finally, after varying both the fraction of identified infectious individuals and
the testing period simultaneously, we located the critical line of the continuous, non-
equilibrium phase transition which separates endemic and non-endemic states.

2. Model description

2.1. Modified stochastic SEIR model on a Newman–Watts small-world network

In the underlying SEIR formulation, the disease spread is represented by three
characteristic reactions that we consider as independent stochastic processes: S + I →
E + I with the reaction rate r, E → I with the reaction rate b (given by the inverse
incubation period), I → R with reaction rate a (given by the inverse recovery period).
For comparison, the associated dynamical mean-field rate equations are listed in the
Appendix. The basic reproduction number for the system is proportional to the ratio of
the infection to the recovery reaction rates R0 ∝ r/a, with a proportionality constant
that is given by the mean number of contacts of each individual [23]. To capture
potential limitations for effective testing and isolation protocols in our mathematical
model, we replace the infectious state in the SEIR model with two distinct configurations
that we term identified infectious (I) and unidentified infectious (A) states, respectively.
Here, ‘identification’ is to be understood as an umbrella term that encapsulates the
overall capability of the testing procedure to identify and subsequently isolate infected
individuals. That is, if the entire population is tested, then only the fraction of identified
infectious individuals will be detected and quarantined, i.e., temporarily removed from
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a) b)

Figure 2. Schematic construction of a Newman–Watts small-world network in two
spatial dimensions (with periodic boundary conditions, i.e., on a torus), obtained
from (a) a regular King’s graph or (b) from a regular lattice, through adding long-
distance connections (blue) between randomly selected lattice sites. The graph
displays a modified SEIR model configuration snapshot with sites residing in empty
(white), susceptible (light blue), exposed/incubative (yellow), identified infectious
(red), unidentified infectious (orange), or recovered (green) states (color coding as
in Fig. 1).

the system, which has the effect of disrupting their future infection chain with other
susceptible individuals. Likewise, the A state can also be viewed as a surrogate for
those infectious individuals that are missed out by a standard testing procedure. In this
respect, any unidentified infectious individuals will continue to spread the disease until
they ultimately recover from it. The schematics of this modified SEIR model variant is
displayed in Fig. 1. The reactions E → I and E → A may occur with the respective
rates f b and (1−f)b, where f denotes the fraction of identified infectious individuals, an
important independent parameter in our study. Note that we assume identical infection
and recovery rates for individuals in both the identified or unidentified states.

In this paper, we utilize dynamic and static variants of Newman–Watts small-
world network [11] on different underlying two-dimensional lattices as a suitable spatial
framework for our individual-based Monte Carlo simulations of the COVID-19 epidemic
propagation [24, 25, 13]. Below we list all three variations of the two-dimensional
Newman–Watts small-world network that we consider in this work:

(i) The first variation consists of a regular King’s graph with L sites in each dimension,
and additional long-distance links, c.f. Fig. 2a. We choose a King’s graph to achieve
a more realistic number of contacts for each individual during each simulation cycle.
Thus, it comprises (2L − 1)2 short-range links that connect the nearest-neighbor
lattice vertices, and 4ϕL2 additional long-distance links between randomly selected
lattice sites. Here, ϕ denotes a prescribed probability for a long-range link to form,

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2021. ; https://doi.org/10.1101/2020.10.21.20217331doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20217331
http://creativecommons.org/licenses/by-nc-nd/4.0/


Requirements for the containment of COVID-19 disease outbreaks 6

and the average connectivity of the network hence is ⟨k⟩ = 8(1 + ϕ). In order to
minimize finite-size effects, we set the lattice size in each dimension to be L = 1000,
and employ periodic boundary conditions; i.e., close the square lattice to a two-
dimensional torus. Each of the L2 lattice sites may be occupied by at most a single
individual, labelled by the distinct states S, E, I, A, or R. For this network variant
we allow all individuals to move around the lattice by letting them hop with the
rate d > 0 to other empty connected lattice sites. Therefore, we henceforth refer
to this spatial network organization as a dynamic small-world network on a King’s
graph or simply as a dynamic setup.

(ii) The second network variant we consider is a special case of the first one without
hopping, i.e. d = 0, which we refer to as static small-world network on a King’s
graph or simply as a static setup.

