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Abstract 6 

The COVID-19 pandemic has had severe impacts on global public health. In the UK, social 7 

distancing measures and a nationwide lockdown were introduced to reduce the spread of 8 

the virus. Green space accessibility may have been particularly important during this 9 

lockdown, as it could have provided benefits for physical and mental wellbeing, while also 10 

limiting the risk of transmission. However, the effects of public green space use on the rate 11 

of COVID-19 transmission are yet to be quantified, and as the size and accessibility of green 12 

spaces vary within local authorities, the risks and benefits to the public of using green space 13 

may well be context-dependent. To evaluate how green space affected COVID-19 14 

transmission across 98 local authorities in England, we first split case rates into two periods, 15 

the pre-peak rise and the post-peak decline in cases, and  assessed how baseline health 16 

and mobility variables influenced these rates. Next, looking at the residual case rates, we 17 

investigated how landscape structure (e.g. area and patchiness of green space) and park 18 

use influenced transmission. We first show that pre- and post-peak case rates were 19 

significantly reduced when overall mobility was low, especially in areas with high population 20 

clustering, and high population density during the post-peak period only. After accounting for 21 

known mechanisms behind transmission rates, we found that park use (showing a 22 

preference for park mobility) decreased residual pre-peak case rates, especially when green 23 

space was low and contiguous (not patchy). Whilst in the post-peak period, park use and 24 

green landscape structure had no effect on residual case rates. Our results show that 25 

utilising green spaces rather than other activities (e.g. visiting shops and workplaces) can 26 
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reduce the transmission rate of COVID-19, especially during an exponential phase of 27 

transmission. 28 
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Introduction 32 

The COVID-19 pandemic has had severe impacts on public health (Mahase, 2020) and 33 

remains an emergency of international concern. In response to the pandemic, the UK 34 

government implemented social distancing measures and a nationwide lockdown to control 35 

the spread of the virus (Gov, 2020). During this period, the general public was limited in the 36 

distances they could travel and the number of times they could leave their residence each 37 

day; with an allowance of one non-essential trip during the peak of transmission (Gov, 2020). 38 

This restriction meant that members of the public were unusually reliant on amenity spaces 39 

close to their residences for daily exercise and/or recreation. Green spaces may provide a 40 

comparatively safe place for these activities, though the amount and structure of green 41 

space available for public use differs widely across the UK. Here we evaluate if differences 42 

in the availability and structure of public green space within local authorities in England 43 

influenced the local rate of incidence of COVID-19.  44 

Green spaces, which we define as vegetated non-arable areas - see Taylor & Hochuli (2017) 45 

for further details - provide important cultural ecosystem services, benefiting both mental and 46 

physical health (Beyer et al., 2014; Cohen-Cline, Turkheimer, & Duncan, 2015). These 47 

benefits are usually considered in terms of reducing the prevalence or severity of conditions 48 

such as mental stress (Nutsford, Pearson, & Kingham, 2013) or cardiovascular disease 49 

(Seo, Choi, Kim, Kim, & Park, 2019). Green spaces could also have important effects on an 50 

acute stressor such as a disease pandemic, though, to date, these effects have not been 51 

well explored. COVID-19 has properties that make it a unique case-study of the influence of 52 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


3 

 

green space on health outcomes during a disease pandemic as 1) lockdown measures 53 

meant that access to green space was necessarily local, and so any relationship between 54 

green space and case-number was less likely to be confounded by travel outside of a local 55 

authority; 2) the disease was prevalent nationwide, affording a comparison between a large 56 

number of local authorities that differed in both case-numbers and green space access.  57 

Possible effects of green space on COVID-19 incidence could be from two causes: general 58 

health and wellbeing, and transmission. It is conceivable that general health and well-being 59 

is greater in areas with more green space as higher levels of green space are associated 60 

with healthier populations (Maas, Verheij, Groenewegen, De Vries, & Spreeuwenberg, 2006; 61 

Mitchell & Popham, 2007; van den Berg et al., 2015). As COVID-19 has a greater impact on 62 

those with underlying health conditions and sedentary lifestyles (Hamer, Kivimäki, Gale, & 63 

