
 

 

1 

 

Associations between COVID-19 transmission rates, 1 

park use, and landscape structure 2 

Thomas F. Johnson1, Lisbeth A. Hordley1, Matthew P. Greenwell1, Luke C. Evans1 
3 

1: Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK 4 

Corresponding author: Thomas Frederick Johnson (Thomas.frederick.johnson@outlook.com) 5 

Abstract 6 

The COVID-19 pandemic has had severe impacts on global public health. In England, social 7 

distancing measures and a nationwide lockdown were introduced to reduce the spread of the virus. 8 

Green space accessibility may have been particularly important during this lockdown, as it could 9 

have provided benefits for physical and mental wellbeing. However, the associations between public 10 

green space use and the rate of COVID-19 transmission are yet to be quantified, and as the size 11 

and accessibility of green spaces vary within England’s local authorities, the risks and benefits to 12 

the public of using green space may be context-dependent. To evaluate how green space affected 13 

COVID-19 transmission across 299 local authorities (small regions) in England, we calculated a 14 

daily case rate metric, based upon a seven-day moving average, for each day within the period  15 

June 1st -  November 30th 2020 and assessed how baseline health and mobility variables influenced 16 

these rates. Next, looking at the residual case rates, we investigated how landscape structure (e.g. 17 

area and patchiness of green space) and park use influenced transmission. We first show that 18 

reducing mobility is associated with a decline in case rates, especially in areas with high population 19 

clustering. After accounting for known mechanisms behind transmission rates, we found that park 20 

use (showing a preference for park mobility) was associated with decreased residual case rates, 21 

especially when green space was low and contiguous (not patchy). Our results support that a 22 

reduction in overall mobility may be a good strategy for reducing case rates, endorsing the success 23 

of lockdown measures. However, if mobility is necessary, outdoor park use may be safer than other 24 

forms of mobility and associated activities (e.g. shopping or office-based working). 25 
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1. Introduction 30 

The COVID-19 pandemic has had severe impacts on public health (Mahase, 2020) and remains an 31 

emergency of international concern. In response to the pandemic, the UK government implemented 32 

social distancing measures and nationwide lockdowns to control the spread of the virus (UK 33 

Government, 2020a). During these periods, the general public were limited in the distances they 34 

could travel and, at certain points, the number of times they could leave their residence each day; 35 

with an allowance of one non-essential trip during the peak of transmission (UK Government, 36 

2020a). Though social restrictions have fluctuated in response to case rates, social distancing has 37 

been constant and there has been a general message of reduced movement and staying local 38 

where possible for much of 2020 and throughout 2021. These restrictions have meant that 39 

members of the public became more reliant on amenity spaces close to their residences for daily 40 

exercise and/or recreation (Geng et al., 2021). Green spaces may provide a comparatively safe 41 

place for these activities, though the amount and structure of green space available for public use 42 

differs widely across the UK. Here we evaluate if differences in the availability and structure of 43 

public green space within local authorities (local government bodies responsible for public services 44 

within a specified area) in England, and their usage, influenced the local rate of incidence of 45 

COVID-19.  46 

Green spaces, which we define as vegetated non-arable areas - see Taylor & Hochuli (2017) for 47 

further details - provide important cultural and recreational ecosystem services, benefiting both 48 

mental and physical health (Beyer et al., 2014; Cohen-Cline et al., 2015). These benefits are usually 49 

considered in terms of reducing the prevalence or severity of conditions such as mental stress 50 

(Nutsford et al., 2013) or cardiovascular disease (Seo et al., 2019), and some of these benefits have 51 

continued throughout the pandemic (Slater et al., 2020; Soga et al., 2020). However, the influence 52 

of green space use on disease transmission rates has received less investigation, but is of great 53 
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importance as green space use has increased rapidly during the pandemic (Venter et al., 2020). 54 

Furthermore, it is unclear how ‘safe’ green spaces are during periods of higher incidence especially 55 

in densely populated areas (Shoari et al., 2020).  56 

We anticipate that green space could impact COVID-19 incidence in two ways: general health and 57 

wellbeing, and transmission. It is conceivable that general health and well-being is greater in areas 58 

with more green space, as higher levels of green space are associated with healthier populations 59 

(Maas et al., 2006; Mitchell and Popham, 2007; van den Berg et al., 2015). As COVID-19 has a 60 

greater impact on those with underlying health conditions and sedentary lifestyles (Hamer et al., 61 

2020; Jordan et al., 2020), green space may, therefore, indirectly provide some level of resilience to 62 

the disease and/or reduce incidence. However, our key focus here is on transmission, as it is likely 63 

that the major benefits of outdoor recreation in green space are related to a lower risk of infection. 64 

Current evidence suggests that COVID-19 is spread via droplet infections, contact with 65 

contaminated individuals or surfaces, and through aerosol transmission (Bahl et al., 2020). These 66 

risks are likely minimised in green space areas, as generally, they are less spatially confined, and 67 

contain fewer surfaces prone to frequent touching or contact. Consequently, green space use may 68 

represent a safe form of recreation by minimising risk of infection.  69 

In England approximately 87% of the population are within a 10-minute walk of public parks and 70 

gardens (Shoari et al. 2020). However, both the structure and amount of green space vary between 71 

local authorities, and both could influence COVID-19 incidence. Generally, it has been found that 72 

greater health benefits are derived from larger areas of green space (Ekkel and de Vries, 2017). In 73 

the context of disease transmission, larger areas may offer more space per individual, lowering 74 

transmission risk. However, smaller fragmented areas of green space are common in many 75 

residential areas and are, therefore, more accessible to much of the population and may be used 76 

more frequently. Further, if public use is distributed across fragmented green spaces, the wider 77 

effects of a transmission incident could be reduced, as contacts would be isolated to the members 78 

of a neighbourhood or community adjacent to a particular green space. This process can be seen in 79 

animal diseases where habitat fragmentation reduces transmission due to limiting interactions 80 

between groups in different patches (Mccallum and Dobson, 2002). However, fragmentation also 81 
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typically results from reductions in the total area of green space (Fahrig, 2013), leading to less 82 

overall space per individual, possibly increasing transmission rates.  83 

Whilst the effects of green space on COVID-19 transmission are currently unclear, other 84 

environmental and social factors are known to influence both the spread and severity of the 85 

disease. For example, human mobility drives the spread of infectious diseases (Kraemer et al., 86 