(iii) We also consider a completely different spatial organization by generating the
Newman–Watts small-world network on a regular two-dimensional lattice, c.f.
Fig. 2b, for which the average connectivity of the network reads ⟨k⟩ = 4(1+ϕ). For
this variant, we also allow the individuals to move around the lattice with d ̸= 0,
but we cut out transmission along long-range connections. As a consequence, a
susceptible individual can only be infected by a far-distant infectious individual
following long-range hopping transport that brings them both spatially together.
Finally, to make sure that this spatial configuration has sizeable outbreaks, we
choose considerably higher values of the infection rate so that a susceptible will
always get infected given the presence of any number of infectious neighbors. Thus,
we refer to this network with an extreme value of the infection rate as an extreme
setup.

In order to compare the results between these three networks, we set the basic
reproduction number for all three setups to R0 ≈ 2.5, which is achieved by varying
the total population density ρpop and the formation probability for long-range links ϕ.

Once the combined N individuals of S and I species have been randomly distributed
over the small-world network with fixed initial density, the simulation proceeds with
parallel sequential updates. A selected individual is allowed to react and/or to move
around if the network is dynamic, subject to the set of possible individual reactions
prescribed by our stochastic agent-based modified SEIR model. (The detailed stochastic
simulation algorithm is described in the Appendix.) The control parameters that
regulate the speed of the unmitigated infection spread are: the initial population
density in each state, the values of the reaction rates depicted in Fig. 1, and the
average connectivity ⟨k⟩ of the small-world network. On the lattice, upon encounter
of a susceptible S with an infectious individual I or A, one of the binary reactions
S+ I → E+ I and S+A → E+A transforms the susceptible into the exposed state E

with the infection rate r. Hence this choice defines the intrinsic simulation time scale.
To model the COVID-19 epidemic on the small-world network, we set the

incubation rate to b = (1/6) days−1, and the recovery reaction rate as a = (1/6.5)
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days−1, where 1/b and 1/a represent the mean incubation and recovery periods,
respectively, as reported for this disease [22, 26, 27, 28]. The infection rate and the
other simulation parameters are chosen such that the population undergoes epidemic
outbreaks for all three different choices of the underlying network, i.e., all three systems
are set above the epidemic threshold when there is no intervention measure imposed,
with an effective basic reproduction number tuned to R0 ≈ 2.5, again informed by
estimates for COVID-19 [22, 29, 30, 31, 32]. For the dynamic small-world network on a
King’s graph, this entails selecting the probability for the formation of long-range links
to ϕ = 0.6, the infection rate r = 0.6, and the population density to ρpop = 0.59 of
the total number L2 of lattice sites (as L = 1000, here, N = 590, 000). The average
number of contacts for each individual per day is estimated to ⟨k⟩ρpop ≈ 7.6, which is
in agreement with the empirical estimation of 5 to 20 contacts per day [33, 34]. For the
static setup with d = 0, in order to maintain R0 ≈ 2.5 for the unmitigated runs, we
have to raise the number of long-range connections by setting ρpop = 0.73, which also
raises the average number of contacts to 9.3. Since for the dynamic small-world network
on a regular lattice without long-range disease transmissions, any susceptible with any
number of infectious neighbors will surely get infected, we can achieve R0 ≈ 2.5 by fixing
ϕ to 0.6 and the population density at a much lower value ρpop = 0.1, amounting to a
total population of N = 100, 000. With the underlying square lattice now containing
2L(L − 1) short-range links and 2ϕL2 long-range links, the network has an average
connectivity ⟨k⟩ = 4(1+ϕ), giving rise to an average number of contacts ⟨k⟩ρpop ≈ 0.64

per day.

2.2. Mitigation strategy

For the current epidemic, delays occur due to the period before receiving test results, as
well as the (unavoidable) time lapse between the identification of infectious individuals
and their placement in isolation, and the subsequent time until all infectious persons’
contacts are quarantined. As is illustrated in Fig. 3, there are several parameters that
can be varied in this scenario: the testing period (TP); the delay between administering
the test and isolation of the infected identified individual (DT); the additional delay
between isolating positively tested individuals and quarantining their direct contacts
(DQ); and the duration of the quarantine (Q).

