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Abstract

Over the last decade the availability of SNP-trait associations from genome-
wide association studies data has led to an array of methods for performing
Mendelian randomization studies using only summary statistics. A common
feature of these methods, besides their intuitive simplicity, is the ability to com-
bine data from several sources, incorporate multiple variants and account for
biases due to weak instruments and pleiotropy. With the advent of large and
accessible fully-genotyped cohorts such as UK Biobank, there is now increasing
interest in understanding how best to apply these well developed summary data
methods to individual level data, and to explore the use of more sophisticated
causal methods allowing for non-linearity and effect modification.
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In this paper we describe a general procedure for optimally applying any two
sample summary data method using one sample data. Our procedure first
performs a meta-analysis of summary data estimates that are intentionally con-
taminated by collider bias between the genetic instruments and unmeasured
confounders, due to conditioning on the observed exposure. A weighted sum of
these estimates is then used to correct the standard observational association be-
tween an exposure and outcome. Simulations are conducted to demonstrate the
method’s performance against naive applications of two sample summary data
MR. We apply the approach to the UK Biobank cohort to investigate the causal
role of sleep disturbance on HbA1c levels, an important determinant of diabetes.

Our approach is closely related to the work of Dudbridge et al. (Nat. Comm.
10: 1561), who developed a technique to adjust for index event bias when un-
covering genetic predictors of disease progression based on case-only data. Our
paper serves to clarify that in any one sample MR analysis, it can be advanta-
geous to estimate causal relationships by artificially inducing and then correcting
for collider bias.
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Background

Mendelian randomisation (MR) is a technique used to test for, and quantify, the
causal relationship between a modifiable exposure and health outcome with ob-
servational data, by using genetic variants as instrumental variables [1, 2]. MR
circumvents the need to measure and adjust for all variables which confound the
exposure-outcome association, and is therefore seen as an attractive additional
analysis to perform alongside more traditional epidemiological methods [3]. The
following Instrumental Variable assumptions are usually invoked in order justify
testing for a causal effect of an exposure X on a health outcome Y using a set
of genes, G:

• IV1: G must be associated with X;

• IV2: G must be independent of unmeasured confounding between X and
Y ;

• IV3: G must be independent of Y conditional on X and all confounders
of the X-Y relationship.

These assumptions are encoded in the causal diagram in Figure 1. Further
linearity and homogeneity assumptions are needed in order to consistently es-
timate the magnitude of the causal effect. When performing an MR-analysis
it is best practice to select SNPs for use as instruments using external data,
in order to avoid bias due to the winner’s curse [4]. Subsequently, if an indi-
vidual genetic variant is no longer strongly associated with an exposure in the
MR data, assumption IV1 will only be weakly satisfied, which leads to so-called
weak instrument bias [5, 6]. This issue is mitigated as the sample size increases
as long as the true association is still non-zero. When a genetic variant is in
fact associated with the outcome through pathways other than the exposure, a
phenomenon known as horizontal pleiotropy [7], this is a violation of assump-
tions IV2 and/or IV3. Horizontal pleiotropy is not necessarily mitigated by
an increasing sample size and is also harder to detect. Its presence can there-
fore render very precise MR estimates hopelessly biased. Pleiotropy-robust MR
methods have been a major focus of research in recent years for this reason [8,
9, 10, 11].
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Figure 1: The IV assumptions for a genetic variant G are represented by solid lines in
the directed acyclic graph (DAG). Dotted lines represent violations of IV assumptions
as described in IV2 and IV3. The causal effect of a unit increase of the exposure,X,
on the outcome,Y , is denoted by β. U represents unobserved confounders of X and Y

One-sample versus Two-sample MR: pros and cons

Obtaining access to a single cohort with measured genotype, exposure and out-
come data that is large enough to furnish an MR analysis has been difficult,
historically. It has instead been far easier to obtain summary data estimates
of gene-exposure and gene-outcome associations from two independent studies,
and to perform an analysis within the ‘two-sample summary data MR’ frame-
work (see Figure 2). [12, 13]. This has made it an attractive option for the large
scale pursuit of MR, through software platforms such as MR-Base [14]. The rel-
ative simplicity of these methods (which resemble a standard meta-analysis of
study results) and their ability to furnish graphical summaries for the detection
and adjustment of pleiotropy [15] has also acted to increase their popularity.
Indeed, the array of pleiotropy robust two sample summary data methods far
outstrips those available for one sample individual level data MR analysis [16].
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Key assumptions:   Cohort 1 and Cohort 2 are from the same population
                               Cohort 1 and Cohort 2 are independent
                               SNPs are mutually uncorrelated (not in LD)*
                               SNPs are properly harmonized across cohorts
                               

βYGj=ββXGjAssumed model:

*LD can be accounted for if needed  

Figure 2: In two sample summary data MR, (G −X) association estimates, β̂XGj ,
from one cohort are combined with (G − Y ) association estimates, β̂Y Gj from a
separate, non-overlapping cohort, to produce a set of SNP-specific causal estimates,
β̂j . These are combined using inverse variance weighted meta-analysis (wj being the
weight) to obtain an overall estimate β̂IV W for the true causal effect β.