Batty, 2020; Jordan, Adab, & Cheng, 2020), green space may, therefore, indirectly provide 64 

some level of resilience to the disease and/or reduce incidence. However, as COVID-19 is a 65 

novel highly infectious disease, the main effects of green space are likely to be related to 66 

transmission probabilities. So far, evidence suggests that COVID-19 is transmitted via 67 

droplet infection, contact with contaminated individuals or surfaces, and potentially through 68 

aerosol transmission (Bahl et al., 2020). Green spaces are amenity areas where these risks 69 

are likely minimised as they are typically less spatially confined and have fewer surfaces 70 

prone to frequent touching or contact. Consequently, incidence could be higher in areas 71 

where green space is limited as recreation, however limited, may take place in alternative 72 

amenity spaces such as retail areas, with larger densities of people and more frequent 73 

contact with surfaces. 74 

Both the structure and amount of green space vary between local authorities, and both could 75 

influence COVID-19 incidence. Generally, it has been found that greater health benefits are 76 

derived from larger areas of green space (Ekkel & de Vries, 2017). In the context of disease 77 

transmission, larger areas may offer more space per individual, lowering transmission risk. 78 

However, smaller fragmented areas of green space are common in many residential areas 79 
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and are, therefore, more accessible to much of the population and may be used more 80 

frequently. Further, if public use is distributed across fragmented green spaces, the wider 81 

effects of a transmission incident could be reduced, as contacts would be isolated to the 82 

members of a neighbourhood or community adjacent to a particular green space. This 83 

process can be seen in animal diseases where habitat fragmentation reduces transmission 84 

due to limiting interactions between groups in different patches (Mccallum & Dobson, 2002). 85 

However, fragmentation also typically results from reductions in the total area of green space 86 

(Fahrig, 2013), leading to less overall space per individual, possibly increasing transmission 87 

rates.  88 

Whilst the effects of green space on COVID-19 transmission are currently unclear, other 89 

environmental and social factors are known to influence both the spread and severity of the 90 

disease. For example, human mobility drives the spread of infectious diseases (Kraemer et 91 

al., 2019) and studies have shown that reducing social interactions by restricting mobility can 92 

lead to a decrease in transmission rates of COVID-19 (Chinazzi et al., 2020; Gatto et al., 93 

2020). Furthermore, as diseases are often spread along transport links and in offices 94 

(Zhang, Huang, Su, Ma, & Li, 2018; Gatto et al., 2020), enforcing lockdown situations that 95 

curtail movement, such as requiring people to work from home, can have a great effect on 96 

reducing transmission rates. In addition to mobilty, health and social factors have been 97 

associated with increased severity of the disease such as age, underlying health conditions 98 

and deprivation (Richardson et al., 2020; Williamson et al., 2020). Consequently, any 99 

possible effects of green space must be considered after attempting to account for factors 100 

that could increase recorded incidence. 101 

Understanding the influence of green space on COVID-19 incidence could provide an 102 

estimate of the value of green space for maintaining public health if subjected to a 103 

resurgence of the COVID-19 pandemic, and, in the longer term, indicate the potential 104 

benefits of local green space on future pandemics of comparative severity. Here, using time 105 

series of local authority cases in England, UK, we explore how both green space use and 106 
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access influence COVID-19 incidence, which we define as the pre-peak rise, and post-peak 107 

drop in cases. Our approach is to first construct a baseline health model to attempt to control 108 

for factors likely to influence recorded COVID-19 incidence and then to explore how green 109 

space influenced case rates above or below this baseline. We predict that green space and 110 

the way it is structured, in itself, will have no effect on case rates. However, we expect that 111 

an increase in park use (i.e. spending time in green space) will make the structure and 112 

availability of green space important (Figure 1). Specifically, when green space is low, park 113 

use will likely represent a safer form of movement (e.g. compared to shopping), unless the 114 

green space becomes a congregation zone that inflates transmission risk. Furthermore, we 115 

predict that case rates will be lower when green space is fragmented, as the disease will be 116 

contained in more localised areas. For example, if the local authority has one large park the 117 

presence of an infected individual puts more people at risk than an infected individual 118 

attending one of many parks. Further, we predict, as others have found (Kraemer et al., 119 

2020), that increased mobility will increase incidence but that park use (measured as relative 120 

use of parks) is the safest form of mobility (e.g. preferable over shopping).   121 

  122 
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 123 

Figure 1.  Mechanisms by which green space and patchiness could interact with park use to influence 124 