In the present study, we thus consider the following mitigation protocol: To be able
to capture identified infectious individuals, the population needs to be regularly tested
with some prescribed period TP. Once the periodic testing measure in the community
begins at some time instant t∗ (subsequently repeated according to the description
provided in the next paragraph), the entire population, irrespective of the state each
individual happens to be in at the time, is considered screened (i.e., full information
is available in the model). Only the identified infectious individuals, however, are
registered. These individuals are placed in isolation after some fixed delay time DT.
Contact tracing is implemented in our model through registering the information about
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Figure 3. Schematic for the proposed mitigation strategy. Vertical arrows indicate
various external actions on the population. The frequency of these control measures
and the time delays between the different interventions represent the crucial control
parameters for containing the infection. In this schematic, we show the standard value
of parameters found in Table 1.

each identified individual’s neighbors along any of the links in the small-world network,
at the time t∗ of the testing. At the later time t∗ + DT + DQ, these nearest neighbors
will be placed in quarantine, where they cannot interact with any of their neighbors,
and they cannot move (if d > 0). Subsequently, both the originally identified infectious
individuals and their nearest neighbors will be released from quarantine after Q days
from the moment they have been isolated. Note that these individuals may change
their state from E to I/A and A or I to R with the corresponding fixed rates while
in quarantine or isolation. For example, infectious individuals in isolation recover with
rate a.

In order to clearly demonstrate the efficacy of this mitigation strategy, it is necessary
to set the initial conditions of our model to admit sizeable outbreaks to occur for all
three small-world network variants that we consider here. To this end, we take the initial
number of the infection centers in the system to be I0 = 10, and we start to test and
isolate the individuals 10 days after these infection nuclei were planted in the population.
Furthermore, we set the basic model parameters that describe the testing protocol to
certain realistic default values, also listed in Table 1; namely f = 50%: one half of
the infectious population is identifiable through the testing, a ratio that incorporates
both test availability and reliability; TP = 7 days: periodic testing campaigns are
carried out weekly; DT = 2 days: it takes two days for the tests to be evaluated and to
arrange for the infectious individuals to be put into isolation; DQ = 2 days: subsequent
contact tracing consumes another two days until the immediate contacts (through either
short- or long-range links in the small-world network) are quarantined; and Q = 14
days: isolated and quarantined individuals are kept immobile and disconnected from
the remainder of the population for two weeks.
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Figure 4. Mitigated and unmitigated time evolution of (a) the fraction of infectious
and (b) recovered individuals for three different choices of the underlying network. The
insets additionally display the fractions: T (t)/N of isolated individuals, ∆I(t)/N of
daily new infections, and Q(t)/N of quarantined individuals. For all mitigated curves
we used the standard values of the mitigation parameters that are shown in Table 1.
The dashed curves correspond to unmitigated dynamics.

3. Results

In this section we evaluate the effectiveness of our mitigation strategy for the three
different small-world networks described above. To obtain statistically meaningful
results, all measured quantities were averaged over 100 independent runs in what follows.
Running Monte Carlo simulations for these stochastic SEIR model variants, we find that
our choice of the spatial setting does not significantly change the course of unmitigated
disease spread provided we select the simulation parameters such that all different setups
lead to the same basic reproduction number R0. However, we show in Fig. 4 that
depending on the setup, the disease spread may be suppressed quite substantially when
the mitigation measures are introduced. As is displayed in the figure, the disease spread
on the small-world network on a King’s graph without diffusion, i.e., on the static setup,
is suppressed the most by our contact tracing and isolation control strategy. That
makes sense since by setting the hopping rate to zero (d = 0) we effectively prohibit

Parameter Description Standard Value Range
f identified infectious fraction 50% 10 – 95 %

TP testing period 7 days 1, 2, 5, 7, 10 days
DT delay to testing 2 days 1, 2, 5, 7, 10 days
DQ delay to quarantine 2 days 1, 2, 5, 7, 10 days
Q quarantine length 14 days 5, 7, 10, 14, 21 days

Table 1. Control parameters varied during mitigation. Figure 3 provides an example
of how these variables operate and affect the intervention scheme.
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Figure 5. Change of (a) the peak of the infectious curve Imax/N and (b) the fraction of
total recovered population R∞/N with the fraction of identified infectious individuals
f for three different setups. The other mitigation parameters are set to their default
values (TP = 7, DT = 2, DQ = 2, Q = 14). The dashed lines represent unmitigated
scenarios.

the individuals to change their neighbors, or in other words, we fix the existing set
of connections between individuals. Since for that system the set of neighbors does
not change, isolating the infectious individuals and its neighbors amounts to effectively
removing the disease spreading center. At the same time, when we set d > 0 we allow
individuals to rewire their connections through their diffusion across the network, which
permits the infectious individuals to come into contact with many more susceptible
individuals, accelerating disease spreading.