2019) and studies have shown that reducing social interactions by restricting mobility can lead to a 87 

decrease in transmission rates of COVID-19 (Chinazzi et al., 2020; Gatto et al., 2020). Furthermore, 88 

as diseases are often spread along transport links and in offices (Gatto et al., 2020; Zhang et al., 89 

2018), enforcing lockdown situations that curtail movement, such as requiring people to work from 90 

home, can have a great effect on reducing transmission rates. In addition to mobility, health and 91 

social factors have been associated with increased severity of the disease such as age, underlying 92 

health conditions, and deprivation (Richardson et al., 2020; Williamson et al., 2020). Consequently, 93 

any possible effects of green space must be considered after attempting to account for factors that 94 

could increase recorded incidence. 95 

Given the stated benefits of green space, it is important to attempt to evaluate using the available 96 

evidence, the impact of green space use on transmission rates. In addition, understanding the 97 

influence of green space on COVID-19 incidence could provide an estimate of the value of green 98 

space for maintaining public health if subjected to a resurgence of the COVID-19 pandemic. And, in 99 

the longer term, indicate the potential benefits of local green space on future pandemics of 100 

comparative severity. Here, using time series of COVID-19 cases within local authorities in England, 101 

we explore how both green space use and access (i.e. availability of green spaces) influence 102 

COVID-19 incidence. Our approach is to first construct a baseline transmission model to attempt to 103 

control for factors likely to influence recorded COVID-19 incidence and then to explore how green 104 

space influenced case rates above or below this baseline. We predict that green space and the way 105 

it is structured will, in itself, have no effect on case rates. However, we expect that an increase in 106 

relative park use (i.e. spending time in green space over indoor activities) will make the structure 107 

and availability of green space important (Figure 1). Specifically, when green space is low, park use 108 

will likely represent a safer form of movement (e.g. compared to shopping), unless the green space 109 
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becomes a congregation zone that inflates transmission risk. Furthermore, we predict that case 110 

rates will be lower when green space is fragmented, as the disease will be contained in more 111 

localised areas. For example, if the local authority has one large park the presence of an infected 112 

individual puts more people at risk than an infected individual attending one of many parks. Further, 113 

we predict, as others have found (Kraemer et al., 2020), that increased mobility will increase 114 

incidence, but that park use (measured as relative use of parks) is a relatively safe form of mobility 115 

(e.g. preferable over shopping).   116 

 117 

Figure 1.  Mechanisms by which green space and patchiness could interact with park use to influence 118 

COVID-19 transmission. The upper two rows describe the primary predictions, whilst the bottom row explains 119 

alternate predictions. All variables (e.g. population density) except green space and patchiness, respectively, 120 

are held at a constant in these predictions. Green circles with a tree icon indicate the presence of green 121 

space. Dotted lines indicate walking routes, which becomes park use when the line overlaps a green space. 122 

The green health symbol indicates that the landscape metric and park use is beneficial, whilst the red toxic 123 

symbol indicates a risk. 124 

2. Methods 125 

2.1 Data compilation 126 

2.1.1 COVID-19 case rates 127 
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We compiled daily lab-confirmed cases (incidence) of COVID-19 in England from February 15th 128 

2020 up to November 30th 2020 (available from https://coronavirus.data.gov.uk/). We only included 129 

cases until November, as in December England began an aggressive vaccination campaign and the 130 

more infectious COVID B1.1.7 variant began to spread widely (Horby et al., 2021) – factors that 131 

could confound our models (see below). Cases were recorded at the lower tier local authority 132 

(administrative areas for local government) level (N = 299). These local authorities vary in size (3 – 133 

26,000km2), demographics, cultures, and in socio-economic circumstances. Incidence over this time 134 

was highly variable with periods of rapid increases, which were then relatively controlled by periods 135 

of national lockdown (Figure 2). To determine factors influencing COVID-19 transmission, we 136 

estimated case rates for each day in each local authority. Case rates were derived by fitting log-137 

linear models, regressing the natural log of daily cases against date (days). To reduce the effect of 138 

daily variation in reported cases and instead capture the general trend, we fit these regressions over 139 

7-day moving windows (Figure S1) e.g. to estimate the case rate on August 4th, a regression was fit 140 

between cases from August 1st – 7th, for August 5th a regression was fit between August 2nd – 8th. 141 

The coefficients of these models provided a daily case rate. We converted these coefficients into a 142 

daily percentage change in cases. We opted to calculate case rates instead of using raw daily case 143 

numbers, as case rates more adequately capture transmissibility i.e. regardless of whether cases 144 

jumped from 5 to 10, or 50 to 100, the case rates would capture the doubling effect. Furthermore, 145 

case rates are more robust to variation in the population size of a local authority. 146 

 147 

 148 
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 149 

Figure 2.  a) Daily lab-confirmed cases across England, with lockdown periods (with restricted mobility) 150 

indicated with red shading. b) Google mobility trends (Google, 2020), describing change in mobility over time 151 

for five different categories, relative to a baseline period  (January 3rd to February 6th 2020). We excluded the 152 

sixth category ‘residential mobility’ as it is measured differently to all other categories (Google, 2020). Each 153 

line within the mobility trends represents a local authority. All plots extend from February 15th to November 154 

30th 2020. For the ‘parks’ plot, we limited the y-axis at 300% to exclude a small number of extreme 155 

observations with high park use. 156 

  157 
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2.1.2 Baseline transmission variables 158 

We compiled variables which describe the mechanisms considered to influence case rates (Table 159 