A further advantage of two-sample over one-sample MR is that weak in-
struments bias causal estimates towards the null, which is conservative [17].
Furthermore, this bias can easily be quantified and corrected for, because un-
certainty in the SNP-exposure association estimates obtained from one cohort
is independent of the uncertainty in SNP-outcome association estimates from a
non-overlapping cohort (Figure 2). This makes the bias problem akin to ‘classi-
cal’ measurement error [18] and enables standard approaches such as Simulation
Extrapolation [5, 19] or modified weighting [6] to be used to adjust for its pres-
ence. In contrast, weak instruments bias MR estimates obtained from a one
sample analysis towards the observational association because uncertainty in
the SNP-exposure and SNP-outcome association estimates are correlated. This
bias is harder to correct for and is potentially anti-conservative.

There are, however, many disadvantages of using two sample summary data
compared to individual level data on from a single sample MR. The the two-
sample approach assumes the two cohorts are perfectly homogeneous [13]. If, for
example, the distribution of confounders is different between the samples, this
can result in severe bias [20]. Alternatively, it may be that the independence
assumption is violated due to an unknown number of shared subjects across the
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two studies [21], which cannot be easily removed [22]. Even when the homo-
geneity assumption is satisfied, two sample methods can give misleading results
if the two sets of associations are not properly harmonized [23].

It is often the case that summary data from a GWAS has been adjusted for
factors that might bias MR results, and the unadjusted data are not available
[24]. Alternatively, it may not be possible to source summary data on the exact
population needed for a particular analysis, for example on either or men or
women only when looking at sex-specific outcomes) [25]. Finally, a richer array
of analyses are possible with individual level data. For example, the estimation
of non-linear causal effects across the full range of the exposure and the explo-
ration of effect modification via covariates.

It is of course possible to naively apply summary data MR methods to the
one-sample context, estimating both the gene-exposure and gene-outcome asso-
ciations in the same sample [7], an analysis made increasingly easy by the advent
of large open-access cohort studies such as the UK Biobank [26]. This has the
advantage of requiring no homogeneity assumptions but the disadvantage of
potentially anti-conservative weak instrument bias due to correlated error. A
preliminary investigation has found that this naive approach is particularly bad
for pleiotropy robust approaches such as MR-Egger regression [27, 28]. So far,
there is no consensus on how best to implement summary data approaches in
the one sample setting.

In this paper we propose a general method that can reliably apply two-sample
summary data MR methods to one-sample data, whilst maintaining the sim-
plicity and appeal of the two-sample approach. Our method builds on the work
of Dudbridge et. al. [29], who proposed a method to correct for ‘index event’
(or collider) bias in genetic studies of disease progression, when all subjects in-
cluded in the analysis have been diagnosed with the disease. In this setting, the
analysis is open to contamination from collider bias. Our work serves to clarify
that the procedure can be extended to any MR analysis by artificially inducing
and then correcting for collider bias. By construction it ensures that there is
no correlation between sampling errors in the G − X and G − Y associations,
thus recreating the conditions of the two sample MR. This allows two sample
methods to be used in a one sample design. It therefore provides an attractive
and efficient vehicle for applying two sample approaches to one sample data
beyond the standard two-stage least squares procedure, thereby benefiting from
plethora of weak instrument and pleiotropy robust approaches available.
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Methods

To motivate ideas, we assume the following individual level data model for the
exposure X and continuous outcome Y for subject i:

Xi|Gi, Ui =
k∑
j=1

βXGj
Gij + βUXUi + εXi

(1)

Yi|Xi, Gi, Ui = βXi +
k∑
j=1

αjGij + βUY Ui + εYi (2)

=
k∑
j=1

(αj + ββXGj)Gij + (ββUX + βUY )Ui + βεXi
+ εYi

=

k∑
j=1

βY GjGij + ε∗Yi
(3)

Here, Gi = (Gi1, . . . , Gik)
′

represents a set of k variants that predict Xi,
β represents the true causal effect of the exposure on the outcome we wish to
estimate, and U represents unmeasured confounding predicting both X and Y .
The variables εXi

, εYi
represent independent residual error terms. Since the un-

measured confounder U is common to both X and Y , the total residual errors
around X|G, Y |X,G and Y |G in equations (1) - (3) are correlated.

The standard approach to estimating β with individual level data is Two Stage
Least Squares (TSLS). This assumes that all instruments are valid (not pleiotropic),
so that αj = 0 for all j. TSLS firstly regresses the exposure on all k genotypes
under model (1) to derive an estimate for subject i’s genetically predicted expo-

sure: X̂i =
∑k
j=1 β̂XGjGij . The outcome Y is then regressed on X̂i assuming

model (2) and its regression coefficient is taken as the causal estimate β̂. When
the set of k SNPs which predict X are mutually independent (i.e. not in link-
age disequilibrium), the TSLS estimate is asymptotically equivalent to the IVW
estimate [30] obtained by:

• Calculating the causal estimate β̂j by dividing the SNP-outcome associa-

tion β̂Y Gj obtained from model (3) by the SNP-exposure estimate β̂XGj
from model (1) for each SNP and;

• Performing an inverse variance weighted meta-analysis of the k individual
causal estimates, β̂1, . . . , β̂k.

