Engineered phage endolysin eliminates *Gardnerella* in bacterial vaginosis without

damaging the healthy vaginal microbiome

Christine LANDLINGER, Dr. a, Lenka TISAKOVA, Dr. a, Vera OBERBAUER, Ms. a, Timo
SCHWEBS, Mr. a, Agieszka LATKA, Dr. b, Leen VAN SIMAERY, Ms. b, Mario
VANEECHOUTTE, Prof. b, Alexander GUSCHIN, Dr. c, Sonja SWIDSINSKI, Dr. d,
Alexander SWIDSINSKI, Dr. e,f, Lorenzo CORSINI, Dr. a

aPhagoMed Biopharma GmbH, Vienna Biocenter, Austria
bLaboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine & Health Sciences, Ghent University, Flanders, Belgium
cMoscow Scientific and Practical Center of Dermatovenerology and Cosmetology, Moscow, Russia
dMDI Limbach Berlin GmbH, Berlin, Germany
eMedizinische Klinik, Charité CCM, Humboldt Universität, Berlin, Germany
fInstitute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia

Correspondence to:

Lorenzo Corsini

PhagoMed Biopharma GmbH

Leberstraße 20, 1110 Wien, Austria

Tel: +43 6765797380

e-mail: Lorenzo.corsini@phagomed.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Disclosure

Conflicts of interests have been declared by the following authors: CL, LT, VO, are employees of PhagoMed Biopharma GmbH at the time of the study and LC holds shares in PhagoMed Biopharma GmbH and is the inventor on a patent application related to the work described here. The research of AS, AL, LVS and MV has been supported financially by PhagoMed Biopharma GmbH.

Funding

This study was supported by the Austrian Research Promotion Agency (FFG).

Ethics approval

The study was approved by the Charité ethical committee EA1/088110.

Word count of the abstract

343 words

Word count of the main text

5434 words
41 Keywords: Gardnerella, prophage, endolysin, bacterial vaginosis, polymicrobial biofilm,
42 genus-specificity, antimicrobial resistance, alternative to antibiotic treatment
Background - Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome in which the normally predominant lactobacilli are replaced by other bacterial species. Initiated by strains of the bacterium *Gardnerella*, a characteristic biofilm forms on the vaginal epithelium, explaining the typical presence of clue cells. This biofilm contributes to the resilience of the bacteria to antibiotic treatment, which may explain the frequent recurrence of BV.

Objective - In this study, we investigate whether a therapy based on bacteriophage endolysins which specifically lyse *Gardnerella*, in particular the drug candidate PM-477, might be a promising alternative to broad-spectrum antibiotics and antiseptics.

Study design - To identify *Gardnerella* specific endolysins, we searched for endolysin-encoding sequences in regions of *Gardnerella* genomes that are of prophage origin. This search identified fourteen homologous genes predicted to encode 1,4-beta-N-acetylmuramidase-type endolysins. When expressed in *Escherichia coli* and purified, the recombinant proteins demonstrated strong bactericidal activity against four different *Gardnerella* species. By shuffling the N-terminal catalytic domains and C-terminal cell wall-binding domains between the homologues, we produced 81 chimeric endolysins. These endolysins were tested for their activity and specificity *in vitro* and *ex-vivo* on vaginal samples from fifteen BV positive patients. Fluorescence in situ hybridization was used for visualization.

Results - Several engineered endolysins were 10-fold more active than the most active wild-type enzymes. When tested against a panel of 20 *Gardnerella* strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13–8 µg/ml. PM-477 had no effect on *Lactobacillus* strains or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested on vaginal samples from fifteen patients with either first time or recurring bacterial vaginosis. In fourteen cases, PM-477 killed the *Gardnerella* bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome.
Conclusion - The high selectivity and effectiveness in eliminating *Gardnerella*, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising drug candidate and an alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.
Background

Bacterial vaginosis (BV) is a very common disorder in women of reproductive age, with a prevalence estimated at 10–30% worldwide. It is caused by an imbalance in the normal, healthy microbiome of the vagina that results mostly in discharge, odor and irritation. BV is associated with an increased risk of preterm delivery and low birthweight, infertility and early spontaneous abortion, and it is also a high risk factor for contracting sexually transmitted diseases, including HIV. Besides these potentially severe physiological consequences, frequently recurring and strongly symptomatic BV can have a huge negative impact on some women’s quality of life and psychological wellbeing.

The healthy vaginal microbiome is characterized by a low diversity and uniform colonization by a few species of *Lactobacillus*. In BV, the imbalance in the vaginal microbiome is represented predominantly by the loss of beneficial lactobacilli and overgrowth of bacteria such as *Gardnerella, Prevotella, Atopobium, and Sneathia* and *Lactobacillus iners*. The current model of the etiology of BV focuses on the importance of *Gardnerella* species. It postulates that virulent strains of *Gardnerella* form an adherent biofilm on the vaginal epithelium in which other species can proliferate, resulting in a polymicrobial biofilm. This adherent biofilm is only weakly affected by the innate immune response, and the interplay with the host immune system is only partially understood. BV development may be triggered by sexual transmission of a mix of bacteria including *Gardnerella*, which can adhere to epithelial cells in the presence of lactobacilli. It has been suggested that, unlike strictly anaerobic bacteria associated with BV, *Gardnerella*, a facultative anaerobe, can tolerate the high redox potential created by the *Lactobacillus*-dominated healthy vaginal microbiome. The metabolism of *Gardnerella spp.*, in turn, results in a local increase in pH and decrease of the redox potential, favoring growth of iron-dependent anaerobes and suppression of lactobacilli. Recently, the species previously known as *Gardnerella vaginalis* was shown to comprise at least 13 different species of which four were named. Clinical studies indicated that various *Gardnerella* species may...
contribute differently to the pathogenesis of BV. A higher abundance of *G. vaginalis* and *G. swidsinskii* was found to be related with vaginal symptoms of abnormal odor and discharge and the relative abundances of *G. vaginalis*, *G. swidsinskii*, and *G. piottii* but not *G. leopoldii* were strongly associated with BV microbiome\(^{24,25}\).