1). Firstly, we derived two variables which describe the structure of the local authority population: 160 

population density – residential population density (controls for green space in the green 161 

transmission model below); and population clustering – Moran’s I spatial autocorrelation of 162 

residential population density (controls for patchiness in the green transmission model below). 163 

Secondly, we compiled three variables which characterise the human population in each local-164 

authority prior to COVID-19: health – risk of premature death or a reduction in quality of life due to 165 

poor mental or physical health (Ministry of Housing Communities & Local Government, 2019); 166 

demography - the percentage of the population over 70 (Office for National Statistics, 2021a); 167 

economy – the percentage of unemployed-individuals in the non-retired local authority population 168 

(UK Government, 2018). A high baseline health, whereby few individuals have pre-existing 169 

underlying health conditions, may decrease the chances of an individual presenting with severe 170 

symptoms of COVID-19 and further passing the virus to others (Clark et al., 2020). Accounting for 171 

this baseline health may also assist in controlling for the presence of asymptomatic undetected 172 

infections in case rates.  173 

  174 
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Table 1. Description of variables within the baseline and green transmission models, including the 175 

scale at which the variable is measured, where ‘Static’ indicates only one value is derived per local 176 

authority, whilst there are unique values for each case rate in ‘Timeseries’ variables. 177 

Variable Description Scale 

Baseline transmission model  

Population density 
Local authority population size in mid-year 2019 divided by local authority area [in 
sq.km]. Source: Office for National Statistics (2021c) 

Static 

Population clustering 
Moran’s I spatial autocorrelation of residential population density in 2011, extracted 
from the UK’s gridded 1km resolution population raster. Source: UK Government 
(2020b) 

Static 

Health 

The health aspect of the multiple deprivation index, describing the risk of 
premature death or a reduction in quality of life due to poor mental or physical 
health. Low values indicate greater health deprivation. Source: Ministry of Housing 
Communities & Local Government (2019) 

Static 

Demography 
Percentage of local authority population aged over 70 in June 2019. Source: Office 
for National Statistics (2021b) 

Static 

Economy 
Percentage of local authority population (adult non-retired) unemployed in 
December 2019. Source: UK Government (2020c) 

Static 

Mobility change 

Daily mean overall mobility in each local authority across five of the Google 
mobility metrics: transport, workplaces, parks, grocery & pharmacy stores, and 
retail & recreation. Overall mobility averaged over the previous 2 to 12 days before 
each case rate. Source: Google (2020) 

Timeseries 

Community cases 
Seven-day rolling average in cases within each local authority. Variable also 
included within the green transmission model. Source: 
https://coronavirus.data.gov.uk/ 

Timeseries 

Green transmission model  

Green space 

Green space per person (m2). Derived by dividing total green space area in each 
local authority by the local authority’s population size. We consider green spaces 
as any area meeting the following land cover types: broadleaved woodland, 
coniferous woodland, improved grassland, neutral grassland, calcareous 
grassland, acid grassland, fen, marsh and swamp, heather, heather grassland, and 
bog. We excluded agricultural land cover types as these were deemed a largely 
inaccessible/private land cover area. Source: Rowland et al. (2017) 

Static 

Patchiness 
Median frequency of parks within a 1km buffer around local authority houses. 
Source:  Office for National Statistics (2021a) 

Static 

Park use 

Contribution of park use to the overall mobility metric, derived by extracting the 
residuals of a linear model between park mobility (response) and overall mobility 
(predictor) within each local authority. A positive residual value indicates park use 
exceeds what we would expect given park and overall mobility trends within the 
local authority. As with the mobility change variable, park use is averaged over the 
2 to 12 days before each case rate. Source: Google (2020) 

Timeseries 

 178 

 179 
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National lockdowns, and the resulting reduction in people’s mobility, were an important tool for 180 

reducing transmission within England during the COVID-19 pandemic. We used Google Community 181 

Mobility Reports to track human mobility and its effect on case rates (Google, 2020). These reports 182 

chart movement trends over time across six categories: retail and recreation, groceries and 183 

pharmacies, transit stations, workplaces, residential, and parks. These trends describe how visitors 184 

to, or time spent in, each of the six categories changed compared to a pre-pandemic 5-week period 185 

(the median value from January 3rd to February 6th 2020). As the mobility data contained missing 186 

values (c.12%) for some local authorities and dates (Figure S2), we were conscious that these 187 

missing values may lead to statistical inference errors within the models below. As a result, we filled 188 

missing mobility values using mice: multiple imputation chained equations R package and ‘2l.pan’ 189 

imputation approach, which is a hierarchical normal model within homogenous within group 190 

variances (Van Buuren and Groothuis-Oudshoorn, 2011). This hierarchical structure allowed us to 191 

model mobility trends accounting for differences in local authorities. We included the following terms 192 

within our imputation model: five Google mobility timeseries (all except residential), as well as a 1-193 

day lag period for each timeseries, the number of days along the timeseries since February 15th with 194 

a cubic polynomial term, an indicator variable to describe whether each day was a weekend or not, 195 

and the timeseries of daily COVID-19 cases within the local authority. We also included terms that 196 

didn’t vary through time, including: the latitude and longitude of the local authority, and all local 197 

authority covairates within the baseline and green transmission models below (population density, 198 

population clustering, health, demography, economy, green space, and patchiness). Finally, we also 199 

included some national metrics that could infleunce local mobility, including: a timeseries of daily 200 

COVID-19 cases measured at the national scale, as well as the mean daily temperature and 201 

precipitation within Central England. We ran this model through 10 chains, each with 20 iterations, 202 

and 20 pan iterations. The imputation model converged. 203 

Conventionally, as part of a multiple imputation framework, these 10 chains should then be 204 

modelled seperately and coefficient standard errors should be inflated with Rubin’s rules (Little and 205 