We will refer to this as the ‘standard’ IVW approach. It is commonly used in
two sample summary data MR out of necessity, but is not typically used in the
one sample setting because its finite sample performance is not currently well
understood [27].
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Inducing collider bias into SNP-outcome associations

Consider a regression of the outcome Y on G and X together (but not U):

Yi|Xi, Gi = β∗Xi +
k∑
j=1

α∗
jGij + ε

′

i, (4)

yielding estimated coefficients β̂∗ and α̂∗
1, . . . , α̂

∗
k. Since X represents an inverted

fork in Figure (1), conditioning on it breaks the d-separation between G and U
[31] thus inducing collider bias in the estimated Gj-Y association (or pleiotropic
effect through a spurious association with U) so that α̂∗

j is not a consistent

estimate for αj . Likewise, β̂∗ is not a consistent estimate for β. It instead
reflects the causal effect, plus a contribution via the back-door path from X to
Y via U . Such ‘collider-biased’ analyses are usually avoided for this reason [32].
However, it is in a special sense advantageous to fit model (4) because it can
be shown that, under model’s (1) and (2), α∗

j , αj , β
∗ and β are linked by the

following linear relation:

α∗
j = αj + (β − β∗)βXGj

, (5)

(see Supplementary information for a detailed derivation). This suggests the
following algorithm for estimating the causal effect:

1. Regress Y on X and G to obtain the collider-biased parameter estimates
β̂∗ and α̂∗

1, . . . , α̂
∗
k.

2. Regress X on G to obtain estimates β̂XG1, . . . , β̂XGk.

3. Fit the linear model:

α̂∗
j = α0 + (β − β∗)β̂XGj

+ εj (6)

under a user-specified loss function in order to obtain an estimate for the
collider-correction term (β − β∗).

4. Adjust the observational estimate to obtain an estimate for the causal
effect β via:

β̂ = β̂∗ + ̂β − β∗ (7)

The above procedure, which we call ‘collider-Correction’ is a simple mod-
ification of the Dudbridge approach [29]. In step 1 we simultaneously adjust
for all genetic instruments. In step 4 we instead focus on estimation of the
causal parameter β rather than, as Dudbridge et al do, the pleiotropic effects.
The major advantage of enacting this algorithm is that, if the sample covariance
Ĉov(αj , βXG) is zero (the InSIDE assumption [9]), then Ĉov(α∗

j , βXGj) will also
be zero. This means that weak instrument bias is akin to classical measurement
error, which will induce a dilution in the estimated collider-correction slopêβ − β∗ from (6) towards zero. This dilution is easy to quantify and correct for

8

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.20.20216358doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216358
http://creativecommons.org/licenses/by/4.0/


using standard methods.

The collider-correction algorithm is generalisable in theory to any MR analysis
method, but we now describe several canonical implementations.

Implementing collider-Correction

IVW implementation

To calculate the IVW estimate using our approach we make the assumption that
the mean pleiotropic effect is zero and the InSIDE assumption is satisfied [9].
This justifies setting the parameter α0 to zero in equation (6) and estimating the
slope (β − β∗) using least squares. To quantify the impact of weak instrument
bias in the estimated slope we calculate the mean F statistic:

F̄ =
k∑
j=1

β̂2
XGj

σ2
XGj

(8)

where σ2
XGj equals the squared standard error of β̂XGj . The expected di-

lution is then given by (F̄ − 1)/F̄ . Note that, whilst the collider-Correction
slope is diluted towards zero in the presence of weak instrument bias, the causal
estimate itself is still biased toward the observational association estimate β̂∗,

because the causal effect is the sum of β̂∗ and ̂β − β∗.

In order to formally test for the presence of pleiotropy (i.e. any αj being non-
zero) whilst accounting for weak instrument bias, we can calculate the analogue
of the familiar Cochran’s Q statistic as described by Bowden et al. [33]. Specif-
ically, this equals:

Q(0) =

k∑
j=1

Qj(0) =

k∑
j=1

wj(0)({ ̂β∗ − βj} − { ̂β∗ − β})2 (9)

where

̂β∗ − βj =
α̂∗
j

β̂XGj
, wj(0) =

β̂2
XGĵ(β∗ − β)

2
σ2
Xj + 0× σ2

α∗

, σ2
α = V ar(αj), (10)

and where the value of ̂β∗ − β is chosen that minimises Q(0). Under the null
hypothesis that all αj equal zero, Q(0) is approximately χ2

k−1 distributed and
each individual component, Qj is approximately χ2

1 distributed. If Q(0) or any
of its components are significantly large with respect to these null distributions
then we can reject the null hypothesis of no pleiotropy. In order to estimate
the collider-correction slope whilst accounting for weak instrument bias and

pleiotropy we can find the value of ̂β∗ − β that minimises the statistic Q(1) us-
ing weights w∗

j (1) which allow for a non-zero variance in the pleiotropic effect,

9
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σ2
α. This is a direct analogue of the procedure described in detail by Bowden et

al. [6].