COVID-19 transmission.  The upper two rows describe the primary predictions, whilst the bottom row 125 

explains alternate predictions. All variables (e.g. population density) except green space and 126 

patchiness, respectively, are held at a constant in these predictions. Green circles with a tree icon 127 

indicate the presence of green space. Dotted lines indicate walking routes, which becomes park use 128 

when the line overlaps a green space. The green health symbol indicates that the landscape metric 129 

and park use is beneficial, whilst the red toxic symbol indicates a risk. 130 

Methods 131 

Data compilation 132 

COVID-19 case rates 133 

We compiled daily lab-confirmed cases (incidence) of COVID-19 in England from January 1st 134 

up to 29th June 2020 (available from https://coronavirus.data.gov.uk/). Cases were recorded 135 

at the local authority level for 343 administrative areas. These local authorities vary in size (3 136 

– 26,000km2), demographics, cultures, and in socio-economic circumstances. Incidence 137 

over this time consists of a period with zero cases at the beginning of the year, sporadic 138 

cases for a short time, followed by a period of rapid case increases, and then a subsequent 139 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


7 

 

decline. To focus only on the pandemic, we first reduced the dataset to only include the 140 

period where new COVID-19 cases were reported in six out of seven consecutive days in 141 

each local authority. This, by visual inspection, captured the period of rapid incidence across 142 

authorities. Authorities were then further excluded if this period consisted of less than 10 143 

consecutive days of cases. We then modelled the rapid growth and decline of incidence over 144 

time using two log-linear exponential growth models in each local authority (Ma, Dushoff, 145 

Bolker, & Earn, 2014). The first model was fitted to the time-period up to the peak of 146 

incidence in each local authority, and the second to the period from the peak of incidence. 147 

The coefficients of these models provided a daily pre- and post-peak case rate. We 148 

converted these coefficients into a daily percentage change in cases. 149 

Baseline transmission variables 150 

We compiled variables which describe the mechanisms known to influence case rates. 151 

Firstly, we derived two variables which describe the structure of the local authority 152 

population: population density – average of residential and working population density 153 

(controls for green space in the green transmission difference model below); and population 154 

clustering – Moran’s I spatial autocorrelation of residential and working population density 155 

(controls for patchiness in the green transmission difference model below). Secondly. we 156 

compiled three variables which describe the health of the human population in each local-157 

authority prior to COVID-19: health – risk of premature death or a reduction in quality of life 158 

due to poor mental or physical health (Ministry of Housing Communities & Local 159 

Government, 2019); demography - the proportion of the population over 70 (Office for 160 

National Statistics, 2019); economy – the percentage of unemployed-individuals in the non-161 

retired local authority population (Gov, 2018). A high baseline health, whereby few 162 

individuals have pre-existing underlying health conditions, may decrease the chances of an 163 

individual presenting with severe symptoms of COVID-19 and further passing the virus to 164 

others (Clark et al., 2020). Accounting for this baseline health may also assist in controlling 165 

for the presence of asymptomatic undetected infections in the case rates.  166 
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Finally, to obtain information on population movements during the COVID-19 pandemic, we 167 

used Google Community Mobility Reports (Google, 2020). These reports chart movement 168 

trends over time across six categories: retail and recreation, groceries and pharmacies, 169 

transit stations, workplaces, residential, and parks. These trends describe how visitors to, or 170 

time spent in, each of the six categories changed compared to a pre-pandemic 5-week 171 

period (the median value from 3rd January to 6th February 2020). Gaps in the mobility data 172 

do not indicate a lack of movement, instead, gaps occur when the data fall below the 173 

required quality and privacy thresholds to ensure anonymity. Complete data were only 174 

available for 44 of the 343 local authorities in England, but were available in six of England’s 175 

9 higher level regions (Greater London, South East, South West, West Midlands, North 176 

West, North East, Yorkshire and the Humber, East Midlands, East of England). Missing local 177 

authority mobility values were populated with their regional estimates, producing a complete 178 

dataset of 98 local authorities. From this mobility dataset, we derived a variable which 179 

described overall mobility change, which is the change in overall mobility since baseline, 180 

averaged across each of the six categories. We calculated overall mobility separately for the 181 

pre-and post-peak period in each local authority, with the same respective start and end date 182 

as the COVID-19 case rate models. 183 

Green variables 184 

We compiled three variables which describe the structure of green spaces in each local 185 

authority: patchiness – median frequency of parks within a 1km2 radius around households 186 

in the local authority (Office for National Statistics, 2020); gardens – percentage of 187 

addresses with gardens (Office for National Statistics, 2020); green space – available green 188 

space per person (m2) within the local authority, derived by dividing the green-cover area by 189 

the local authority population size. Green-cover area was calculated from the UKCEH 2015 190 