Rubin, 2002). However, given the small percentage of missing values, and that there are currently 206 

no well defined steps for using Rubin’s rules in genralized additive models (see our models below), 207 
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we instead averaged mobility values across the 10 chains to produce mean estimates of mobility for 208 

each category, day, and local authroity i.e. conducting single impuation. We ensured the 209 

imputations produced plausible values (Figure S3). From this mobility dataset, we derived a variable 210 

which described overall mobility change for each date in each local authority, which is the average 211 

mobility change across five of the six categories (excluding residential) for each day in each local 212 

authority. We excluded the residential mobility category as it is inversely correlated with all other 213 

categories and is measured differently (Google, 2020). However, as there is likely a delay between 214 

a mobility reduction and a case rate reduction (Lauer et al., 2020), we lagged the overall mobility 215 

change metric by linking each case rate with the mean mobility change from 2 – 12 days prior. As a 216 

result of this lag, we trimmed the temporal extent of dataset to cover March 1st – November 30th 217 

2020 (instead of February 15th – November 30th 2020). 218 

2.1.3 Green variables 219 

We compiled two variables which describe the structure of green spaces in each local authority: 220 

patchiness – median frequency of parks within a 1km2 radius around households in the local 221 

authority (Office for National Statistics, 2021c); green space – available green space per person 222 

(m2) within the local authority, derived by dividing the green-cover area by the local authority 223 

population size. Green-cover area was calculated from the UKCEH 2015 25 metre land cover raster 224 

(Rowland et al., 2017) and covered a variety of landscape categories (Table 1). For this green-cover 225 

area calculation, we set a 1km buffer around the local authority, to represent green space access of 226 

households on the local authority border. 227 

Using the mobility dataset, we also produced a park use variable, which represents how parks are 228 

used relative to overall mobility. This park use metric is derived by fitting a linear model between 229 

park use and overall mobility within each local authority, and extracting the residual park use, where 230 

positive values represent a preference for using parks over other forms of mobility for a given date 231 

(in the original percentage units). Parks include public gardens, castles, national forests, campsites, 232 

observation points, and national parks, but exclude surrounding countryside in rural areas. As a 233 

result, the Google (2020) definition of parks differs slightly to the landscape categories used in our 234 
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green space metric but was our best available representation of how green space was used during 235 

the pandemic. As in the overall mobility change metric, park use represents the mean use of parks 236 

in the prior 2 to 12 days. 237 

2.2 Modelling 238 

We developed two core models (Figure 3): baseline transmission – aimed at controlling for the 239 

major mechanisms influencing case rates; and green transmission – impact of landscape structure 240 

and park use on case rates. The baseline and green transmission models are both focussed on 241 

case rates, but we anticipated that any effects of green space on COVID-19 case rates were likely 242 

to be much smaller than variables known to influence disease transmission (e.g. population 243 

density). As a result, we structured our analyses to first account for the presence of these more 244 

influential variables in a baseline transmission model, and then in the green transmission model, we 245 

explored how green areas (the focus of this study) can alter the residuals of these case rates. 246 

Conventionally, it is advised to include all variables within one regression instead of analysing the 247 

residuals separately (Freckleton, 2002). However, variables were highly correlated (e.g. population 248 

density and green space are derived in similar ways), and resulted in multicollinearity issues. 249 

Dealing with the major mechanisms first (e.g. population density) mitigated these multicollinearity 250 

issues. 251 

 252 

Figure 3. Model structure for baseline transmission and green transmission difference models, depicting the 253 

process for developing the response variables, as well as the predictors used in each model. 254 

e 
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To control for the baseline health and transmission mechanisms influencing COVID-19 case rates, 255 

we developed a generalized additive model within the mgcv R package (Wood, 2021), with case 256 

rate as the response – inverse hyperbolic sine transformed to address heavy tailed residuals. We 257 

included the following parameters as linear predictors: health, demography, economy, population 258 

density (log10 transformed), population clustering, and mobility change. We also included 259 

interactions between population density and clustering, population density and mobility change, and 260 

population clustering and mobility change. In model development, it was clear that the residuals 261 

were experiencing extreme positive temporal autocorrelation, where case rate values were very 262 

similar to values from the previous day. As a result, we also included the previous days case rate 263 

(one day lag) as a linear predictor in the model. We included random intercept smoothing over the 264 

local authorities to account for the non-independence of multiple case rates within the same local 265 

authorities. Due to working hour restrictions in England, case counts on Saturdays and Sundays 266 

were largely underestimated, and then over-estimated on Mondays and Tuesdays. As a result, we 267 

also included a cyclic smoothing term (with up to 7 knots) over day of the week to capture reporting 268 

biases and control for daily variation (days within a week) in case reporting. We extracted the 269 

residuals from this model for the green transmission model. 270 

To assess how landscape structure and park use influenced residual case rates, we again 271 

developed a generalized additive model, with residual case rates form the baseline transmission 272 

models as the response, as well as the following linear predictor parameters: park use, green space 273 

(log10 transformed), patchiness, as well as interactions between park use and green space, and 274 

park use and patchiness. These models also included random intercept smoothing over local 275 

authorities, but we did not control for the smoothing over days of the week, which was addressed in 276 

the earlier baseline transmission model. 277 

2.2.1 Sensitivity analysis 278 

In both the baseline and green transmission models, we were conscious that some parameter 279 

effects may have varied through time. For example, some covariates may have been particularly 280 

influential prior to mandatory mask wearing in shops on July 24th 2020. As a result, we extracted the 281 
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first four weeks of data from our case rate dataset and ran the models on this subset. We then 282 

shifted the data forwards one week and re-ran the models, repeating this procedure (moving 283 

window), creating 40 replicates of the coefficients each representing a different-overlapping period 284 

of time between March 1st and November 30th 2020. From this, we established that the majority of 285 

coefficients were very stable over time (Figure S4), but mobility change, health, case rate lag, and 286 

park-use were somewhat variable. Looking at how these coefficients change through time, it was 287 

clear that mobility change had a temporal trend, where mobility effects were greatest when cases 288 

were at their highest. As a result, we amended the baseline transmission model to include an 289 

interaction between the mobility variables and the number of cases (averaged over the nearest 7 290 

days) in the local authority at a given moment in time (see Equation S1-2 for the final model 291 

structures). There was no clear temporal trend in the health, case rate lag, and park-use variables 292 

so these remained untouched within the models. We also noted that the magnitude of the mobility 293 

change effect was far greater in the first lockdown period (March – May 2020). We suspect the large 294 

effect is genuine, but given there were spatial biases in case-testing availability during the first 295 

lockdown, we opted to re-model the data with a trimmed temporal extent (June 1st to November 30th 296 