To estimate the impact of each control parameter on the course of the disease
dynamics, we fixed all parameters to their standard values (see Table 1), and then
varied each one of them separately, measuring the peak of the infectious curve Imax/N

and the fraction of total recovered population R∞/N . First, we varied the fraction
of identified infections individuals: as is evident in Fig. 5, an increase in f drastically
reduces both fractions Imax/N and R∞/N . For the static setup, our results show that
the infection spread is entirely quelled for f ≥ 0.75 (and other parameters set at their
standard values). Similarly, as shown in Fig. 6, decreasing the testing period TP leads
to a significant drop in both Imax/N and R∞/N , and even halts the disease spread
completely for the static case when TP≤ 2 days. In contrast, variation of the testing
delay parameter DT does not affect the infection dynamics at all for the static case
and only influences the outbreak in networks that allow diffusive motility, c.f. Fig. 7.
As for the quarantine duration Q and the delay to quarantine DQ, the dynamical
network settings (d > 0) appear to be quite insensitive to variations in the parameters
Q and DQ, see Figs. 8 and 9. This observation suggests that continuous rewiring of
existing connections in a network renders the isolation of the neighbors of the infectious
individuals ineffective.

Thus far we have demonstrated that according to our mitigation scheme, varying
the fraction of identified infectious individuals f and the testing period TP influences
the course of the disease dynamics and its final outcome considerably. Therefore, to
summarize our quantitative parameter study data, we plotted three sets of heat map
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Figure 6. Change of (a) the peak of the infectious curve Imax/N and (b) the fraction
of total recovered population R∞/N with the testing period TP for different setups.
The other mitigation parameters are set to their default values (f = 0.5, DT = 2,
DQ = 2, Q = 14). The dashed lines represent unmitigated scenarios.
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Figure 7. Change of (a) the peak of the infectious curve Imax/N and (b) the fraction
of total recovered population R∞/N with the delay to testing DT for different setups.
The other mitigation parameters are set to their default values (f = 0.5, TP = 7,
DQ = 2, Q = 14). The dashed lines represent unmitigated scenarios.
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Figure 8. Change of (a) the peak of the infectious curve Imax/N and (b) the fraction
of total recovered population R∞/N with the quarantine duration for different setups.
The other mitigation parameters are set to their default values (f = 0.5, TP = 7,
DT = 2, DQ = 2). The dashed lines represent unmitigated scenarios.

plots in Fig. 10, one for each setup, where we have shown how the peak in the curve
of the fraction of infected individuals, the fraction of the total number of recovered
individuals at the end of the outbreak, and the time at which the infection peaks in the
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Figure 9. Change of (a) the peak of the infectious curve Imax/N and (b) the fraction
of total recovered population R∞/N with the delay to quarantine for different setups.
The other mitigation parameters are set to their default values (f = 0.5, TP = 7,
DT = 2, Q = 14). The dashed lines represent unmitigated scenarios.

population, are changing with f and TP, respectively. These graphical representations
indicate that for low values of f and high values of TP, the outbreak remains essentially
unmitigated for all three network settings that we have considered here. Moreover, the
peak time heatmaps for the extreme and dynamic setups appear to reveal a critical
line indicating the continuous non-equilibrium phase transition marking the threshold
separating the endemic (R0 > 1) and non-endemic (R0 < 1) states. For the static
case, the position of the critical line is not as clearly apparent from our data, since our
choice of the range for the mitigation parameters f and TP quickly quells the disease
proliferation in the system, as is observed in Figs. 5 and 6.