An alternative method for weak instrument bias adjustment that can be ap-
plied directly to the collider-corrected IVW estimate is Simulation Extrapolation
(SIMEX) [34, 13]. Under SIMEX, a parametric bootstrap is used to generate
SNP-exposure associations with an increasing amount of weak instrument bias,
and hence increasing dilution in the estimate for (β − β∗) from fitting model
(6). A global model is then fitted to the entire set of simulated data in order to
extrapolate back to the estimate for (β − β∗) that would have been obtained if
there were no uncertainty in the SNP-exposure associations. SIMEX is attrac-
tive because it can be applied to any regression model (and hence many MR
methods), and reliable software is available in standard software packages, such
as R and Stata.

MR-Egger implementation

In order to account for pleiotropy with a non-zero mean, we can instead allow
the intercept α0 to be freely estimated along with the slope in equation (6), again
using least squares. This is equivalent to performing MR-Egger regression [9].
To assess the vulnerability of MR-Egger regression to weak instrument bias we
use the I2

GX statistic [5]:

I2
GX =

QGX − (k − 1)

QGX
,where QGX =

k∑
j=1

(β̂XGj − β̄XGj)2

σ2
XGj

(11)

The expected dilution in the collider correction due to weak instruments is
equal to (β − β∗)I2

GX . It can easily be adjusted for by applying SIMEX to the
MR-Egger fit of equation (6).

A robust regression implementation

Both the IVW and MR-Egger approaches rely on the InSIDE assumption to
consistently estimate the causal effect. This may be violated in practice, hence
the rationale for the development of alternative, robust methods such as the
Weighted Median [10]. In the two-sample summary data context it can consis-
tently estimate the causal effect if the majority of the weight in the MR analysis
stems from genetic variants that are not pleiotropic, even if InSIDE is violated.
In order to calculate a causal estimate within our collider-Correction algorithm
that is close in spirit to the Weighted Median, we propose to fit step 3 using
Least-Absolute Deviation (LAD) regression instead of least squares, setting α0

to zero. Currently, no summary statistic exists to quantify the weak instrument
bias of such a procedure, but because the approach is implemented as a regres-
sion model it is straightforward to apply the SIMEX algorithm to it to guard
against this.
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Simulation studies

In order to confirm our theoretical results and assess the performance of the
collider-correction algorithm, data sets of between 5000 and 50,000 individuals
were generated under models (1) and (2). The genetic data comprised k=50
uncorrelated SNPs with an allele frequency set at 0.3 in Hardy-Weinburg equi-
librium, which collectively explained approximately 1.5% of the variance in the
exposure X. The parameter β, which reflects the population average causal
effect of inducing a one-unit change in the exposure on the outcome, was set
to 0.5. The shared confounder U was simulated from a zero-centred normal
distribution, giving rise to an observational estimate for β̂∗ of approximately
1.12. The true collider correction term is therefore β − β∗ = -0.62.

Standard IVW approach

We first simulated individual level data in a one-sample design under a bal-
anced pleiotropy model. Pleiotropic effect parameters αj were generated with
a zero mean under InSIDE. Figure 3 (top-left) shows, for a range of sample
sizes, the distribution of: (a) The standard IVW estimate (black line); (b) the
SIMEX adjusted standard IVW estimate (blue line); (c) the collider corrected
IVW estimate (red line); (d) the collider Corrected IVW estimate with SIMEX
correction (green line); and (e) the TSLS estimate (orange line). We see that
methods (a), (c) and (e) give essentially the same answer, and can therefore
not be individually distinguished in the figure. The approximate equivalence
of the TSLS and IVW approaches with uncorrelated SNPs is well known, but
it is also reassuring that our two step approach is also equivalent. We also
see that applying a direct SIMEX correction to method (a) (i.e. method (b))
dramatically increases the bias of the causal estimate beyond even that of the
observational estimate for small sample sizes. This bias is slow to diminish as
the sample size grows. Conversely, we see that applying a SIMEX correction in-
directly to method (c) (i.e method (d)) results in the least biased estimate of all.

Figure 3 (top-right) gives further intuition on why the correction process works.

The black line shows the estimated collider correction ̂β − β∗ as a function of
the given sample size. The blue line shows the true collider correction multiplied
by the expected dilution factor F̄−1

F̄
, which varies as a function of the sample

size. The fact that the two lines are in good agreement indicates that the bias

in ̂β − β∗ is indeed a dilution, which can be perfectly predicted by F̄ . This
underlines why SIMEX can be used to correct for it.

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.20.20216358doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216358
http://creativecommons.org/licenses/by/4.0/


●

●

●
●

●
● ●

● ● ●

10000 20000 30000 40000 50000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Sample size

E
st

im
at

e

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●
● ●

● ● ●

●

●

● ● ● ● ● ● ● ●

Standard IVW
Standard IVW (SIMEX)
Collider Corrected IVW
Collider Corrected IVW (SIMEX)
TSLS

β

βobs

1.9 2.8 3.7 4.6 5.4 6.4 7.3 8.2 9 10

F

●

●

●

●

●

●
●

●
●

●

10000 20000 30000 40000 50000

0.
3

0.
4

0.
5

0.
6

Sample size

M
ea

n 
co

lli
de

r−
co

rr
ec

tio
n

Collider−Correction estimate: 

True Correction

True Correction*(F − 1 F)