The therapies used currently to treat BV are broad-spectrum antibiotics, mainly metronidazole (MDZ), tinidazole (TDZ), or clindamycin (CLI), antiseptics (such as Octenisept\(^{®}\), based on the detergent-like octenidin), probiotics (preparations of lactobacilli), and prebiotics (lactate gels).

Although all of these treatments may have some beneficial effects, none has proven to have satisfactory efficacy in preventing recurrence. Antibiotics are the most effective in quickly reducing the symptoms, but they are associated with a recurrence rate of up to 60% within six months of treatment\(^{26}\). One reason may be the presence of an antibiotic-tolerant biofilm in BV that shelters a reservoir of persister cells\(^{26,27}\). Antibiotic treatment not only often fails to eradicate the biofilm, but can also lead to further dysbiosis of the vaginal microbiome and can promote candidiasis\(^{28}\). Moreover, CLI can trigger pseudomembranous colitis, cause antibiotics associated diarrhea and other gastro-intestinal side effects\(^{29,30}\). Also, *Gardnerella* strains frequently develop resistance to MDZ and TDZ\(^{31}\). Antiseptic treatments for BV have been less well studied than antibiotics but they are similar with regard to their effectiveness and are also associated with high recurrence rates and deterioration of the healthy vaginal microbiome\(^{16,32}\).

Studies of probiotics, and prebiotics are generally inconclusive: they appear not to result in lasting benefits\(^{26}\). Vaginal microbiome transplantation after a course of antibiotic treatment had a promising effect in one study of five patients, but the approach is very resource-intensive and hardly scalable\(^{33}\). In conclusion, novel treatments that offer an alternative to antibiotics or that can be used in combination with antibiotics, are urgently needed.

Bacteriophage-encoded peptidoglycan hydrolases – also called endolysins or ‘enzybiotics’ – are a promising alternative to antibiotics\(^{34,35}\). Produced towards the end of the lytic cycle in phage-infected bacteria, these enzymes cleave peptidoglycan in the bacterial cell wall, thus
lysing the cells and releasing the progeny phages. They have been shown to be particularly effective against Gram-positive bacteria, which lack the Gram-negative outer membrane that might limit accessibility to the cell wall peptidoglycan. Endolysins have several advantages over antibiotics; not least, their very narrow host spectrum, which is usually limited to a single genus or even a single species 36, and their low propensity to generate resistance in their hosts 37. Bacteriophages that invade Gram-positive bacteria encode a variety of highly diverse endolysins. In general, they have a modular structure consisting of one or more enzymatically active domain (EAD)s connected by a flexible interdomain linker to at least one cell wall-binding domain (CBD), typically located at the C-terminus of the protein. Both domains can contribute to the specificity for a given genus or species of bacteria 38.

Although no bacteriophages that infect Gardnerella species have yet been isolated, prophages encoding for endolysins are present in the Gardnerella genomes. Phage endolysins are a potentially novel and promising approach to treat BV because Gardnerella, now generally acknowledged as the central agent in the etiology of BV, has a thin cell wall. To develop endolysins specific for Gardnerella, we used an in silico approach to identify the genes encoding endolysins. We cloned and sequenced 14 such genes, demonstrated the lytic activity and specificity of purified recombinant proteins for Gardnerella spp. and engineered an enzyme with enhanced activity by domain shuffling. Moreover, we demonstrate the efficacy and specificity of this engineered endolysin on biofilms of Gardnerella in samples from patients with BV.

Material and Methods

Bacterial strains and culture conditions

Atopobium vaginae, Gardnerella spp., Lactobacillus iners, Mobiluncus spp, Streptococcus agalactiae, Prevotella bivia, and and were obtained from the Laboratory of Bacteriology, University of Ghent, Belgium. Other Lactobacillus spp. were obtained from the German
Collection of Microorganisms (DSMZ). *Gardnerella* strains were either grown on chocolate (Choc) agar plates (Becton Dickinson) under anaerobic conditions in an anaerobic chamber equipped with anaerobic atmosphere generation bags (Sigma Aldrich) for 24–48 h. *Lactobacillus* spp. were cultured on Schaedler plates supplemented with vitamin K1 and 5 % sheep blood (Becton Dickinson), anaerobically at 37 °C for 24–48 h. *A. vaginae, M. curtisii, M. mulieris, S. agalactiae,* and *P. bivia* were either grown on Columbia blood agar plates, supplemented with 5 % sheep blood (Becton Dickinson) or Schaedler agar plates supplemented with vitamin K1 and 5 % sheep blood, anaerobically at 37 °C for 48 h. *Escherichia coli BL21(DE3) cells* (New England Biolabs) were used for protein expression and were grown on Luria Bertani (LB) agar plates (Becton Dickinson) or in LB (Luria/Miller) broth (Carl Roth) supplemented with appropriate selection antibiotic, aerobically at 37 °C. Liquid cultures of all species were done in New York City (NYC) broth III (10 mM HEPES (Sigma Aldrich), 15 g/L Proteose Peptone (Sigma Aldrich), 3.8 g/L yeast extract (Thermo Fisher Scientific), 86 mM sodium chloride (Carl Roth), 28 mM α-D-glucose (Sigma Aldrich)), supplemented with 10 % horse serum (HS) (Thermo Fisher Scientific).

Identification of Gardnerella genes encoding endolysin within prophage regions

Prophage regions in *Gardnerella* genomic sequences were identified by using PHASTER (https://phaster.ca/) to scan translated nucleotide sequences of *Gardnerella* genome entries in the NCBI database (https://blast.ncbi.nlm.nih.gov). Protein domain searches for endolysins were performed using INTERPRO (https://www.ebi.ac.uk/interpro/) to identify predicted enzymatically active domains in the corresponding amino acid sequence for each identified phage endolysin.