2020). From this, it was apparent that coefficients were generally far more conservative using the 297 

trimmed dataset, albeit still in the same direction (Figure S5). Given this discrepancy in results 298 

(depending on the temporal extent), we opted to restrict our analyses throughout the rest of this 299 

manuscript to solely focus on the more conservative trimmed temporal extent, which is likely to be 300 

far less effected by spatial variability in case-testing availability – so more robust. As a result, all 301 

model outputs and projections (see below) are derived from the data covering June 1st to November 302 

30th 2020. 303 

In the analyses, we opted to fill missing mobility values with imputation instead of using complete-304 

case analyses, where any observations with missing mobility data are removed. However, given the 305 

small percentage of missing values, and that the mobility data is averaged across five categories, 306 

and then again through time, we wanted to ensure model coefficients did not change drastically 307 

under imputation, which could be a sign of a statistical inference error (Johnson et al., 2021). As a 308 

result, we repeated the analyses using only complete-case observations and compared model 309 
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coefficients between the missing value approaches. Given the similarity in the complete-case and 310 

imputation coefficients (Figure S5), we continued using the coefficients from the imputation model 311 

which covered a greater array of local authorites. 312 

 313 

2.2.2 Model checking  314 

We standardised (subtracting values from their mean and dividing by their standard deviation) all 315 

predictor variables in the models to determine effect sizes and reduce multicollinearity where 316 

interactions are present. All model assumptions passed e.g. multicollinearity (variance inflation 317 

factors less than 3 within both the baseline and green transmission model), concurvity (observed 318 

and estimated concurvity less than 0.1), absence of spatial (Moran’s I = 0.1) and temporal 319 

autocorrelation (Figure S6), homogeneity of variance, and normality of residuals. When 320 

summarising results, we report the mean ± standard deviation, and when describing model outputs 321 

we report the standardised slope coefficient and 95% confidence intervals. We also report the R2 for 322 

each model. All analyses were conducted in R 4.0.3 (R Development Core Team, 2020). 323 

2.2.3 Projecting cases 324 

To understand how mobility patterns have influenced cases, we projected cases using the baseline 325 

and green transmission models under three scenarios: 1) cases under observed mobility patterns; 326 

2) cases after a 20% reduction in each day’s overall mobility; 3) cases after a 20% increase in each 327 

day’s park use. We ran the baseline and green transmission models through each of the scenarios 328 

for every local authority between March 1st and November 30th 2020. We standardised all authorities 329 

so they had the same starting number of cases (10), community cases (10), and lagged case rate 330 

(0.58%; the mean case rate across local authorities on February 28th). These cases, community 331 

cases, and lagged case rate were updated and iteratively informed by the new model predictions, 332 

instead of the observed data. As a result, the projected case rates are solely influenced by the 333 

landscape structure and mobility patterns in the local authority. We constrained the case rates so 334 

they could not exceed the range of the observed case rates (-40% to 70%).  We converted the 335 

projected case rates into projected cases, against the starting case value of 10. 336 
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3. Results 337 

Across the 299 local authorities, case rates fluctuated substantially through time (Figure 4a). 338 

Mobility declined substantially during the first national lockdown in March to May, and in the run up 339 

to winter (Figure 4b). During the summer months, mobility and the variance in mobility increased, 340 

and in some local authorities these increases were close to 100% (doubling mobility). In contrast, 341 

park use increased during the first lockdown and remained high (approximately 25% above 342 

baseline) until winter approached in October (Figure 4c). There was less variation in park use trends 343 

between local authorities than in the mobility change metric. 344 

 345 

Figure 4. a) Temporal patterns in case rates (a), mobility change (b) and park use (c) between March 1st and 346 

November 30th 2020, with each line representing a different local authority. The red line represents the Oxford 347 

local authority and acts purely as an example. Case rates are defined as the daily percentage change in 348 

cases calculated over a seven day moving average. Mobility change is the mean daily percentage change 349 
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over five mobility types (Park, Grocery and Pharmacy stores, Retail and recreation, Transport, and 350 

Workplaces) extracted from Google community mobility reports (Google, 2020). Park use is the relative 351 

contribution of park mobility to overall mobility change, derived by extracting the residuals of a linear model 352 

with park mobility regressed against overall mobility within each local authority i.e. are people visiting parks 353 

more than we would expect on a given date. 354 

3.1 Baseline transmission models 355 

Using the dataset with a trimmed temporal extent of June 1st to November 30th 2020 (see sensitivity 356 

analysis above), we observed an association between a reduction in mobility and a decline in case 357 

rates, and changes in mobility had a larger impact when there was a higher number of average 358 

cases and when the population was more clustered (Table 2; Figure 5c, d). Population density and 359 

population clustering had no significant impact on case rates. Increases in the health index and 360 

proportion of the population over the age of 70 were both associated with significant decreases in 361 

case rates (Table 2; Figure 5a, b). This baseline transmission model had an R2 of 0.45. 362 

  363 
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Table 2. Estimated regression parameters from the baseline and green transmission models with 95% 364 

confidence intervals. Values rounded to two significant figures, those with confidence intervals not overlapping 365 

zero (i.e. significant at the p = 0.05 threshold) are shown in bold. These coefficients were derived from models 366 

utilising the trimmed temporal extent dataset covering June 1st to November 30th 2020 – see sensitivity 367 

analysis above. 368 

  Coefficient [95% confidence intervals] 