●

●

●
●

● ●
● ● ● ●

10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size

E
st

im
at

e

●

●

●

●
● ●

● ● ● ●

●

●

●

●
●

●
● ●

● ●

●

●

●

● ●
●

● ● ● ●

Collider Corrected IVW (1−sample)
Collider Corrected IVW (SIMEX, 1−sample)
Collider Corrected IVW (2−sample)
Collider Corrected IVW (SIMEX, 2−sample)

β

● ●
●

● ●

● ●
● ● ●

10000 20000 30000 40000 50000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Sample size

S
ta

nd
ar

d 
D

ev
ia

tio
n

●

● ● ●
●

●
● ● ●

●

●

● ●

●
●

● ● ● ● ●

●

●

●

●

●

●
● ●

●
●

Collider Corrected IVW (1−sample)
Collider Corrected IVW (SIMEX, 1−sample)
Collider Corrected IVW (2−sample)
Collider Corrected IVW (SIMEX, 2−sample)

Figure 3: Top: Performance of IVW implementations (including the the collider-
Correction algorithm) using one-sample data. Bottom: comparison of the one sample
collider correction versus two-sample IVW approaches in terms of bias (bottom-left)
and efficiency (bottom-right).

Figure 3 (bottom-left) shows the performance of the IVW estimate imple-
mented using the (one sample) collider-Correction algorithm, versus that ob-
tained from artificially splitting the data in two, calculating SNP-exposure as-
sociations in one half, SNP-outcome associations in the other half and combining
in the usual manner. This is the most obvious way to ensure the independence of
errors assumed by two sample approaches is satisfied. We show results for each
method with and without SIMEX correction. We see that the absolute bias of
the collider-Correction implementations is less than that of the two-sample im-
plementation. However, the two estimation strategies differ more substantially
in terms of precision, as shown in Figure 3 (bottom-right). Collider-correction
is shown to be far more efficient.
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MR-Egger implementations

We next simulated individual level data under a directional pleiotropy model.
That is, the pleiotropic effect parameters αj were generated with a non-zero
mean, but are still independent of the SNP-exposure association parameters
βXGj (i.e InSIDE satisfied). This enabled the assessment of the MR-Egger
implementations of our collider correction algorithm. The results are shown
in Figure 4 (top-left). Again, we see that standard and collider-corrected MR-
Egger methods give the same results, but the two approaches differ greatly under
SIMEX correction, with the SIMEX adjusted collider-corrected SIMEX estimate
being least biased. In Figure 4 (top-right) we show how weak instrument bias
in the collider-corrected slope for MREgger can be accurately quantified using
the I2

GX statistic, which again explains why SIMEX works.
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Figure 4: Top: Performance of the MR-Egger implementation of the collider-
Correction algorithm under a directional pleiotropy scenario. Bottom: Performance
of the LAD-regression implementation
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LAD-regression implementation

We next simulated data under a model with directional pleiotropy induced by 15
large outliers, which constitute 30% of the k=50 SNPs. Figure 4 (bottom-left)
show results for the collider-corrected LAD regression procedure compared to
Standard LAD regression, with and without SIMEX correction. For compari-
son we also show the results for the Standard IVW implementation. Its bias
does not approach zero as the sample size increases, which serves to motivate
the utility of a robust regression procedure. Figure 4 (bottom-right) plots the
mean dilution in the collider-Corrected LAD regression estimate, versus that
predicted by the IVW dilution factor F̄−1

F̄
. The fact that the observed dilution

is below the expected IVW dilution illustrates that LAD regression is more vul-
nerable to weak instrument bias, because it is a less efficient but more robust
technique. This emphasises the importance of being able to address its weak
instrument bias.

Figure 6 in Supplementary Information shows the Monte-Carlo standard de-
viations of all estimators across the three scenarios considered. We see that
the Standard and collider Corrected IVW, MR-Egger and LAD regression es-
timates have identical precision, which is higher than their SIMEX corrected
analogues. This illustrates the bias-variance trade off made when enacting a
weak-instrument bias adjustment.

Results: Assessing the causal role of Insomnia on
HbA1c

Observationally, sub-optimal sleep (i.e., low sleep quantity and quality) has been
found to be associated with hyperglycaemia [35, 36, 37] and increased diabetes
risk [38]. Insomnia, defined as difficulty initiating or maintaining sleep, is one of
the most important indices of sleep quality [39]. It has been associated with type
2 diabetes in observational studies [39] and in a previous Mendelian random-
ization study [40]. However, it is unclear whether associations with insomnia
are mediated through HbA1c in the general population, whose glucose levels
may not meet the threshold criteria for a formal diabetes diagnosis. As such,
we focus on a potentially causal role of insomnia on HbA1c, a well-established
clinical assessment of long-term glycaemic regulation that is central to the di-
agnosis of diabetes [41]. To address this question we use individual level data
on approximately 320,000 individuals in UK Biobank to furnish a one sample
Mendelian randomization study.