Gene cloning and overexpression of phage endolysins

Briefly, DNA of genes encoding wild-type or genetically engineered endolysins fused to a His6-tag was synthesized, cloned into the expression vector pET29b(+) and expressed in *E. coli BL21(DE3).* Protein expression was induced by TB (Terrific Broth Medium; 24 g/L Bacto
Yeast Extract (Becton Dickinson), 12 g/L Bacto Tryptone (Becton Dickinson), 0.4% glycerol (87%; Applichem), 0.02 mM potassium phosphate monobasic (Sigma Aldrich), 0.07 mM di-potassium hydrogen phosphate (Merck) and 1.5% α-lactose monohydrate (Carl Roth), by incubating at 25 °C for 24 h, with shaking at 250 rpm/min. The overexpressed proteins were purified by affinity chromatography on a nickel–nitrilotriacetic acid (Ni–NTA) affinity matrix (HISTrap column) eluted with 50 mM MES (Carl Roth) pH 7, 150 mM NaCl (Carl Roth), 250 mM imidazole (Carl Roth) and followed by size exclusion chromatography. Fractions were pooled and dialyzed against MES buffer (50 mM MES pH 5.5, 100 mM NaCl, 8 mM MgSO4 (Sigma Aldrich)). Protein concentration was determined at OD 260/280 nm or by using the Pierce™ BCA (bicinchoninic acid) protein assay kit (Thermo Fisher Scientific).

Culture-based assessment of bactericidal activity

Bacterial suspensions (OD600 of 0.1, corresponding to approximately 10^7–10^8 CFU/ml) were prepared by scraping the cells from conflently grown agar plates and diluting them into NYCIII+ 10% HS, pH 5.5. Reactions were performed in triplicate by mixing 10 µl of endolysin (200 µg/ml) with 90 µl bacterial suspension in the wells of a 96-well plate. Ten µl MES buffer without the endolysin was used as a control. The 96-well reaction plate was incubated anaerobically at 37 °C for 5 h. Tenfold dilution series (10^-1 to 10^-6) of the cell reaction mixtures were prepared in NYCB+ 10% HS and 2 µl of each dilution were spotted onto Choc agar plates. After anaerobic incubation at 37 °C for 48 h, colonies were counted, CFU/ml calculated, and the log10 reduction compared to MES buffer treated control was determined.

MIC assessment

The minimum inhibitory concentration (MIC), which is a standard measure of the activity of antimicrobials, was determined according to the Clinical and Laboratory Standards Institute protocol (2018) Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria 39. Bacterial suspensions of 10^5 to 10^6 CFU/ml in NYCIII+ 10% HS were treated with a 1:2 dilution series of either PM-477 (starting concentration 64 µg/ml) or the antibiotics...
metronidazole (Gatt-Koller), tinidazole (Sigma Aldrich), or clindamycin (Clindamycin hydrochloride, Sigma Aldrich), starting with a concentration of 128 µg/ml and twofold dilution down to 0.0625 µg/ml. Controls for growth in the absence of antimicrobials were also included. OD$_{620}$ was recorded by microplate reader (Tecan) after incubation at 37 °C for 48 h or, for some fast-growing strains, after incubation for 24 h, and compared to t=0 values.

Phase contrast microscopy

Dense bacterial suspensions were prepared in NYIII+ 10 % HS either as *Gardnerella* monocultures or as a co-cultures of *Gardnerella* and *Lactobacillus* strains at final OD$_{600}$= 4 for each strain. Bacterial mixtures were centrifuged at 3,800 x g for 7 min at room temperature in a benchtop centrifuge (Heraeus Instruments, Biofuge Pico). Supernatants were removed and cell pellets were resuspended in 50 µl of PM-477 (460 µg/ml) or in MES buffer alone as a negative control and incubated for 5 h at 37 °C under anaerobic conditions. Subsequently, 5 µl of each bacterial suspension were placed on a glass slide, covered with a glass coverslip and observed by phase contrast microscopy (Olympus BX41 microscope, magnification 1000x).

For the comparison of bacteriolytic and bactericidal effects, bacterial suspensions of *Gardnerella swidsinskii* and *Gardnerella vaginalis* were prepared in NYIII+ 10 % HS at a final OD$_{600}$ = 1. Bacterial suspensions of 50 µl were centrifuged at 3,800 x g for 7 min at room temperature in a benchtop centrifuge (Heraeus Instruments, Biofuge Pico). Supernatants were removed and pellets were resuspended in 50 µl of MES buffer containing PM-477 at 400 µg/ml, 200 µg/ml, 100 µg/ml, 50 µg/ml or 25 µg/ml, or in MES buffer alone as a negative control, and incubated for 5 h at 37 °C in anaerobic conditions. Subsequently, 5 µl of each bacterial suspension were observed by phase contrast microscopy as above. To determine viability, 10 µl of the reaction mixture was serially diluted and spotted onto Choc agar plates. After incubation at 37 °C for 48 h, the colonies were counted and CFU/ml was calculated.

Lytic effects of PM-477 and Octenisept® on ex vivo BV patient samples as detected by fluorescence in situ hybridization (FISH) microscopy
Vaginal samples were collected from randomly selected 24–49 year-old Caucasian women who were previously diagnosed with BV according to the Amsel criteria. In addition, the presence of clue cells (epithelial cells covered with cohesive Gardnerella bacteria) was determined by FISH microscopy. Fresh vaginal smears were collected with a swab and put in ESwab™ 493C02 pre-filled vials (COPAN Diagnostics). The vials were vortexed gently, resulting in a suspension that contained epithelial cells and vaginal bacteria. Four consecutive vaginal smears from each patient were pooled. The effects of 0.2, 2, 20 and 200 µg/ml of PM-477 after 2, 6, and 24 h, respectively, were tested either at room temperature or 36 °C. Since the most pronounced lytic effect on Gardnerella was observed after 24 h exposure to 200 µg/ml PM-477 at 36 °C (Supplementary Table 1), this condition was used for further studies. Subsequently, vaginal swabs from 15 BV patients were collected, aliquoted, and mixed 1:1 (v/v) with 400 µg/ml PM-477 (final concentration of 200 µg/ml) or with MES buffer as a negative control, or mixed 1:20 (v/v) with the disinfectant Octenisept® (Schülke) and incubated for 24 h at 36 °C. Untreated samples were also included in the analyses as baseline controls. The samples were fixed with Carnoy solution (alcohol/chloroform/acetic acid 6/3/1 by volume). Fields of 10 mm x 10 mm were marked on SuperFrost slides (Langenbrinck, Emmendingen, Germany) with a PAP pen (Kisker-Biotech, Steinfurt, Germany). Five µl aliquots of vortexed, fixed vaginal smear sample were dropped onto the marked field. The slides were dried for 60 min at 50 °C before FISH analysis.