 

Baseline transmission model 
 

Intercept 0.38 [0.36, 0.39] 

Lag case rate 1.55 [1.53, 1.57] 

Population density 0.020 [-0.006, 0.050] 

Population clustering 0.011 [-0.006, 0.028] 

Mobility   0.17 [0.15, 0.19] 

Case average 0.061 [0.042, 0.080] 

Baseline health -0.031 [-0.054, -0.007] 

Percentage over 70 -0.051 [-0.079, -0.023] 

Percentage unemployed 0.0027 [-0.024, 0.029] 

Mobility:Case average 0.11 [0.092, 0.13] 

Population density:Population clustering 0.0060 [-0.011, 0.023] 

Population density:Mobility -0.011 [-0.025, 0.004] 

Population clustering:Mobility 0.029 [0.012, 0.047] 

 

Green transmission model 
 

Intercept 0.0001 [-0.016, 0.016] 

Park use  -0.057 [-0.074, -0.041] 

Green space 0.0035 [-0.018, 0.025] 

Patchiness 0.010 [-0.011, 0.032] 

Park use:Green space 0.032 [0.010, 0.053] 

Park use:Patchiness 0.024 [0.0026, 0.045] 

  369 

 370 

 371 
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 372 

Figure 5. Marginal effects of important interaction parameters in the baseline transmission and in the green 373 

transmission models. Marginal effects are held at zero for all other parameters as variables were z-374 

transformed. Panels depict the effect of: a) health, with low values indicating health deprivation; b) the 375 

percentage of the population over 70; c) an interaction between mobility and community cases (the 7-day 376 

average number of cases in the local authority); d) an interaction between mobility and human population 377 

clustering set at 0.2 (Low) and 0.7 (High), where 0 indicates a random distribution of clustering, and 1 378 

indicates a complete separation in clustering; e) an interaction between park use and patchiness (the median 379 

frequency of parks within 1km of each house in a local authority); and f) an interaction between park use and 380 

green space area per local authority capita. Error bars represent the 95% confidence intervals. These 381 

marginal effect plots were derived from models utilising the trimmed temporal extent dataset covering June 1st 382 

to November 30th 2020 – see sensitivity analysis above 383 

 384 

3.2 Green transmission models 385 

Park use was associated with decreased residual case rates (Table 2; Figure 5e) but the size of the 386 

effect depended on the availability of green space and how patchy it was. When patchiness was 387 

high and when there was a large amount of greenspace, park use had less of an impact on case 388 

rates, though was still associated with a significant reduction in cases. The green transmission 389 

model had a small R2 of 0.01, despite the significant effects. 390 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

20 

 

3.3 Projected cases 391 

Reducing mobility is a far more effective measure of limiting COVID-19 transmission than increasing 392 

park use (Figure 6). Across local authorities between March 1st and November 30th 2020, a 20% 393 

reduction in mobility is projected to have led to 51% fewer cases on average (Figure 6b; 95% 394 

quantiles: -88.7% to -29.7%). In contrast, a 20% increase in park use is estimated to have only 395 

reduced cases by 5.4% (Figure 6c; 95% quantiles: -17.3% to 0.6%). So whilst park use is 396 

associated with reducing COVID-19 transmission, the benefits would only be relatively small. 397 

However, there is spatial variation in these findings, with some areas potentially benefitting more 398 

than others from a reduction in mobility or increase in park use (Figure 7).  399 

  400 
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 401 

 402 

Figure 6. a) Projected daily cases between March 1st and November 30th 2020 within Oxford under three 403 

scenarios: 1) observed mobility patterns (black); 2) a further 20% reduction in observed mobility (red); and 3)  404 

20% increase in observed park use (blue). In these projections, we set the initial cases (on March 1st) at 10, 405 

and with lagged case rate of 0.58% - the mean value across local authorities on February 28th. All other 406 

covariates were held at their observed values. Error ribbons represent 95% confidence intervals. Panels b and 407 

c represent the distribution of projected change in cases across local authorities under the 20% mobility 408 

reduction (b) and 20% park use increase (c) scenarios i.e. how much could cases have been reduced under 409 

these scenarios. Case change was derived by dividing the total cases between the March and November 410 

periods under each scenario by the cases in the observed mobility scenario (black), multiplying this value by 411 

100, and then subtracting 100. Whilst these projections cover the period March 1st – November 30th 2020, the 412 

coefficients used to derive the projections were taken from the trimmed temporal extent dataset of June 1st – 413 

November 30th 2020, where coefficients were more conservative and less prone to bias (see sensitivity 414 

analyses above). 415 

 416 

 417 
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 418 

Figure 7. Spatial variation in observed cases per capita (a), and projected case changes under a 20% 419 

mobility reduction (b) and 20% increase in park use (c). Case change was derived by dividing the total cases 420 

between March and November 2020 under each scenario by the cases in the observed mobility projection, 421 

multiplying this value by 100, and then subtracting 100 (see Figure 6). The coefficients used to derive the 422 

projections in b and c were sourced from models utilising the trimmed temporal extent dataset covering June 423 

1st to November 30th 2020 – see sensitivity analysis above 424 

 425 

4. Discussion 426 

In this study, we attempted to quantify the effects of local green space on COVID-19 case rates 427 

after accounting for mechanisms known to influence pandemics in our baseline transmission model. 428 

We found that high overall mobility was associated with increased case rates, especially when 429 

population clustering was high. After accounting for these variables, we found that higher park use, 430 

compared to other amenity areas, was associated with a reduction in case rates, especially in local 431 

authorities with low green space and with contiguous green space. These results suggest that 432 

utilising green spaces rather than carrying out other activities (e.g. visiting shops and workplaces) 433 

may reduce the transmission rate of COVID-19, but these benefits are limited compared to reducing 434 

mobility more generally. 435 

From our baseline transmission model results, case rates were lower in local authorities with 436 

healthier populations and older populations (Figure 5a-b). These results are logical, firstly as 437 
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previous evidence has shown COVID-19 has a greater impact on those with underlying health 438 

conditions  (Hamer et al., 2020; Jordan et al., 2020) and more severe cases may be more likely to 439 

be tested and reported. Secondly, whilst the eldery are more at risk of mortality from COVID-19 440 