4. Discussion

We note that, for example, recent work by Kretzschmar et al. demonstrated that a
combination of non-pharmaceutical interventions, i.e., both physical distancing and
contact tracing can reduce the effective reproduction number below the epidemic
threshold [35]. Varying the testing and tracing coverage as well as testing and tracing
delays, the authors showed that testing delays can significantly increase the potential for
onward transmission. With no delay in testing, nearly 80% of transmission is averted
while only 5% is averted with a five day delay. They conclude that an advanced
contact tracing method via mobile app, which minimizes testing and tracing time
delays, is sufficient to quell the infection spread when the testing coverage exceeds
60%. Indeed, it has been claimed that more restrictive, widespread control measures
can be substantially alleviated if testing and contact tracing programs are implemented
effectively [36]. Similar to our finding, Grantz et al. determined that test effectiveness
constitutes a crucial parameter for containing infectious spreading. According to their
simulation results, at least 60% of the infectious population must be captured with
testing (assuming perfect quarantine) for spread of the infection to be brought below the
epidemic threshold. With more than 50% of infectious individuals identified, we observe
significant reductions in the peak of infections and the total number that becomes
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Figure 10. Heat map representations of pertinent outcomes for the three setups.
The heat map colors respectively represent (a) the peak in the curve of the fraction
of infected individuals, (b) the fraction of the total number of recovered individuals
at the end of the outbreak, and (c) the time (in days) at which the infection peaks in
the population. The fraction of identified infectious individuals (f) is varied along the
horizontal axis and the testing period (TP, in days) is varied along the vertical axis.
In all mitigated curves, quarantine duration of nearest neighbors, and delays between
test and isolation and between isolating positively tested individuals and quarantining
their direct contacts are held at their standard values (see Table 1). The rows show
the dynamic, static, extreme scenarios, respectively.
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infected during the epidemic (Fig. 5). In contrast, our results require a much larger
fraction of infectious individuals to be identified before the systems falls below the
epidemic threshold.

Our work assumes perfect adherence to quarantine, i.e., all neighbors of identified
infectious individuals are unable to interact with others for the defined quarantine
period. Importantly, even for perfect adherence to quarantine not all transmissions
are averted as some will occur prior to quarantine and isolation. Similar results were
reported by Quilty et al., who determined the amount of transmission potential during
quarantine or isolation, i.e., the integral of the infectivity curve over time spent in
quarantine and post-quarantine isolation, weighted by compliance [37]. They extensively
explored the effects of quarantine adherence and suggested that with lower adherence
to quarantine, as has been reported in the UK, only a small fraction of potential
transmission is averted [38]. Both our work and that of Quilty et al. [37] note that
quarantine periods of ten days rather than fourteen may be nearly as effective at averting
transmission assuming high compliance.

All three studies, Refs. [35, 36, 37], utilize variations of the well-known branching
process for stochastic modeling of the COVID-19 spread. However, similarly to other
SEIR-based analytic studies [39, 40, 41], these branching processes were not implemented
in a spatial or network setting. Therefore, these results do not account for potentially
decisive spatial correlations that emerge in realistic disease spreading. It is therefore
natural and relevant to ask next whether the infectious disease dynamics becomes
qualitatively altered if considered in spatially extended models. This question was
explored in the recent work by [13], where authors performed individual-based numerical
simulations of stochastic Susceptible-Infectious-Recovered (SIR) model variants on four
distinct spatially organized lattice and network architectures. They found that highly
connected networks closely follow mean-field SIR rate equations, while the disease spread
on a lattice and small-world network revealed marked correlation effects. A distinct
investigation confirms that the dynamical behavior of infection spreading on networks
with the same connectivity distribution could still differ, depending on the networks’
subtle construction details such as degree of clustering [42]. Following their results for
numerical simulations of stochastic Susceptible-Infectious-Recovered-Susceptible (SIRS)
model on a networks with exponential connectivity distribution, some quantities such as
the mean number of infected individuals at stochastic equilibrium change with the fine
details of the network structure, while others like the basic reproduction ratio R0 appear
to be completely determined by the network’s mean connectivity and the connectivity
distribution.

Furthermore, we emphasize that our results in this work focus on the effectiveness of
a periodic testing and quarantine regimen to contain the epidemic without implementing
a lockdown. Relaxing the stringency of social distancing and contact-reducing
interventions typically leads to a resurgence of the epidemic outbreak [43, 44, 45].
Recurrent second (and third) waves have occurred in many countries of our highly
interconnected globe over the past months; therefore, a continuous adjustment of
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the efficiency of combined non-pharmaceutical interventions (testing with isolation
and quarantine; lockdown) is required, depending on the population transfer between
different places.