For multicolor FISH analyses, we used the Gard662 Gardnerella-specific DNA hybridization probe and the universal bacterial probe Eub338. Oligonucleotide probes were synthesized with a fluorescent dye (Cy3 or Cy5). The hybridization was performed at 50 °C as previously described. The probe Ato291 was used for Atopobium, Liner23-2 for L. iners, and Lcrisp16-1 for L. crispatus. DAPI was used to visualize the vaginal epithelial cells (microphotographs not shown). Changes in density and distribution of microbial species were monitored by using a Nikon Eclipse 80i fluorescence microscope, a Nikon SHG1 camera and accompanying
software (Nikon, Tokyo, Japan). To avoid dispersion related biases (the thickness of smears on the glass slide and the microbial distribution is uneven), bacteria were enumerated for representative areas containing 10 epithelial cells as follows. For bacteria in low densities (e.g. lactobacilli), larger areas, including at least 10 microscopic fields were evaluated and mean cell numbers were expressed in relation to 10 epithelial cells. In areas with high local bacterial concentrations (e.g. in patches of biofilms), where cells are adjacent and in part overlapping, each 10 µm x 10 µm area covered with bacteria was counted as 500 bacterial cells. The numbers were rounded to full 100s.

Statistical analysis

Where appropriate, data were log-normalized prior to applying statistical tests (e.g. for CFU/ml values, and as indicated in the figure legends). When only two groups were compared, the unpaired two-tailed Student’s t-test was used as indicated in the respective figure legends. Multiple groups were compared by two-tailed one-way ANOVA tests. The software used for statistical analyses was GraphPad Prism8. Differences between groups were considered statistically significant when $P \leq 0.05$.

Results

Gardnerella genomes contain prophage genes that encode active endolysins

Although no bacteriophages of *Gardnerella* species are known, multiple *Gardnerella* genomes that have been sequenced contain DNA regions that are predicted to be of prophage origin 44,45. To identify endolysins that might target specifically *Gardnerella*, we used Basic Local Alignment Search Tool (BLAST) to search for sequences with similarities to known endolysin genes in the prophage regions of published *Gardnerella* genomes. A total of 14 genes were identified that encoded 1,4-beta-N-acetylmuramidases, with sequence similarity between 87 to 98 %, when compared to each other. Twelve genes encode a 306 residues protein whereas two encode similar proteins that lack 55 residues at the C-terminus (**Supplementary Table 2**). The
sequences all encode domain structures common to all known endolysins: an N-terminal EAD of the glycoside hydrolase family 25 (GH25) and a CBD, comprising two CW_7 motifs, homologous to the CBD of Cpl-7 lysozyme, encoded by the Streptococcus pneumoniae bacteriophage Cp-7. The sequences of these putative endolysins are 90–94% identical to some proteins encoded by the genomes of Atopobium and Bifidobacteriaceae but <70 % identical to other endolysins, which may already indicate a high specificity for the genus Gardnerella (data not shown).

We expressed the 14 predicted endolysin genes (EL1–EL14) as recombinant proteins in E. coli, and ten (EL 1–7 and EL 10–12) yielded sufficient protein to perform further experiments. Their lytic activities were tested on representatives of the four Gardnerella species: G. vaginalis (ATCC 14018T), G. leopoldii (UGent 09.48), G. piotii (UGent 18.01T), and G. swidsinskii (GS10234). Bacterial suspensions of 10^7-10^8 CFU/ml were incubated with each of the 10 endolysins (at 20 µg/ml) or with buffer as a negative control. After a 5 h incubation, we plated the suspensions and quantified the surviving bacteria, measured as colony-forming units (CFU)/ml (Figure 1). Most of the endolysins reduced the CFU/ml of all four Gardnerella species by multiple log\textsubscript{10} units. Only EL5 and EL6 (one of the two truncated proteins mentioned above) were completely inactive in this assay. EL3 and EL10 were the most active against all four Gardnerella species tested, G. swidsinskii GS10234 being the most susceptible with a > 5 log\textsubscript{10}-fold reduction in CFU/ml (Figure 1).
Figure 1: Wild-type endolysins are highly active against four different Gardnerella species. Suspensions of G. vaginalis (ATCC 14018T), G. leopoldii (UGent 09.48), G. pti (UGent 18.01T), and G. awidsinskii (GS10234) were treated with recombinant endolysins prepared by expression of the naturally occurring genes (EL1–EL7 and EL10–EL12) (see Methods) and the log$_{10}$ reduction in viable CFU/ml was determined. The log$_{10}$ reduction was calculated by comparing the CFU/ml after endolysin treatment with that of the buffer control (w/o). LOD indicates the limit of detection.

Engineering of a Gardnerella endolysin with enhanced bactericidal activity

To increase the lytic activity of the endolysins identified above, we used domain shuffling 46,47 to recombine systematically ten of the EADs encoded by the newly identified endolysin genes EL 1–7 and EL 10–12 (annotated as H1–7 and H10–12) with nine CBDs encoded by EL1–5, EL7 and EL10–12 (annotated as B1–5, B7, and B10–12; since EL6 was inactive, we did not use its truncated CBD). All of the 81 resulting chimeric proteins were expressed in E. coli and purified by means of their N-terminal His tags. We tested these chimeric endolysins for their bactericidal activity on the abovementioned Gardnerella strains and compared their activity to that of the 10 wild-type endolysins (Figure 2).
Figure 2: Domain swapping increases the lytic activity of engineered endolysins. Eighty-one constructs comprising all possible combinations of the EAD (H) and CBD (B) domains of 10
wild-type endolysins were tested on four different *Gardnerella* species as in Figure 1. The values represent the log\(_{10}\) of the ratio of viable cells (CFU/ml; mean of triplicate assays) in endolysin-treated suspensions of *Gardnerella* compared to buffer control-treated suspensions of the species, as indicated. Blue shades indicate higher bactericidal effect (high reduction in viable CFU/ml) compared to the wild-type endolysin, red shades indicate lower bactericidal effect, and white coloring indicates equal reduction compared to wild-type endolysin (boxed in black). The endolysin candidate with the highest average reduction over four *Gardnerella* species is boxed in yellow.