25metre land cover raster (Rowland et al., 2017). From this raster, we sampled ten random 191 

20km2 areas within each local authority and found the total land cover area of the following 192 

landscape categories: broadleaved woodland, coniferous woodland, improved grassland, 193 
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neutral grassland, calcareous grassland, acid grassland, fen, marsh and swamp, heather, 194 

heather grassland, and bog. We then took the median of the ten 20km2 areas. The 20km2 195 

(2.5km2 radius and around a centre point) area was designed to represent a household and 196 

its surrounding green space (e.g. areas within walking distance). These areas were not 197 

confined within each local authority meaning households bordering another authority could 198 

have access to its green space. 199 

Using the mobility dataset, we also produced a park use variable, which represents how 200 

parks are used relative to overall mobility. This park use metric is derived by fitting a linear 201 

model between park use and overall mobility, and extracting the residual park use, where 202 

positive values represent a preference for using parks over other forms of mobility (in the 203 

original percentage units). Parks include public gardens, castles, national forests, campsites, 204 

observation points, and national parks, but exclude surrounding countryside in rural areas. 205 

As a result, the Google (2020) definition of parks differs slightly to the landscape categories 206 

used in our green space metric but are our best available representation of how green space 207 

was used during the pandemic.  208 

Modelling 209 

We developed three core model types (Figure 2): baseline transmission – aimed at 210 

controlling for the major mechanisms influencing case-rate changes; green transmission 211 

difference – impact of landscape structure and park use on case rates; and park use – 212 

impact of landscape structures on park usage, providing a mechansistic understanding of 213 

the green transmission difference model e.g. if park use is important, what influences park 214 

use. The baseline transmission and green transmission difference models are both focussed 215 

on case rates, but we anticipated that any effects of green space on COVID-19 case rates 216 

were likely to be much smaller than variables known to affect disease transmission (e.g. 217 

population density). As a result, we structured our analyses to first account for the presence 218 

of these more key variables in a baseline transmission model, and then in the green 219 

transmission difference model, we explored how green areas (the focus of this study) can 220 
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alter the residuals of these case rates. Conventionally, it is advised to include all variables 221 

within one regression instead of analysing the residuals separately (Freckleton, 2002). 222 

However, variables were highly correlated (e.g. population density and green space per 223 

person are derived in similar ways), and resulted in multicollinearity issues.  224 

 225 

Figure 2. Model structure for baseline transmission, green transmission difference, and park use 226 

models, depicting the process for developing the response variables, as well as the predictors used in 227 

each model. In the green transmission difference models, the red text represents the main model 228 

predictions. 229 

 230 

We z-transformed all predictor variables in the models to determine effect sizes and reduce 231 

multicollinearity where interatctions are present. Each of the models described below was 232 

repeated for the pre- and post-peak period, and all model assumptions passed e.g. 233 

multicollinearity, absence of spatial autocorrelation, homogeneity of variance, and normality 234 

of residuals. When summarising results, we report the mean ± standard deviation, and when 235 

describing model outputs we report the following: coef = standardised slope coefficient, se = 236 
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standard error of slope coefficient, df = model degrees of freedom, t = model test-statistic, 237 

and p = significance value. We report the model accuracy using two metrics described in 238 

Mayer (2020): wR2 – a weighted r-squared which describes the proportion of deviance 239 

captured by the model; and wmae – the weighted mean absolute error. Both of these metrics 240 

describe the accuracy of the model predicted values, and were derived within the dataset, 241 

rather than through an independent sub-sample. These metrics cannot indicate which aspect 242 

of the model contributed most to the prediction accuracy (e.g. model accuracy will be 243 

influenced by the fixed effects, random effects, the spatial correlation structure, and 244 

weighting structure).  245 

Baseline transmission models 246 

To control for the baseline health and transmission mechanisms influencing COVID-19 case 247 

rates, we developed linear mixed effect models, with case rate (pre- or post-peak) as the 248 

response. We included the following predictor parameters: health, demography, economy, 249 

population density, population clustering, and mobility change. We also included interactions 250 