(Williamson et al., 2020), this fact was widely reported in public health guidance and older people 441 

may have reduced contact with other individuals (Canning et al., 2020). Our baseline transmission 442 

model also shows that reducing mobility is most valuable when community cases are high and in 443 

areas with high population clustering (Figure 5c-d).  This is consistent with person-person contact as 444 

the major mechanism of transmission and appears to demonstrate the general effectiveness of 445 

lockdown measures in reducing case rates, as others have demonstrated previously (Davies et al., 446 

2020; Lau et al., 2020). Mobility had less impact in low clustered areas, which again may be 447 

expected, as people are more likely to be able to maintain distance and the potential number of 448 

interactions is reduced.  449 

Once we had accounted for known drivers of case rates, we investigated how landscape structure 450 

and park use (i.e. mobility in green spaces) affected residual case rates using the green 451 

transmission model. Here we found that using parks, relative to other types of mobility, was 452 

associated with a reduction in case rates (Figure 5-6). However, reducing overall mobility (i.e. 453 

mobility to all amenity areas) led to a far more substantial decline in case rates. For example, a 20% 454 

reduction was projected to reduce cases by c.35%, whilst a 20% increase in park use was projected 455 

to reduce cases by 5% to 10% (Figure 6). This suggests that the use of parks may have modestly 456 

helped in reducing transmission rates in some areas during the pandemic, but reducing overall 457 

mobility is substantially more beneficial than maintaining mobility at pre-pandemic levels and 458 

spending that mobility in parks.  459 

Whilst park use, overall, had a relatively small effect, we did note stronger effects of park use when 460 

the context of the local area was considered as using parks was beneficial in authorities with low 461 

green space and authorities with contiguous green space (Figure 5e-f and Figure 6). That park use 462 

has a minor beneficial effect overall seems to support our hypothesis that recreation in green space 463 

and parks may be safer than in other amenity areas. This is probably because it is easier to 464 

maintain distance and green spaces have fewer surfaces which could result in transmission if 465 
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contaminated. However, the limiting impact of this when green space is high and accessible seems 466 

to suggest diminishing returns in how park use can impact COVID-19 transmission. This is perhaps 467 

not surprising if the main value of parks in this context is as an alternative to other relatively more 468 

hazardous amenity areas. Consequently, if there are other safe options outside of public parks then 469 

parks will likely have little impact. However, our findings do suggest that the use of public parks in a 470 

highly urbanised area may be advantageous, though as noted above the strongest effect was from 471 

the reduction of all forms of mobility. Therefore, cautiously, and given that it corresponds with 472 

common sense, we suggest that reducing mobility is a successful strategy for reducing case rates 473 

but given a need for some non-essential time outside of a home, using green spaces such as local 474 

parks may be the next best thing, particularly in highly urbanised areas.       475 

A major limitation of the work is the difficulty in comparing across local authorities that vary 476 

simultaneously in many different variables likely important to case rates. This makes inference 477 

about the importance of their individual effects very difficult and so effect sizes should be interpreted 478 

cautiously and with caveat. Another challenge is that pandemics are rare events, consequently, our 479 

analysis covers only a snapshot of time for each local authority. During this period, many different 480 

factors not included in the analysis (e.g. chance super spreading events) may have explained much 481 

of the variation between local authorities. Despite this, the model fits are reasonably high. An 482 

additional limitation in our analyses is the absence of complete Google mobility data in some local 483 

authorities. We handled these missing values with imputation and attempted to ensure models were 484 

robust by comparing imputed models with complete-case models. Encouragingly, our complete-485 

case and imputed results are very similar, which suggests the imputation has not introduced any 486 

missing data bias (Johnson et al., 2021) – although both the imputation and complete-case analysis 487 

could just be equally wrong. Given this uncertainty, and the further limitations we have identified 488 

above, our mobility findings should be interpreted cautiously.  489 

One potential influence we failed to capture within our case rate modelling was the influence of 490 

environmental features like air pollution and weather. Air pollution has already been to linked to an 491 

increase in COVID-19 related deaths, and potentially even transmission (Travaglio et al., 2021). 492 

Similarly, there are plausible hypotheses that suggest weather effects like temperature, ultraviolet 493 
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light, and wind speed may influence the virus’s persistence and in-turn transmission (Carlson et al., 494 

2020). Importantly, both of these environmental features may also interact with the findings in our 495 

study. Firstly, park use may become a more inherently risky activity if air pollution at the green 496 

space is high. Secondly, as park use is likely very correlated with weather, the effects of park use 497 

may be confounded by weather. Both of these points warrant investigation, perhaps at a far finer 498 

scale than the local authority level. 499 

Understanding the risks of different amenity areas could be important for longer-term management 500 

of COVID-19 and the landscape-dependency of this advice could be important for developing ‘local-501 

lockdown’ guidance. In particular, access to green spaces has been shown to have benefits for 502 

mental and physical well-being (Slater et al., 2020; Soga et al., 2020), and consequently, 503 

understanding the relative risks of using these areas is important. Our results show that COVID-19 504 

case rates may be reduced with individuals spending time in parks, relative to other amenity areas, 505 

especially in urbanised, high-density areas. Although further research is needed, these findings 506 

suggest that the use of parks for recreational activity in these contexts could be advisable, 507 

demonstrating a possible additional utility of these green spaces in addition to the known benefits to 508 

health and wellbeing (de Vries et al., 2003; Mitchell and Popham, 2007; Nutsford et al., 2013) in 509 

normal non-pandemic conditions.     510 

Acknowledgments 511 

Thanks to the NERC Covid-19 hackathon for instigating this work. This work was partly funded by 512 

the following NERC (Natural Environment Research Council) Centre for Doctoral Training 513 

studentships: J71566E, P012345, and L002566. 514 

Data accessibility 515 

Code and data to repeat analysis are presented in 516 

https://github.com/GitTFJ/COVID19_parks_landscape 517 

  518 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

26 

 