Overall, *G. swidsinskii* GS10234 was most sensitive to most endolysins – wild-type and chimeric. Two of the chimeric endolysins, H2B10 and H2B11, were more active than any wild-type enzyme against all four *Gardnerella* strains, whereas others were more active than any wild-type endolysin against some strains (e.g. H2B12, H5B3, H5B4, H7B3 and H7B11) (Figure 2). Overall, chimeric endolysins combining domains H2, H7 or H10 with domains B10, B11 or B12 showed highest bactericidal activity. The combination of H2 and B10 was most effective against any of the four strains and reduced their viability by an average of 4.3 log\(_{10}\) CFU/ml. We designated this construct PM-477 and chose it for further development as a candidate for the treatment of BV.

Specificity of PM-477 for the genus Gardnerella

We characterized the activity and specificity of PM-477 against panels of 13 *Gardnerella* strains of the four species described above, 12 strains of vaginal lactobacilli (including *L. crispatus*, *L. jensenii* and *L. gasseri*, selected as representative of the healthy vaginal microbiome) and nine other species typically found in BV, by using the quantitative assay for bacterial viability described above. The engineered endolysin caused a 4–5 log\(_{10}\)-fold loss of viability in three *Gardnerella* strains (Gs_GS10234, Gs_GS9838-1\(^7\), Gp_UGent 18.01\(^1\)), a 2–
3 log\textsubscript{10}-fold loss of viability in five strains (Gv\textsubscript{ATCC} 14018T, Gv\textsubscript{BV50.1}, Gl\textsubscript{UGent} 09.48, Gp\textsubscript{P80275}, Gs\textsubscript{BV7.1}), and a 1–2 log\textsubscript{10}-fold loss of viability in a further five strains (Gv\textsubscript{UGent} 09.07, Gv\textsubscript{UGent} 09.01, Gl\textsubscript{BV13.2}, Gl\textsubscript{BV86.5}, Gp\textsubscript{UGent} 21.28) (Figure 3A).

Effect of PM-477 on *Gardnerella* spp.

Effect of PM-477 on *Lactobacillus* spp.
Figure 3: PM-477 is highly specific for *Gardnerella* and spares lactobacilli and other BV-associated microbiome components. (a) *Gardnerella* strains, (b) *Lactobacillus* spp., (c) and *Mobiluncus curtisi*, *Mobiluncus mulieris*, *Streptococcus agalactiae*, *Atopobium vaginae* and *Prevotella bivia* were tested for their susceptibility to PM-477 (20 µg/ml for 5h; treated, black squares) and compared to buffer control-treated (untreated, white circles) bacteria suspensions.

For statistical purposes CFU/ml values from the untreated and the treated groups were log-normalized prior to applying the unpaired two-tailed multiple Student’s *t*-test. *P*-values ≤ 0.05 were considered statistically significant; **P** ≤ 0.01, ***P** ≤ 0.001, ****P** ≤ 0.0001.

The same treatment of lactobacilli, by contrast, had no statistically significant effect on the viability of any of the 12 strains tested (Figure 3B). It also had no effect on strains of *Atopobium vaginae*, *Mobiluncus mulieris*, *Prevotella bivia* and *Streptococcus agalactiae*, and had only a minor effect one of three strains tested of *Mobiluncus curtisi* (Figure 3C). (In the cases of *Atopobium vaginae* and *Prevotella bivia* the cells either grew poorly or died rapidly upon
transfer from agar plates to suspension, even without treatment.) Thus, the engineered endolysin PM-477 is highly selective for *Gardnerella*: it kills strains of each of the four main species \(^23\), without harming beneficial lactobacilli or other species typical of the vaginal microbiome. The genus-specific bacteriolytic effect of PM-477 was confirmed by microscopy in mixed cultures of *Gardnerella* and lactobacilli. These two genera can be distinguished by their distinct morphologies: *Gardnerella* cells are small coccoidal rods, whereas lactobacilli form mostly long and thick rods. PM-477 (at 460 µg/ml for 5 h) lysed *G. vaginalis* and *G. swidsinskii* cells in mono-culture and selectively lysed them in mixed cultures of *G. vaginalis* and *L. crispatus* and of *G. swidsinskii* and *L. gasseri*, respectively, while the lactobacilli in these mixed cultures were unaffected (Figure 4A).
Control

PM-477

G. vaginalis

G. vaginalis + L. crispatus

G. swortini

G. swortini + L. gasseri
Bacteriolytic effect of PM-477 on *G. vaginalis*

![Graph showing bacterial counts](image)

Bacteriolytic effect of PM-477 on *G. swidsinskii*

![Graph showing bacterial counts](image)
Figure 4: PM-477 selectively kills *Gardnerella* in a co-culture with lactobacilli.

A, Phase contrast microscopy of dense cultures of *G. vaginalis* (ATCC14018T) (first row) and *G. swidsinskii* (GS10234) (second row), or co-cultures of *G. vaginalis* (ATCC14018T) and *L. crispatus* (LABCRI FB020-08c) (third row), as well as *G. swidsinskii* (GS10234) and *L. gasseri* (LAB GAS LMG 9203T) (fourth row) treated with PM-477 (460 µg/ml for 5h) or with buffer (control). **B** and **C**, Cell counts of *Gardnerella* cells determined by phase contrast microscopy after treatment with 25–400 µg/ml PM-477 for 5h or with buffer (Ctr). **D** and **E**, Viable cells...
remaining (log₁₀ reduction CFU/ml compared to the buffer-treated control) in suspensions of *Gardnerella* treated with 25–400 µg/ml PM-477 for 5h.

We compared the bactericidal and bacteriolytic effects of PM-477 on *G. vaginalis* and *G. swidsinskii* by treating suspensions of the bacteria with 25–400 µg/ml PM-477 for 5 h and then counting the cell numbers by microscopy and determining their viability by quantitative plating (*Figure 4B–E*). The highest concentration of PM-477 (400 µg/ml) decreased the number of cell-like structures by only 80–90 % (*Figure 4B, C*), whereas the same treatment resulted in a ≥ 5.6 log₁₀ reduction in viable cells. This indicates that PM-477 may kill before fully dissolving bacterial cells, resulting in visible but dead cell-like structures seen under the microscope (*Figure 4D, E*).