between population density and clustering, population density and mobility change, and 251 

population clustering and mobility change. Lastly, in the post-peak case-rate models, we 252 

wanted to control for instances where the case-rate drop was steeper because it had a 253 

higher starting point. As a result, we included the maximum daily case count within the 254 

model, as well as pre-peak mobility change which was found to be influential in the pre-peak 255 

case rate model. 256 

We allowed the model to vary by region with a random intercept to account for the non-257 

independence of some regions sharing mobility data. We also set an exponential spatial 258 

correlation structure (using the local authorities’ latitude and longitude centroid) to account 259 

for the spatial autocorrelation of neighbouring local authorities sharing similar case rates. 260 

Case rates were also weighted according to their variance (i.e. the variance of the slope in 261 

the log-linear case rate regressions), such that areas where pre- and post-case rates were 262 
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less certain contributed proportionally less to the model fit. We extracted the residuals from 263 

these models for the green transmission difference models. 264 

It should be noted, even though variance inflation factors were suitably low for the baseline 265 

transmission models, the precision of the coefficients may be reduced as many predictors 266 

were correlated. Our justification for retaining these predictors in the baseline model, is that 267 

the primary goal was identifying the impact of green space use after controlling for other 268 

factors, and multicolinearity has no impact on predictive performance. However, to support 269 

inference and explanation, we also report a simplified version of these baseline transmission 270 

models in Table S1, where the health, demography and economy variables were removed.  271 

Green transmission difference models 272 

To assess how landscape structure and park use influenced residual case rates, we 273 

developed linear mixed effect models, with pre- or post-peak residual case rates form the 274 

baseline transmission models as the response, as well as the following predictor 275 

parameters: park use (inverse hyperbolic sine transformed), green space (log10 276 

transformed), patchiness, an interaction between park use and green space, and finally an 277 

interaction between park use and patchiness. These models also included region as a 278 

random intercept, but we did not control for the spatial structure of the data, which was 279 

addressed in the earlier baseline transmission model. We did, however, still include the 280 

variance weighting to specify that residuals from local authorities with a smaller variance in 281 

case rates should contribute more to the model. 282 

Park use models 283 

To understand how landscape structure influences park use and in turn, clarify the 284 

mechanisms by which park use influences case rates, we developed linear mixed effect 285 

models, with pre- or post-peak park use (inverse hyperbolic sine transformed) as the 286 

response, and the following predictor parameters: gardens, green space (log10 287 

transformed), patchiness, and an interaction between green space and patchiness. We also 288 
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included the region random intercept and a spatial correlation structure for the same reasons 289 

as in the baseline transmission model.  290 

 291 

Results 292 

Across the 98 local authorities, the pre-peak cases rose 9.8% (± 4.6) per day and peaked 293 

between 24th March and the 8th May. The peaks ranged in size from 9 to 132 daily cases, 294 

and then post-peak, the daily case rate declined at -4.8% per day (±2.2).  Mobility reduced 295 

substantially in the pre-peak period (-28.3% ± 8.5) and further again in the post-peak period 296 

(-37.0% ± 6.4), but not equally across England, with mobility increasing in 20.4% of local 297 

authorities between the pre- and post-peak period (Figure 3). In the pre-peak period, park 298 

use ranged from -19.7% to 22.4%, but post-peak this range increased from -43.3% to 299 

30.8%. Between this pre- and post-peak period, some authorities altered their park use, for 300 

example, park use decreased by 38% in Peterborough, whilst park use increased by 22% in 301 

Luton. 302 
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 303 

Figure 3. Change in a) pre-peak case rate, b) post-peak case rate, c) pre-peak mobility, d) post-peak 304 

mobility, e) pre-peak park use, and f) post-peak park use, across 98 local authorities in England. X 305 

and Y axes indicate longitude and latitude in decimal degrees.  306 

 307 

Baseline transmission models 308 

Pre-peak case rates were lower in areas with a reduction in mobility (coef = 2.43, se = 0.51, 309 

df = 80, t = 4.56, p < 0.001; Figure S1). Population density had no effect on pre-peak case 310 

rates. Population clustering had a weak effect when interacting with mobility change, where 311 

the effect of mobility change diminished when population clustering was low (coef = 1.00, se 312 