5. Conclusion

From our individual-based numerical simulations of infectious disease spreading on
realistically motivated various small-world network architectures under partial control
through testing and isolation schemes and quarantine of nearest neighbors, we draw
the conclusion that, regardless of the simulation setup specifics and choice of network
graph structure, a targeted improvement of mitigation protocols through systematic
reduction of the testing period and maximization of the fraction of identified infectious
individuals constitutes the most effective way of mitigating epidemic outbreaks. We
demonstrated in our heatmap plots that deficiencies in test reliability and accuracy
can be compensated by increased testing frequency, thus pushing the system towards a
non-endemic state.

At the same time, delays in effecting isolation affect the disease spread only when
it is simulated on a dynamic network, while delay in quarantine, and shortening the
quarantine period itself, appear to have an impact only on static networks. Nevertheless,
our simulations demonstrate that these three delay parameters (DT, Q, DQ) are not
as sensitive in reducing the infection peak and the cumulative number of infected
individuals in the population; these variables should hence be considered with lower
priority for efforts to optimize testing mitigation protocols.
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Appendix: Simulation method

For a fully mixed system, the time evolution of a number of individuals in each state of
our modified compartmental SEAIR epidemic model can be prescribed by the following
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set of deterministic equations:
dS

dt
= −βIS

N
,

dE

dt
=

βIS

N
− αE,

dI

dt
= fαE − γI,

dA

dt
= (1− f)α− γA,

dR

dt
= γ(I + A).

The macroscopic mean-field reaction rates {β, α, γ} in these equations are related
to the stochastic reaction rates {r, b, a} used in the simulations in Fig. 1 in a generally
non-trivial manner. Below we show how the simulation reaction rates are approximately
related to the mean-field reaction rates. To find the exact numerical factors that enter
these relations, a renormalization analysis of the stochastic coarse-grained Langevin
equation that describes the epidemic spread on small-world network would be necessary
[46].

Microscopically, one can draw the following approximate relations between the
stochastic and the mean-field reaction rates:

• A susceptible individual i is exposed with a rate Ri ≈ rm/n ≈ β×[fraction of
infectious individuals], where m is the number of infectious neighbors (both short
and long-range) and n is the total number of neighboring sites. Since for parallel
sequential updates each individual is being picked only once, the probability that
the susceptible individual will become infected in a single Monte Carlo step is =
rm/n. We set the microscopic value of the infectious rate r = 0.6 to obtain R0 = 2.5

for our set of simulation parameters.
• An exposed individual becomes infectious symptomatic or asymptomatic with

reaction rates fb or (1 − f)b, respectively, which are related to the mean-field
reaction rates via b ≈ α, since both E → I and E → A are linear stochastic
processes.

• An infectious identified or unidentified individual recovers with the rate a ≈ γ,
since I → R and A → R are also linear processes.

The mean-field rate equations fail to capture the effect of fluctuations and
spatial and temporal correlations which play a decisive role in the propagation of the
infection. To properly account for these intrinsic fluctuations, we implement a stochastic
SEAIR epidemic model on a more realistic two-dimensional Newman–Watts small-world
network using the following individual-based Monte Carlo algorithm, which also takes
into account the unidentified infectious state A. All described stochastic rates {r, b, a}
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are implemented as probabilities that a given reaction will occur for the individual of
focus, but we refer to them as rates in our description since for parallel sequential
updates these reactions are attempted once for each individual per Monte Carlo step:

(1) Randomly distribute N individuals on the underlying two-dimensional 1000×1000
square lattice with periodic boundary conditions and with a fraction ϕ of long-
distance links (c.f. Fig. 2), subject to the restriction that each site may only contain
at most one individual. A small fraction of the individuals are initially set to be
infectious (half of them in the I state and the other half in the A state), while the
remainder of the population is initialized as susceptible to the infection.

(2) Perform parallel updates, i.e., sequentially update the state of each site starting
from the first one, by maintaining two state vectors to register the previous state
x and the current state X of all sites. The current state X is obtained from the
previous state x by sequentially carrying out the following actions:
(a) For the dynamic and static setups, if the selected site xi contains a susceptible

S, count the number of infectious individuals (both I and A) among all its
short-distance and long-distance neighbors, and update Xi to E, i.e., perform
S → E reaction with probability 1 − (1 − r/n)m, where m is the number of
S-I and S-A pairs, and n is the total number of neighboring sites. In contrast,
for the extreme setup, the S → E reaction is performed with probability 1 if
m ≥ 1. Likewise, in the following, Xi is tacitly updated from the status of x.