Efficacy of PM 477 compared to standard antimicrobials

To compare the efficacy of PM-477 in suspension to the standard antimicrobials used to treat BV, we determined the minimum inhibitory concentration (MIC)s of PM-477, CLI, MDZ and TDZ for 20 strains of *Gardnerella* by following the Clinical and Laboratory Standards Institute protocol. All the *Gardnerella* species tested were highly susceptible to PM-477 with a MIC₉₀ value (the MIC value which inhibits 90 % of strains) of 8 µg/ml (*Table 1*).

Table 1: Minimum inhibitory concentration (MIC) of PM-477 and the antibiotics CLI, MDZ, and TDZ for various *Gardnerella* spp. and *Lactobacillus* spp. (R) Resistance, defined as ≥ 32 µg/ml for MDZ and TDZ, and ≥ 8 µg/ml for CLI, according to international standards.
Resistance, defined as ≥ 32 µg/ml for MDZ and TDZ and ≥ 8 µg/ml for CLI according to international standards.

The *G. swidsinskii* strains had MICs in the range of 0.25–1 µg/ml, whereas the *G. vaginalis* strains had MICs of 0.13–8 µg/ml, and *G. leopoldii* and *G. pioii* strains had MICs of 1–8 µg/ml. Among this small number of strains tested for each species, there was no evidence that the four *Gardnerella* species differed with regard to their susceptibility to PM-477. Whereas 12 of the 20 *Gardnerella* strains were resistant to MDZ and 15 were resistant TDZ, CLI was effective against all strains at MICs ≤ 1 µg/ml. All tested strains of three *Lactobacillus* species (*L. crispatus*, *L. gasseri*, and *L. jensenii*) were resistant to the highest concentrations of PM-477, MDZ, and TDZ (MICs > 128 µg/ml), whereas only one strain was resistant to CLI.

Efficacy of PM-477 against biofilms of Gardnerella in human BV samples

<table>
<thead>
<tr>
<th>Name</th>
<th>Strain</th>
<th>Clade</th>
<th>PM-477</th>
<th>CLI</th>
<th>MDZ</th>
<th>TDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. vaginalis (Gv9)</td>
<td>ATCC 14018'T</td>
<td>IB</td>
<td>1</td>
<td>0.25</td>
<td>8</td>
<td>128 (R)</td>
</tr>
<tr>
<td>G. vaginalis (Gv1)</td>
<td>UGent 09.07</td>
<td>IA</td>
<td>2</td>
<td>0.25</td>
<td>>128 (R)</td>
<td>>128 (R)</td>
</tr>
<tr>
<td>G. vaginalis (Gv5)</td>
<td>UGent 09.01</td>
<td>IB</td>
<td>0.25</td>
<td>0.13</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>G. vaginalis (Gv8)</td>
<td>UGent 25.49</td>
<td>IB</td>
<td>0.13</td>
<td><0.06</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>G. vaginalis (BV50)</td>
<td>SJHBruuges isolate</td>
<td></td>
<td>8</td>
<td>0.25</td>
<td>32</td>
<td>64 (R)</td>
</tr>
<tr>
<td>G. vaginalis (BV111)</td>
<td>SJHBruuges isolate</td>
<td></td>
<td>2</td>
<td>0.125</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>G. vaginalis (FB049)</td>
<td>SJHBruges isolate</td>
<td></td>
<td>4</td>
<td>0.5</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>G. vaginalis (FB061)</td>
<td>SJHBruges isolate</td>
<td></td>
<td>8</td>
<td>0.25</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>G. leopoldii (Gl11)</td>
<td>UGent 09.48</td>
<td>II</td>
<td>4</td>
<td>0.5</td>
<td>>128 (R)</td>
<td>>128 (R)</td>
</tr>
<tr>
<td>G. leopoldii (BV13)</td>
<td>SJHBruges isolate</td>
<td></td>
<td>4</td>
<td>0.5</td>
<td>>128 (R)</td>
<td>>128 (R)</td>
</tr>
<tr>
<td>G. leopoldii (BV86)</td>
<td>SJHBruges isolate</td>
<td></td>
<td>1</td>
<td>0.25</td>
<td>>128 (R)</td>
<td>>128 (R)</td>
</tr>
<tr>
<td>G. pioitr (Gp17)</td>
<td>UGent 18.01'T</td>
<td>III</td>
<td>8</td>
<td>0.5</td>
<td>16</td>
<td>64 (R)</td>
</tr>
<tr>
<td>G. pioitr (Gp22)</td>
<td>UGent 21.28</td>
<td>III</td>
<td>2</td>
<td>0.25</td>
<td>64 (R)</td>
<td>>128 (R)</td>
</tr>
<tr>
<td>G. pioitr (P80275)</td>
<td>UGent isolate</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>G. pioitr (FB041)</td>
<td>UGent isolate</td>
<td></td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>64 (R)</td>
</tr>
<tr>
<td>G. pioitr (VMF1800 SVT21)</td>
<td>SJHBruges isolate</td>
<td></td>
<td>8</td>
<td>1</td>
<td>32</td>
<td>64 (R)</td>
</tr>
<tr>
<td>G. swidsinskii (Gs23)</td>
<td>GS 10234</td>
<td>IV</td>
<td>0.5</td>
<td>0.25</td>
<td>64 (R)</td>
<td>>128 (R)</td>
</tr>
<tr>
<td>G. swidsinskii (Gs24)</td>
<td>GS 9838-1'T</td>
<td>IV</td>
<td>0.25</td>
<td><0.06</td>
<td>>128 (R)</td>
<td>>128 (R)</td>
</tr>
<tr>
<td>G. swidsinskii (BV7)</td>
<td>SJHBruges isolate</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>>128 (R)</td>
<td>128 (R)</td>
</tr>
<tr>
<td>G. swidsinskii (BV112)</td>
<td>SJHBruges isolate</td>
<td></td>
<td>1</td>
<td>0.06</td>
<td>64 (R)</td>
<td>64 (R)</td>
</tr>
</tbody>
</table>

L. crispatus DSM 20584
L. gasseri DSM 20077
L. jensenii PB2003-073-T2-3
To analyze the efficacy of PM-477 in a physiological environment that resembles closely the in vivo situation, we treated vaginal swabs from 15 BV patients, and analyzed them by fluorescence in-situ hybridization (FISH).
Figure 5: PM-477 dissolves the *Gardnerella*-dominated biofilm on exfoliated vaginal epithelial cells from BV patients. **A.** Representative examples of multi-color FISH with Gard Cy3 probe (*Gardnerella*, yellow fluorescence) and universal Eub 338 Cy5 probe (all bacteria, red fluorescence) in 400x magnification (where not stated otherwise) for patients 11, 12 and 15.