= 0.56, df = 80, t = 1.76, p = 0.08; Figure 4a) - this interactive effect was lost in the simplified 313 

baseline transmission model (Table S1). Given the variation in pre-peak case rates (Figure 314 
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3a), where daily case rises ranged from 2 – 21%, the model error was reasonably low (wmae 315 

= 2.45% the wR2 = 0.4). 316 

The post-peak case rates were also lower in areas with a reduction in mobility (coef = 0.81, 317 

se = 0.15, df = 78, t = 5.52, p < 0.001; Figure S2a), and we observed a similar interaction 318 

between population clustering and mobility change (coef = 0.24, se = 0.12, df = 78, t = 2.0, p 319 

= 0.048; Figure 4b), as in the pre-peak model. A similar result was found for the interaction 320 

between mobility change and population density, where the effect of mobility increasing 321 

post-peak case rates diminished at low population densities (coef = 0.59, se = 0.14, df = 78, 322 

t = 4.18, p < 0.001; Figure 4c). Population density also interacted with population clustering, 323 

with case-rates declining as clustering increases, (coef = -0.29, se = 0.14, df = 78, t = -2.11, 324 

p = 0.04), but only when population density was low (coef = 0.42, se = 0.15, df = 78, t = 2.81, 325 

p = 0.006; Figure 4d). Post-peak case-rates were also influenced by pre-peak activity, as 326 

rates were lower in areas with a reduction in pre-peak mobility (coef = 0.34, se = 0.14, df = 327 

78, t = 2.40, p = 0.019; Figure S2b), and areas with a larger peak in cases had a faster 328 

decline in post-peak case-rate (coef = -0.53, se = 0.10, df = 78, t = -5.16, p < 0.001; Figure 329 

S2c). The model error in post-peak case rates was lower than in the pre-peak case rates, 330 

with a moderately high post-peak prediction accuracy (wmae = 0.69% the wR2 = 0.61). 331 
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 332 

Figure 4. Marginal effects of important interaction parameters in the baseline transmission models. 333 

Marginal effects are held at zero for all other parameters as variables were z-transformed. In panels a 334 

and b, population clustering was set at 0.35 (Low) and 0.7 (High), where 0 indicates a random 335 

distribution of clustering, and 1 indicates a complete separation in clustering. Error bars represent the 336 

95 confidence intervals. 337 

 338 

Green transmission difference models 339 

Park use decreased residual pre-peak case rates (coef = -0.57, se = 0.29, df = 84, t = 1.99, 340 

p = 0.049; Figure 5a), but there was an interaction between park use and green space, with 341 

the effect of park use diminishing when green space was high (coef = -0.91, se = 0.35, df = 342 

84, t = 2.59, p = 0.01; Figure 5b). There was also an interactive effect between park use and 343 

patchiness, as park use decreased the residual pre-peak case rate when patchiness was 344 

low, but increased the case rate when patchiness was high (coef = -0.66, se = 0.32, df = 84, 345 

t = 2.03, p = 0.04;; Figure 5c). Green space and patchiness had no general effect on residual 346 

pre- or post-peak case rates, whilst park use and the interactive effects also had no effect on 347 

residual post-peak case rates (Table S2). Nevertheless, incorporating these park use and 348 

landscape structure effects led to a modest decrease in case rate prediction error; wmae 349 
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decreased from 2.45% to 2.34% in the pre-peak period, and from 0.69% to 0.655% in the 350 

post-peak period. This equated to more dramatic improvements in the wR2, where accuracy 351 

jumped from 0.42 to 0.5 in the pre-peak period, and from 0.61 to 0.68 in the post-peak 352 

period, which represent a 19% and 11% accuracy increase, respectively. 353 

 354 

Figure 5. Marginal effects of a selection of parameters in the green transmission difference (a-c) and 355 

park use (d-f) models. All other parameters are held at their mean (zero) for the marginal sffects. In 356 

panels d-f, the y-axes are inverse hyperbolic sine scaled, as are the x-axes in panels a-c. In panels e 357 

& f, the x-axis is log10 scaled. Error bars represent the 95 confidence intervals. 358 

 359 

Park use models 360 

Access to gardens, patchiness, and the interaction between green space and patchiness 361 

had no effect on pre-peak park use, but pre-peak park use was marginally greater in 362 

authorities with high green space (coef = 0.47, se = 0.26, df = 85, t = 1.77, p = 0.08; Figure 363 