(b) If the selected site contains an exposed individual E, perform the E → I or
E → A reaction with probabilities fb and (1− f)b, respectively.

(c) If the selected site contains an infectious individual, perform the I → R or
A → R reaction with probability a.

(d) For the dynamic and extreme setups, if the selected site xi is occupied by any
individual after any of the reactions mentioned above have been attempted,
a hopping direction is picked randomly among adjacent and long-distance
neighbors. After the hopping direction is picked, if a connected lattice site
along the hopping direction is empty, i.e., xj = 0, then the chosen individual
is moved to that site with probability d = 1. However, if the lattice site along
the hopping direction is occupied by any individual, the hopping reaction is
not performed.

(e) After one lattice sweep (one Monte Carlo step), X is assigned to x.
(3) Repeat the procedures in item 2 for a pre-selected total number of Monte Carlo

steps.

The origin of the functional form of the probability for a susceptible individual to be
infected comes from the fact that for the parallel sequential updates the normalized
probability of not catching the infection from an infectious neighbor is (1 − r/n). The
probability of not getting infected from m infectious neighbors is (1 − r/n)m, and the
probability of being infected then reads 1 − (1 − r/n)m ≈ mr/n. Based on the above
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implementation of the simulation algorithm, more details for testing, isolation, and
quarantine etc. are then added as described in the text.

We emphasize that the details of the algorithmic implementation (e.g. algorithmic
update rules) only quantitatively change the results, but do not qualitatively change the
simulation outcomes. For example, we perform an infection reaction only when we pick
a susceptible individual. A different simulation algorithm could perform the infection
reaction when an infectious individual is picked. Such algorithms lead to equivalent
results, assuming an identical R0 is chosen, which may necessitate slight adjustments
to the rates, r, a, and b.

References

[1] Kermack W O, McKendrick A G and Walker G T, 1927 Proceedings of the Royal Society of London.
Series A 115 700–721

[2] Brauer F, 2017 Infectious Disease Modelling 2 113–127
[3] Keeling M J and Eames K T, 2005 Journal of The Royal Society Interface 2 295–307
[4] Anderson R and May R 1992, Infectious Diseases of Humans: Dynamics and Control (Oxford

University Press, Oxford)
[5] Keeling M and Rohani P 2011, Modeling Infectious Diseases in Humans and Animals (Princeton

University Press)
[6] Murray J D 2002, Mathematical Biology, Vols. I + II (Springer, New York, 3rd ed)
[7] Täuber U C 2014, Critical Dynamics – A Field Theory Approach to Equilibrium and Non-

Equilibrium Scaling Behavior (Cambridge University Press, Cambridge)
[8] Lindenberg K, Metzler R and Oshanin G (eds) 2019, Chemical Kinetics: Beyond The Textbook

(World Scientific Publishing Company)
[9] Newman M E J, Watts D J and Strogatz S H, 2002 Proceedings of the National Academy of

Sciences 99 2566–2572
[10] Newman M E J, 2002 Phys. Rev. E 66(1) 016128
[11] Newman M E J and Watts D J, 1999 Phys. Rev. E 60(6) 7332–7342
[12] Eubank S, Eckstrand I, Lewis B, Venkatramanan S, Marathe M and Barrett C L, 2020 Bulletin

of Mathematical Biology 82 52–59
[13] Mukhamadiarov R I, Deng S, Serrao S R, Priyanka, Nandi R, Yao L H and Täuber U C, 2021

Scientific Reports 11 130–138
[14] Pastor-Satorras R and Vespignani A, 2001 Phys. Rev. Lett. 86(14) 3200–3203
[15] Pastor-Satorras R and Vespignani A, 2001 Phys. Rev. E 63(6) 066117
[16] Salathé M, Kazandjieva M, Lee J W, Levis P, Feldman M W and Jones J H, 2010 Proceedings of

the National Academy of Sciences 107 22020–22025
[17] Eames K, Bansal S, Frost S and Riley S, 2015 Epidemics 10 72–77
[18] Nishiura H, Kobayashi T, Miyama T, Suzuki A, Jung S, Hayashi K et al., 2020 International