Baseline (prior to treatment): Gardnerella bacteria are cohesive and adherent to epithelial cells forming dense biofilm patches on the surface of clue cells which is apparent due to background fluorescence. The attachment of *Gardnerella* biofilm to epithelial cells can be seen especially well in DAPI stains and on zoomed original microphotographs (DAPI microphotographs are added to supplementary material together with all other original microphotographs of Figure 5).

Control: Gardnerella dominated biofilms in buffer-treated controls after 24 h incubation are still dense in patient 11 and 12 and start to partially disintegrate in patient 15. **PM-477:** After incubation with PM-477, the *Gardnerella* biofilm is completely disintegrated in all patients. The disappearance of intense yellow fluorescent *Gardnerella* bacteria unmasks the red fluorescence of still intact bacterial mass. Octenisept: similar to PM-477, Octenisept massively reduces *Gardnerella* (yellow) but additionally nearly completely eliminates any other non-*Gardnerella* bacteria (red). **B.** *Gardnerella* cell density in samples of patients 1-15 expressed as the number of yellow bacteria counted in areas containing 10 epithelial cells (see methods for a detailed description of the counting method). *p*-values were calculated with ANOVA in GraphPad Prism.

Areas of strong yellow fluorescence in the untreated (baseline) and buffer control-treated samples indicated the presence of *Gardnerella*-dominated biofilm on exfoliated vaginal epithelial cells (visible due to their pale autofluorescence and clearly corresponding to DAPI counterstain), called clue cells. At baseline and after buffer treatment, the yellow fluorescence of the *Gardnerella* probe outshines the red fluorescence of the probe for all bacteria, indicating
that the biofilm is composed in large part of \textit{Gardnerella} cells. Figure 5A shows a total resolution of the dense yellow staining on the epithelial cells upon treatment with PM-477. Therefore, PM 477 proved strong bacteriolytic activity also in this \textit{ex-vivo} setting. The specificity of PM-477 was demonstrated by the remaining red signal from the universal bacterial probe, indicating mostly non-\textit{Gardnerella} cells. Only very few individual \textit{Gardnerella} cells seemed to remain associated with or in between the epithelial cells. However, the comparison of bacteriolytic and bactericidal effect in Figure 4B-E would indicate that these might be dead cell-like structures with sufficient DNA associated to them to hybridize the FISH probes. In contrast to PM-477, Octenisept killed and lysed both the \textit{Gardnerella} and other bacterial cells non-specifically, as indicated by the visible reduction of both types of fluorescence.

The effect of treatment was also quantified by counting the number of bacterial cells per 10 epithelial cells in representative fields of vision (Figure 5B). When compared with the baseline samples, no significant changes were observed upon incubation with the buffer control, indicating that the vaginal microbiome was generally stable over the time-course of the experiment. PM-477 significantly reduced \textit{Gardnerella} cells in the patient samples (median of 300 cells/10 epithelial cells) when compared to baseline (median of 1200 cells/10 epithelial cells, \(p=0.02\)) and when compared to the buffer control-treated samples (median of 900 cells/10 epithelial cells, \(p=0.007\)): 3 of the 15 samples showed a >500-fold reduction in \textit{Gardnerella} load, 4 showed a >100-fold reduction, 7 a >10-fold reduction and 11 a >2-fold reduction (data for individual patient samples are presented in Supplementary Table 3).

The effects of PM-477 on \textit{Gardnerella} were similar to those of Octenisept®. Unlike PM-477, however, the lytic activity of the disinfectant was not specific for \textit{Gardnerella} but affected all bacteria (Figure 5A, Supplementary Table 3).

Two other potential BV associated bacteria, \textit{A. vaginae} and \textit{L. iners}, as well as \textit{L. crispatus}, were visualized by using selective FISH probes and their cell numbers per 10 epithelial cells
were counted (Supplementary Table 3). *A. vaginae, L. crispatus,* and *L. iners* were detected in 10, 3 and 8 out of the 15 samples, respectively. Treatment with PM-477 reduced the median cell counts of *L. iners* when compared to treatment with the buffer control in all samples whereas the numbers of *L. crispatus* and *A. vaginae* bacteria were unaffected. Octenisept® strongly reduced the cell counts of all three species.

In summary, these experiments provide a proof of the efficacy and selectivity of PM-477 for the genus *Gardnerella in vitro* and also in the native BV biofilm.

Discussion

This is the first study to show that prophage-derived endolysins active on *Gardnerella* could be used as an innovative treatment for bacterial vaginosis. Although no Gardnerella phages were ever isolated in a lab, we were able to identify putative endolysins *in silico*. We expressed them as recombinant proteins, improved their potency by systematic domain shuffling, demonstrated their efficacy and selectivity *in vitro*, and, ultimately, on the native polymicrobial biofilms in vaginal swabs from BV patients.

The currently available therapy of bacterial vaginosis is unsatisfactory. Antibiotic-centered ‘standard-of-care’ treatment for BV is associated with a recurrence rate of ~60% within 6 months, which may be explained by low efficacy of antibiotics on bacteria growing as biofilms, but also by selective destruction of beneficial lactobacilli, which are thereby prevented from re-establishing a protective environment. Bacteriophage-derived endolysins have been described as a potential alternative to antibiotics; they are both highly active on mucosal biofilms and selective for individual genera or even species of bacteria. Neither endolysins nor whole phages specific to *Gardnerella* have been isolated previously, although the existence of *Gardnerella*-specific phages has been postulated on the basis of genomic analyses. We identified *Gardnerella*-specific endolysin genes in the prophage-like genome sequences of strains of *Gardnerella*. A similar approach was reported earlier, in which the phage lysin PlyCD
was identified by searching prophage-like sequences in the genomes of *Clostridium difficile* strains. The fact that it is possible to predict and generate endolysins from prophage encoded sequences in the genomes of unrelated species (*C. difficile* and *Gardnerella*) may indicate a wide application of this approach, which is easily adaptable to other pathogenic bacteria.