5e). However, in the post-peak period, green space had no effect on park use (Figure 5f), 364 

except in the interactive effect with patchiness, where post-peak park use increased with 365 
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patchiness, but only when green space was high (coef = 0.36, se = 0.14, df = 85, t = 2.51, p 366 

= 0.01; Figure 5d). Patchiness and gardens did not have an overall effect on post-peak park 367 

use (Table S3). 368 

 369 

Discussion 370 

In this study, we attempted to quantify the effects of local green space on COVID-19 case 371 

rates after accounting for mechanisms known to influence pandemics in our baseline 372 

transmission model. We found that high overall mobility increased both pre- and post-peak 373 

case rates, especially when population clustering and density were high (this mobility-density 374 

interaction effect was only important in the post-peak period). After accounting for these 375 

variables, we found that higher park use, compared to other amenity areas, led to a 376 

reduction in pre-peak case rates, especially in areas with low and contiguos green space. 377 

These results highlight that utilising green spaces rather than carrying out other activities 378 

(e.g. visiting shops and workplaces) can reduce the transmission rate of COVID-19, 379 

especially during an exponential phase of transmission. 380 

From our baseline transmission model results, population density (Figure 4c) and clustering 381 

(Figure 4a, b) were only important when considered in an interaction with mobility, and 382 

population density was only important in the post-peak period. This is surprising, but is 383 

consistent with person-person contact as the major mechanism of transmission i.e. even a 384 

very dense and clustered population will have slow transmission rates if there are few 385 

interactions between people. This appears to demonstrate the general effectiveness of 386 

lockdown measures in reducing case rates, as others have demonstrated previously (Davies 387 

et al., 2020; Lau et al., 2020). However, we found mobility had less impact in low density, 388 

low clustered areas, which again may be expected, as people are more likely to be able to 389 

maintain distance and the potential number of interactions is reduced. However, even in 390 

these conditions, mobility still slightly increased post-peak case rates and so lockdown still 391 
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appeared to have some effect on reducing case rates even in low density and low clustered 392 

areas. 393 

Previous research has shown the importance of health, deprivation, demography and 394 

economic prosperity on COVID-19 case rates (Abedi et al., 2020; Atkins et al., 2020; Dowd 395 

et al., 2020). However, in our baseline health transmission models, these variables did not 396 

explain differences in COVID-19 case rates found in our dataset. This is likely due to the 397 

variables being somewhat correlated with population density, with consequent reductions in 398 

the information available in the data to assess their effects (as described in Methods). For 399 

example, an older population is correlated with decreased population density and though 400 

older people seem to be more vulnerable to COVID-19 (Jordan et al., 2020), they are more 401 

likely to reside in safer (low population density) areas; consequently separating these effects 402 

may simply not be possible given the data used. Another consideration between findings for 403 

demographic/social groups at a national scale and local case rates, is that the assemblages 404 

being compared contain varying proportions of the groups in question i.e. we ask ‘does an 405 

older population lead to higher local case rates?’, not ‘are there differences in the per-capita 406 

rate of cases between different demographic, economic, and health groups?’. We suggest 407 

that our analysis is unsuited to resolving questions of the second type and that the baseline 408 

transmission model is best viewed simply as controlling for possible factors in an attempt to 409 

isolate the effects of green space.  410 

Once we had accounted for known drivers of case-rates, we investigated how landscape 411 

structure and park use (i.e. mobility in green spaces) affected residual case rates using the 412 

green transmission model. Here we found that using parks, relative to other other types of 413 

mobility, led to a reduction in pre-peak case rates (Figure 5a). However, reducing overall 414 

mobility (i.e. mobility to all amenity areas) led to a far more substantial decline in both pre- 415 

and post-peak case rates, especially in dense and clustered populations as found in the 416 

baseline transmission model. For example, continuing mobility at pre-pandemic levels led to 417 

15.4% daily increase in cases when park use was at its highest, compared to a 17.4% daily 418 
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increase when park use was at its lowest - a 2% case rate reduction. In contrast, halving 419 

overall mobility reduced case rates by 13.6%. This suggests that the use of parks may have 420 

modestly helped in reducing transmission rates in some areas during the increasing phase 421 

of the pandemic, but reducing overall mobility is substantially more beneficial than 422 

maintaining mobility at pre-pandemic levels and spending that mobility in parks.  423 