Two hundred and forty-eight independent genetic variants at 202 loci were as-
sociated with self-reported insomnia at or above the standard genome-wide sig-
nificance threshold (p-value<5×10−8) in a recent GWAS of over 1.33 million
UK Biobank and 23andMe individuals reported by Jansen [40] which collec-
tively explained 2.6% of the total trait variance. SNP-exposure associations
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were measured on the log-odds scale using logistic regression. Among this set
of variants, 240 SNPs were in principle available for use as instruments in UK
Biobank. In this cohort, participants were asked: “Do you have trouble falling
asleep at night or do you wake up in the middle of the night?” with responses
“Never/rarely”, “Sometimes”, “Usually”, or “Prefer not to answer”. Those who
responded “Prefer not to answer” were set to missing. To reflect the Jansen
analysis, the remaining entries were treated as a binary variable for insomnia
symptoms, with “Never/rarely”, “Sometimes”, and “Usually” coded as 0, 0,
and 1, respectively and a logistic regression performed. HbA1c measurements
were obtained from a panel of biomarkers assayed from blood samples collected
at baseline from UK Biobank participants. HbA1c (mmol/mol) was measured
in red blood cells by HPLC analysis using Bio-Rad VARIANT II Turbo and
log-transformed.

Instrument selection and winner’s curse

The mean F statistic for the 240 genetic instruments in the original GWAS
was 41, but in UK Biobank the same SNPs had an F̄ of approximately 8.3
and an I2

GX statistic of approximately 40%, meaning that the MR analysis was
susceptible to bias due to both weak instrument and pleiotropy. This motivates
the use of our collider-correction method for causal estimation. However, the
original Jansen GWAS combined data from the UK Biobank (n=386,533) and
23andMe (n=944,477) using METAL [42]. As such, there was an approximate
23% overlap between data used for SNP discovery and for estimation in our
MR model. This is known to induce a degree of winner’s curse into the SNP-
exposure associations [4]. For this reason we performed our subsequent analysis
using (a) all 240 SNPs and (b) a subset of 112 SNPs that were only genome-wide
significant using only the 23andMe portion of the Jansen data. This latter set is
protected by design from winner’s curse but, with an F̄ of 6.8, were even weaker
instruments.

Methods used

We applied the TSLS, IVW, MR-Egger and LAD regression approaches to the
data. In addition, we applied two further methods that extend the basic IVW
approach. The first is the Robust Adjusted Profile Score (MR-RAPS) approach
of Zhao et al [43]. In its most basic form it delivers a causal estimate equivalent
to that obtained by minimising Q-statistic (9) using w∗

j weights and a least
squares loss function. However, it allows the user to incorporate alternative loss
functions to give added robustness to outliers. We opted to use Tukey loss for
this analysis. The second is a Bayesian implementation of MR-RAPS termed
BayEsian Set IDentification and Estimation (MR-BESIDE) [44]. Rather than
obtaining robustness to outliers through penalization, MR-BESIDE averages
over models in which different collections of SNPs are included or discarded
from the model. Although the technique can identify clusters of SNPs and
estimate separate causal effects for each, we chose the one-parameter imple-

15

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.20.20216358doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216358
http://creativecommons.org/licenses/by/4.0/


mentation of the algorithm with the DerSimonian and Laird (DL) pleiotropy
variance estimation option. Both MR-RAPS and MR-BESIDE incorporate ex-
act weighting an hence are naturally immune to weak instrument bias.

We employed three variants of the IVW, MR-Egger and LAD regression ap-
proaches: The ‘Standard’ 1-sample approach, collider-Correction and collider-
Correction with weak instrument adjustment (with this latter being what we
determine to be the gold standard implementation). For MR-Egger and LAD-
regression we used SIMEX for weak instrument adjustment, whereas for IVW,
MR-RAPS and MR-BESIDE, exact weighting was used.

Causal estimates

SNP exposure associations β̂XGj were obtained from a logistic regression of in-
somnia on the set of SNPs as well age at recruitment, sex, assessment centre,
10 genetic principal components, and genotyping chip. Estimates for collider-
biased SNP outcome associations α̂∗

j were obtained from a multivariable regres-
sion of HbA1c on observed insomnia severity, all genetic variants and the same
additional covariates. This second regression additionally yielded an estimate
for the collider biased observational association between insomnia severity and
HbA1c of β̂∗ = 0.012 (se = 0.00057).

Figure 5 (top) plots the collider-biased SNP-outcome associations versus the
SNP-exposure associations. Overlaid on the plot are the weak-instrument-
adjusted collider-Correction slopes estimated by the five summary data MR
methods. We calculate the exact Q statistic [6], Q(0), which measures global
pleiotropy adjusted for weak instruments. It is 809 (df = 239) providing over-
whelming evidence of heterogeneity due to pleiotropy. The 13 SNPs circled in
black contribute a component to this global statistic with a bonferroni corrected
p-value below (5/240)% and could therefore be classed as outliers. A list of these
SNPs is provided in Supplementary Information.