Journal of Infectious Diseases 94 154–155
[19] Tindale L C, Stockdale J E, Coombe M, Garlock E S, Lau W Y V, Saraswat M et al., 2020 eLife

9 e57149
[20] Kraemer M U G, Yang C H, Gutierrez B, Wu C H, Klein B, Pigott D M et al., 2020 Science 368

493–497
[21] Fu H, Xi X, Haowei Wang H, Boonyasiri A, Wang Y, Hinsley W et al. 2020 The COVID-19

epidemic trends and control measures in mainland China Tech. Rep. Imperial College London
[22] Ferguson N M, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M et al. 2020 Impact of

non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand
Tech. Rep. Imperial College London

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2021. ; https://doi.org/10.1101/2020.10.21.20217331doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20217331
http://creativecommons.org/licenses/by-nc-nd/4.0/


Requirements for the containment of COVID-19 disease outbreaks 19

[23] Delamater P L, Street E J, Leslie T F, Yang Y and Jacobsen K H, 2019 Emerging Infectious
Diseases 25 1–4

[24] Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico M S et al., 2020 Nature Medicine
26 1417–1421

[25] Hunter E, Mac Namee B and Kelleher J, 2018 PLOS ONE 13 1–35
[26] Qin J, You C, Lin Q, Hu T, Yu S and Zhou X H, 2020 Science Advances 6 1–7
[27] He X, Lau E H Y, Wu P, Deng X, Wang J, Hao X et al., 2020 Nature Medicine 26 672–675
[28] McAloon C, Collins Á, Hunt K, Barber A, Byrne A W, Butler F et al., 2020 BMJ Open 10 1–9
[29] Li R, Pei S, Chen B, Song Y, Zhang T, Yang W and Shaman J, 2020 Science 368 489–493
[30] Petersen E, Koopmans M, Go U, Hamer D H, Petrosillo N, Castelli F et al., 2020 The Lancet

Infectious Diseases 20 e238–e244
[31] Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J et al., 2020 Science 369

208–211
[32] Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y et al., 2020 New England Journal of Medicine

382 1199–1207
[33] Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R et al., 2008 PLOS Medicine 5

1–1
[34] Leung K, Jit M, Lau E H Y and Wu J T, 2017 Scientific Reports 7 7974–7986
[35] Kretzschmar M E, Rozhnova G, Bootsma M C J, van Boven M, van de Wijgert J H H M and

Bonten M J M, 2020 The Lancet Public Health 5 e452–e459
[36] Grantz K H, Lee E C, D’Agostino McGowan L, Lee K H, Metcalf C J E, Gurley E S and Lessler

J, 2021 PLOS Medicine 18 1–16
[37] Quilty B J, Clifford S, Hellewell J, Russell T W, Kucharski A J, Flasche S et al., 2021 The Lancet

Public Health 6 e175–e183
[38] Smith L E, Potts H W W, Amlôt R, Fear N T, Michie S and Rubin G J, 2021 BMJ 372 1–13
[39] He S, Peng Y and Sun K, 2020 Nonlinear Dynamics 101 1667–1680
[40] Mwalili S, Kimathi M, Ojiambo V, Gathungu D and Mbogo R, 2020 BMC Research Notes 13

352–357
[41] Carcione J M, Santos J E, Bagaini C and Ba J, 2020 Frontiers in Public Health 8 230–243
[42] Ames G M, George D B, Hampson C P, Kanarek A R, McBee C D, Lockwood D R et al., 2011

Proceedings of the Royal Society B: Biological Sciences 278 3544–3550
[43] Priyanka and Verma V 2020 (arXiv 2006.14373)
[44] Bertozzi A L, Franco E, Mohler G, Short M B and Sledge D, 2020 Proceedings of the National

Academy of Sciences 117 16732–16738
[45] Dye C, Cheng R C H, Dagpunar J S and Williams B G, 2020 Royal Society Open Science 7 201726
[46] Täuber U C, 2012 Journal of Physics A: Mathematical and Theoretical 45 405002

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2021. ; https://doi.org/10.1101/2020.10.21.20217331doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20217331
http://creativecommons.org/licenses/by-nc-nd/4.0/