Whilst park use, overall, had a relatively small effect, we did note stronger effects of park use 424 

when the context of the local area was considered as using parks was beneficial in 425 

authorities with low and contiguos green space (Figure 5b and 5c). That park use has a 426 

minor beneficial effect overall seems to support our hypothesis that recreation in green 427 

space and parks may be safer than in other amenity areas. This is probably because it is 428 

easier to maintain distance and green spaces have fewer surfaces which could result in 429 

transmission if contaminated. However, the limiting impact of this when green space is high 430 

and accessible seems to suggest diminishing returns in how park use can impact COVID-19 431 

transmission. This is perhaps not surprising if the main value of parks in this context is as an 432 

alternative to other relatively more hazardous amenity or shopping areas. Consequently, if 433 

there are other safe options outside of public parks then parks will likely have little impact. 434 

However, our findings do suggest that the use of public parks in a highly urbanised area may 435 

be advantageous, though as noted above the strongest effect was from the reduction of all 436 

forms of mobility. Therefore, cautiously, and given that it corresponds with common sense, 437 

we suggest that reducing mobility is a successful strategy for reducing case-rates but given 438 

a need for some non-essential time outside of a home, using green spaces such as local 439 

parks may be the next best thing, particularly in highly urbanised areas.       440 

As we demonstrated the importance of park use over other types of mobility in reducing the 441 

exponential rise in cases, we then aimed to understand what green space parameters (area 442 

and patchiness of green space and access to gardens) influenced pre- and post-peak park 443 

use. We found that, overall, accessible green space marginally predicted an increase in pre-444 

peak park use (Figure 5e), but not post-peak (Figure 5f). We also noted an interaction 445 
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between use of parks and the amount and patchiness of the green space (Figure 5d – but 446 

should be f). We found that if an area had high green space, but it was not patchy, then it 447 

was used less, but that in low green space areas patchiness had little effect. A possible 448 

explanation for this is that in less green areas overall, large areas of concentrated green 449 

space act as a stronger attractor for a certain kind of experience for members of the public. 450 

For example, a large park in a heavily urbanised area provides a walking experience that 451 

may not be readily substituted by walking through other local areas, whereas a walk in an 452 

overall greener area may be more comparable to that in a park. This is supported by 453 

evidence that suggests greater phychological benefits when walking in green parks as 454 

opposed to urban streets (Johansson, Hartig, & Staats, 2011), as well as evidence 455 

highlighting the combined health benefits of physical activity within green spaces (Pretty et 456 

al., 2007). Consequently, as would be predicted from basic considerations of scarcity, local 457 

green space provision seems to have more consistent value in areas where there is less 458 

green space independent of its structure, however, overall, accessibility seems to be a 459 

driving factor of usage. 460 

A major limitation of the work is the difficulty in comparing across local authorities that vary 461 

simultaneously in many different variables likely important to case rates. As mentioned 462 

previously, this makes inference about the importance of their individual effects very difficult, 463 

or simply not possible. Therefore, we reiterate that our results do not provide evidence that 464 

the demographic and social groups included are not more or less affected by COVID-19, and 465 

we suggest that any findings from studies directly addressing questions about these groups 466 

are given priority. Another challenge is that pandemics are rare events, consequently, our 467 

analysis covers only a snapshot of time for each local authority. During this period, many 468 

different factors not included in the analysis (e.g. chance super spreading events) may have 469 

explained much of the variation between local authorities. Despite this, the model fits are 470 

reasonably high, especially after incorporating the green transmission models. However, the 471 

modest beneficial effect of park use on COVID-19 transmission could be useful in the 472 
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general attempt to develop guidance for which spaces to use during an exponential phase of 473 

transmission.  474 

Understanding the risks of different amenity areas could be important for longer-term 475 

management of COVID-19 and in particular, the landscape-dependency of this advice could 476 

be important for developing ‘local-lockdown’ guidance. Our results show that spending time 477 

in parks, relative to other amenity areas can reduce COVID-19 case rates especially in 478 

urbanised, high-density areas. Although, further research is needed, these findings suggest 479 

that the use of parks for recreational activity in these contexts could be advisable, 480 

demonstrating a possible additional utility of these green spaces in addition to the known 481 

benefits to health and wellbeing (de Vries, Verheij, Groenewegen, & Spreeuwenberg, 2003; 482 

Mitchell & Popham, 2007; Nutsford et al., 2013) in normal non-pandemic conditions.     483 

 484 
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