For comparison SNPs coloured red have less than a (5/240)% probability of
inclusion in the selected set of valid instruments within MR-BESIDE. These
41 SNPs are also given in Supplementary information. Adjusted causal effect
estimates can be found in Table 1 (rows 1-5), with those in bold matching the
slopes in Figure 5 (top).
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Figure 5: Collider-biased SNP outcome associations, α̂∗
j , versus SNP-exposure asso-

ciations, β̂XGj for: 240 SNPs that were genome-wide significant using 23andMe and
UKB data (top); the 112 SNPs that were genome-wide significant using 23andMe data
only (bottom)

Across all methods, we see a consistent picture: a unit increase in the log-
odds of insomnia leads to an increase of between 0.17 and 0.24 units of log
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Method Estimate S.E p-value

23andMe + UK Biobank significant SNPs
# SNPs: 240, F̄=8.36, Q(0)(p− value) =809 (<2×10−16 ), I2

GX=41.0%

β∗ 0.012 0.00057 < 2×10−16

TSLS 0.016 0.002 < 1×10−16

Standard IVW 0.013 0.008 5.04×10−7

Col-Cor IVW (1) 0.022 0.00278 1.1×10−15

Col-Cor IVW (2) 0.024 0.0029 6.7×10−16

Standard MR-Egger 0.007 0.005 1.3×10−1

Col-Cor MR-Egger (1) 0.015 0.006 1.33×10−2

Col-Cor MR-Egger (2) 0.017 0.0086 4.9×10−2

Standard LAD 0.011 0.004 2.09×10−3

Col-Cor LAD (1) 0.020 0.0036 2.00×10−8

Col-Cor LAD (2) 0.020 0.0027 1.3×10−14

Col-Cor MR-RAPs 0.020 0.0026 3.1×10−15

Col-Cor BESIDE-MR 0.020 0.0019 <2×10−16

23andMe significant SNPs only
# SNPs: 112, F̄=6.88, Q(0)(p− value) =385 (<2×10−16), I2

GX=52.1%

β∗ 0.012 0.00057 < 2×10−16

TSLS 0.017 0.003 2.39×10−10

Standard IVW 0.014 0.004 5.23×10−4

Col-Cor IVW (1) 0.024 0.0045 1.21×10−7

Col-Cor IVW (2) 0.026 0.0048 6.5×10−8

Standard MR-Egger 0.008 0.006 1.76×10−1

Col-Cor MR-Egger (1) 0.020 0.008 1.79×10−2

Col-Cor MR-Egger (2) 0.024 0.0110 3.3×10−2

Standard LAD 0.012 0.006 3.30×10−2

Col-Cor LAD (1) 0.021 0.0056 1.52×10−4

Col-Cor LAD (2) 0.023 0.0042 4.2×10−8

Col-Cor MR-RAPs 0.023 0.0043 3.6×10−8

Col-Cor BESIDE-MR 0.020 0.0030 6.9×10−11

Table 1: Point estimates, standard errors and p-values for the: IVW, MR-Egger,
MR-RAPS and BESIDE-MR method. Estimates reflect the average causal effect of
a unit increase in the log-odds of insomnia on HbA1c levels across the population.
‘Standard’ = standard 1-sample analysis. ‘Col-Cor (1)’ = collider correction analysis.
‘Col-Cor (2)’ = collider correction + weak instrument correction. Top rows: All 240
SNPs from Jansen et al used. Bottom rows: only genome wide significant SNPs from
23andMe data (ignoring UK Biobank) used.
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mmol/mol of HbA1c. All estimates are further from the null than the collider-

biased observational association, β̂∗. However, the results highlight that, with-
out weak-instrument adjustment, all summary data MR-methods are biased in
the direction of β̂∗.

Table 1 (rows 6:10) and Figure 5 (bottom) show the MR results when using only
the 112 SNPs identified in Jansen from 23andMe data, which are immune to
winner’s curse. These SNPs have a weaker mean F statistic of 6.88 but a higher
I2
GX statistic of 52%. All causal estimates are seen to increase, because winner’s

curse leads to an over-estimation of the SNP-exposure association, which forms
the denominator of the standard ratio estimate for β. Although fewer outliers
are detected using individual heterogeneity statistics and MR-BESIDE, they
represent a similar proportion of the total number of SNPs as in the previous
analysis. Again, across all methods, we see consistent evidence that increased
Insomnia leads to higher HbA1c levels.

Discussion

In this paper we clarify how the principle of collider correction offers a vehicle
for applying any two-sample summary data MR method to one sample data,
making it easy to account for both pleiotropy and weak instrument bias. Our
method is closely related to the approach of Dudbridge et al [29] for genetic
studies of disease progression, and primarily serves to emphasise that this pro-
cedure is in fact applicable to any MR analysis. We used our new method to
provide important insights into the role of insomnia on glycated haemoglobin
and, by extension, on incident diabetes.

We showcased the collider-correction approach using five univariate MR ap-
proaches. A current trend in MR analysis is to employ methods that attempt
to estimate causal effects identified by different clusters of SNPs, see for ex-
ample MRMix [45], MR-ConMix[46] and the two-parameter extension of MR-
BESIDE[44]. All of these methods can be applied directly to one sample data
using our approach, and an examination of their performance in this arena is
an important topic of future research.

The insomnia data was affected by a small amount of winner’s curse, which we
removed by design in a sensitivity analysis by restricting our SNP set to those
obtained from a purely independent data source. More sophisticated approaches
to adjusting for winner’s curse are possible by incorporating the original Dis-
covery data. For example, Bowden and Dudbridge [4] show that winner’s curse
bias can be perfectly eliminated by combining SNP discovery and validation
data from two non-overlapping GWAS studies. As further work, we plan to
extend this approach and combine it with collider-correction.