We could show that the wild-type endolysins we identified and, even more so, our engineered constructs, are highly bactericidal and selective for the genus *Gardnerella*.

Our engineered endolysin PM-477 is superior to the current standard of care antibiotics in that it is active in the low µg/ml range and effective against all 20 of the *Gardnerella* strains we tested, covering all four named species. In total, 60% of the 20 strains were resistant to MDZ and 75% to TZD, reinforcing the notion that PM-477 may be more effective against BV than currently used standard antibiotics.

The high resistance rate for MDZ, which was also reported elsewhere, does not support the finding that MDZ treatment temporarily relieves the symptoms in a majority of cases. However, long-term cure is mostly not achieved with MDZ indicating that their effectiveness may be reduced due to the high resistance rate of *Gardnerella* strains.

In our study, CLI was also effective against all the strains of different *Gardnerella* genotypes we tested. Curiously, however, CLI has not shown superior efficacy when compared to MDZ in clinical trials, which may indicate that BV biofilms are more tolerant to CLI than they are of MDZ, thus compensating the higher rate of resistance against MDZ.

In conclusion, PM-477 is superior to all tested antibiotics because, unlike nitroimidazoles, it is active on all *Gardnerella* strains and, unlike CLI, it does not kill lactobacilli. Antibiotics may have the advantage over PM-477 of being active against a broader spectrum of pathogens. But, unlike *Gardnerella*, these pathogens may not be pivotal in vaginal biofilm formation as is the case in BV. Also, antibiotics typically have low activity on bacteria in biofilms whereas our *ex-vivo* data indicate that PM-477 works well on *Gardnerella* in vaginal biofilms.
Progress has been made in developing animal models for BV. For example, it was possible to model some of the clinical characteristics of BV, such as epithelial exfoliation and clue cells upon infection of mice with *Gardnerella* \(^{50}\). However, it was not possible so far to model the increase in pH and the diverse microbiome composition of human BV in animals. Therefore, the next best and, arguably, more biologically relevant model to test the efficacy of PM-477 is to use *ex vivo* vaginal samples from BV patients, which contain clue cells, *i.e.* exfoliated epithelial cells covered with a polymicrobial biofilm. The microbial populations of all the *ex vivo* samples that we collected from 15 individual BV patients were clearly dominated by *Gardnerella* and a substantial part of the *Gardnerella* cells adhered to the epithelial cells. Treatment with PM-477 fully resolved the dense staining due to *Gardnerella* cells on the epithelial cells while not affecting non-*Gardnerella* cells. Thus, we conclude that PM-477 quantitatively removes *Gardnerella* cells inside the polymicrobial biofilm on vaginal epithelial cells *ex vivo*. Furthermore, it is effective in the environment of the vaginal fluid despite the putative presence of proteases \(^{51}\) and other substances that might reduce its activity.

PM-477 shows promising results *in vitro* and *ex vivo* but we do not know yet whether selectively removing *Gardnerella* will be sufficient to resolve the clinical symptoms of BV, which are caused by a polymicrobial biofilm, and to allow lactobacilli to re-colonize the vagina. The increasing evidence of the central role that *Gardnerella* plays in the etiology of BV \(^{15}\) and the observation that BV seems not to be possible without *Gardnerella* \(^{22}\), indicates that this might well be the case. The biomass of the polymicrobial biofilm consists largely of *Gardnerella* cells \(^{52,53}\), so selective removal of *Gardnerella* should decimate the biofilm. Moreover, *Gardnerella* mediates adhesion to the epithelial cells, whereas other bacteria, especially in smaller numbers, may not be able to initiate biofilm formation on these cells \(^{54}\). Other pathogens, especially *Prevotella bivia*, synergize with *Gardnerella*, so when the latter is removed the viability of the other pathogens is likely reduced as well \(^{55,56}\). Removal of *Gardnerella* (and the concomitant reduction in the viability of *P. bivia*) would reduce the levels of sialidase produced by
Gardnerella and P. bivia and allow the mucus layer to reform, in turn reducing the adherence of the remaining BV pathogens and depriving them of carbon sources. Finally, the active suppression of lactobacilli by Gardnerella would be released, allowing recolonization by benign bacteria. This hypothesis has been investigated with in vitro biofilm models, and PM-477 as a selective antimicrobial agent may be a very useful tool to further investigate the role of Gardnerella in ex vivo as well as in vivo studies.

In summary, we report here that an engineered, phage-derived endolysin has the potential to completely disrupt the Gardnerella-dominated biofilm in vaginal swabs from patients with BV. PM-477 is, thus a promising candidate for an effective treatment of recurrent BV, which remains, despite decades of research, a major public health concern.

Acknowledgements

We thank Grégory Resch and Life Science Editors for scientific editing assistance during the preparation of the manuscript.

References

12. Petrova MI, Reid G, Vaneechoutte M, Lebeer S. Lactobacillus iners: Friend or Foe?

 doi:10.1097/01.AOG.0000183594.45524.d2

14. Machado A, Cerca N. Influence of Biofilm Formation by *Gardnerella vaginalis* and
 doi:10.1093/infdis/jiv338

 2019;220(9):1399-1405. doi:10.1093/infdis/jiz342

 doi:10.14670/HH-29.10.567

 virulence potential of bacterial vaginosis or non-bacterial vaginosis Gardnerella

 immune components affect growth and virulence traits of bacterial-vaginosis-
 associated and non-bacterial-vaginosis-associated Gardnerella vaginalis strains

19. Murphy K, Mitchell CM. The Interplay of Host Immunity, Environment and the Risk
 of Bacterial Vaginosis and Associated Reproductive Health Outcomes. *J Infect Dis.*
 2016;214(Suppl 1):S29-S35. doi:10.1093/infdis/jiw140

Morrill S, Gilbert NM, Lewis AL. Gardnerella vaginalis as a Cause of Bacterial Vaginosis: Appraisal of the Evidence From in vivo Models. *Front Cell Infect