Although our method ostensibly requires individual level data, it can be en-
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acted purely with summary statistics on the SNP-exposure associations, col-
lider biased SNP-outcome associations, and the biased observational associa-
tion. For more complicated analyses that investigate effect modification and
multi-variable non-linear or sex-specific effects, the same principle remains al-
though a much larger set of summary measures would be needed. In future
work we will aim to clarify these details in the full generalization of the collider
correction approach.
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A Derivation of Equation (5)

The asymptotic least squares estimates of the effects of X and G on Y , without
conditioning on U , are


β∗

α∗
1
...
α∗
k

 =


var (X) cov (X,G1)

cov (X,G1) var (G1)
· · · cov (X,Gk)
· · · cov (G1, Gk)

...
...

cov (X,Gk) cov (G1, Gk)

. . .
...

· · · var (Gk)


−1 

cov (X,Y )
cov (G1, Y )

...
cov (Gk, Y )


Assuming no LD between SNPs, so cov (Gi, Gj) = 0 where i 6= j , the

variance-covariance matrix has block form with a diagonal matrix in the lower
right quadrant. Block-wise inversion gives

var (X) cov (X,G1)
cov (X,G1) var (G1)

· · · cov (X,Gk)
· · · cov (G1, Gk)

...
...

cov (X,Gk) cov (G1, Gk)

. . .
...

· · · var (Gk)


−1

=

1

var (X)−
∑
j
cov(X,Gj)2

var(Gj)


1 −cov(X,G1)

var(G1)
−cov(X,G1)
var(G1)

cov(X,G1)2

var(G1)2

· · · −cov(X,Gk)
var(Gk)

· · · cov(X,G1)cov(X,Gk)
var(G1)var(Gk)

...
...

−cov(X,Gk)
var(Gk)

cov(X,G1)cov(X,Gk)
var(G1)var(Gk)

. . .
...

· · · cov(X,Gk)2

var(Gk)2

+


0 0
0 1

var(G1)

· · · 0
· · · 0

...
...

0 0

. . .
...

· · · 1
var(Gk)


Then

β∗ =
cov (X,Y )−

∑
j
cov(X,Gj)cov(Gj ,Y )

var(Gj)

var (X)−
∑
j
cov(X,Gj)2

var(Gj)

And

α∗
i =

−cov(X,Gj)
var(Gj)

(
cov (X,Y )−

∑
j
cov(X,Gj)cov(Gj ,Y )

var(Gj)

)
var (X)−

∑
j
cov(X,Gj)2

var(Gj)

+
cov (Gi, Y )

var (Gi)
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= −βXGjβ
∗ +

cov (Gi, Y )

var (Gi)

From equation 2, cov (Gi, Y ) = (αi + ββXGi
) var (Gi) . Therefore

α∗
j = αj + βXGj

(β − β∗)

The causal effect β is therefore the observational effect β∗ , plus the slope
of the regression of α∗

j on βXGj
.

B Standard deviation plots for Section 3 simu-
lation study
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Figure 6: Monte-Carlo standard deviations for all IVW (top-left), MR-Egger (top-
right) and LAD regression (bottom) estimators
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C Outlier SNPs sets for the Insomnia analysis
of Section 4.

SNP set detected as outliers using a Bonferroni corrected exact Q statistic
(23andMe data only)

1 rs10758593

2 rs1264419

3 rs214934

4 rs2792990

5 rs4788203

6 rs647905

SNP set detected as outliers using a Bonferroni corrected BMA inclusion prob-
ability statistic (23andMe data only)

1 rs10758593

2 rs1264419

3 rs214934

4 rs2286729

5 rs2792990

6 rs28582096

7 rs2903385

8 rs4502882

9 rs4788203

10 rs55772859

11 rs60565673

12 rs6119267

13 rs647905

14 rs694786

15 rs742760

16 rs8180457

17 rs874168

SNP set detected as outliers using a Bonferroni corrected exact Q statistic
(23andMe + UK Biobank data)

1 rs10758593

2 rs1264419

3 rs12917449

4 rs12924275

5 rs1861412

6 rs214934

7 rs2737240

8 rs2792990

9 rs3131638

10 rs34490907
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11 rs429358

12 rs4788203

13 rs6888135

SNP set detected as outliers using a Bonferroni corrected BMA inclusion prob-
ability statistic (23andMe + UK Biobank data)

1 rs1064939

2 rs10758593

3 rs11650304

4 rs12187443

5 rs12251016

6 rs1264419

7 rs12917449

8 rs12924275

9 rs1519102

10 rs1861412

11 rs214934

12 rs2216427

13 rs2286729

14 rs238869

15 rs2737240

16 rs2792990

17 rs28582096

18 rs28611339

19 rs2903385

20 rs3131638

21 rs3184470

22 rs34214423

23 rs34490907

24 rs429358

25 rs4502882

26 rs4643373

27 rs4788203

28 rs55772859

29 rs60565673

30 rs6119267

31 rs647905

32 rs6606731

33 rs6888135

34 rs694786

35 rs72820274

36 rs742760

37 rs7486418

38 rs8180457

39 rs823247

40 rs874168
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41 rs908668

30
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