Author contributions 519 

All authors contributed to project design. Analysis was led by TFJ and LCE, but all authors 520 

contributed. TFJ and LCE co-wrote the first draft and co-authors contributed to revisions.  521 

References 522 

Bahl, P., Doolan, C., de Silva, C., Chughtai, A.A., Bourouiba, L., MacIntyre, C.R., 2020. Airborne or 523 

Droplet Precautions for Health Workers Treating Coronavirus Disease 2019? J. Infect. Dis. 524 

https://doi.org/10.1093/infdis/jiaa189 525 

Beyer, K.M.M., Kaltenbach, A., Szabo, A., Bogar, S., Javier Nieto, F., Malecki, K.M., 2014. 526 

Exposure to neighborhood green space and mental health: Evidence from the survey of the 527 

health of wisconsin. Int. J. Environ. Res. Public Health. 528 

https://doi.org/10.3390/ijerph110303453 529 

Canning, D., Karra, M., Dayalu, R., Guo, M., Bloom, D.E., 2020. The association between age, 530 

COVID-19 symptoms, and social distancing behavior in the United States. medRxiv. 531 

https://doi.org/10.1101/2020.04.19.20065219 532 

Carlson, C.J., Gomez, A.C.R., Bansal, S., Ryan, S.J., 2020. Misconceptions about weather and 533 

seasonality must not misguide COVID-19 response. Nat. Commun. 534 

https://doi.org/10.1038/s41467-020-18150-z 535 

Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Pastore y Piontti, A., Mu, 536 

K., Rossi, L., Sun, K., Viboud, C., Xiong, X., Yu, H., Elizabeth Halloran, M., Longini, I.M., 537 

Vespignani, A., 2020. The effect of travel restrictions on the spread of the 2019 novel 538 

coronavirus (COVID-19) outbreak. Science (80-. ). https://doi.org/10.1126/science.aba9757 539 

Clark, A., Jit, M., Warren-Gash, C., Guthrie, B., Wang, H.H.X., Mercer, S.W., Sanderson, C., 540 

McKee, M., Troeger, C., Ong, K.L., Checchi, F., Perel, P., Joseph, S., Gibbs, H.P., Banerjee, 541 

A., Eggo, R.M., Nightingale, E.S., O’Reilly, K., Jombart, T., Edmunds, W.J., Rosello, A., Sun, 542 

F.Y., Atkins, K.E., Bosse, N.I., Clifford, S., Russell, T.W., Deol, A.K., Liu, Y., Procter, S.R., 543 

Leclerc, Q.J., Medley, G., Knight, G., Munday, J.D., Kucharski, A.J., Pearson, C.A.B., Klepac, 544 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

27 

 

P., Prem, K., Houben, R.M.G.J., Endo, A., Flasche, S., Davies, N.G., Diamond, C., van 545 

Zandvoort, K., Funk, S., Auzenbergs, M., Rees, E.M., Tully, D.C., Emery, J.C., Quilty, B.J., 546 

Abbott, S., Villabona-Arenas, C.J., Hué, S., Hellewell, J., Gimma, A., Jarvis, C.I., 2020. Global, 547 

regional, and national estimates of the population at increased risk of severe COVID-19 due to 548 

underlying health conditions in 2020: a modelling study. Lancet Glob. Heal. 549 

https://doi.org/10.1016/S2214-109X(20)30264-3 550 

Cohen-Cline, H., Turkheimer, E., Duncan, G.E., 2015. Access to green space, physical activity and 551 

mental health: A twin study. J. Epidemiol. Community Health. https://doi.org/10.1136/jech-552 

2014-204667 553 

Davies, N.G., Kucharski, A.J., Eggo, R.M., Gimma, A., Edmunds, W.J., Jombart, T., O’Reilly, K., 554 

Endo, A., Hellewell, J., Nightingale, E.S., Quilty, B.J., Jarvis, C.I., Russell, T.W., Klepac, P., 555 

Bosse, N.I., Funk, S., Abbott, S., Medley, G.F., Gibbs, H., Pearson, C.A.B., Flasche, S., Jit, M., 556 

Clifford, S., Prem, K., Diamond, C., Emery, J., Deol, A.K., Procter, S.R., van Zandvoort, K., 557 

Sun, Y.F., Munday, J.D., Rosello, A., Auzenbergs, M., Knight, G., Houben, R.M.G.J., Liu, Y., 558 

2020. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand 559 

for hospital services in the UK: a modelling study. Lancet Public Heal. 560 

https://doi.org/10.1016/S2468-2667(20)30133-X 561 

de Vries, S., Verheij, R.A., Groenewegen, P.P., Spreeuwenberg, P., 2003. Natural environments - 562 

Healthy environments? An exploratory analysis of the relationship between greenspace and 563 

health. Environ. Plan. A. https://doi.org/10.1068/a35111 564 

Ekkel, E.D., de Vries, S., 2017. Nearby green space and human health: Evaluating accessibility 565 

metrics. Landsc. Urban Plan. https://doi.org/10.1016/j.landurbplan.2016.06.008 566 

Fahrig, L., 2013. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. 567 

Biogeogr. https://doi.org/10.1111/jbi.12130 568 

Freckleton, R.P., 2002. On the misuse of residuals in ecology: Regression of residuals vs. multiple 569 

regression. J. Anim. Ecol. https://doi.org/10.1046/j.1365-2656.2002.00618.x 570 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

28 

 

Gatto, M., Bertuzzo, E., Mari, L., Miccoli, S., Carraro, L., Casagrandi, R., Rinaldo, A., 2020. Spread 571 

and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. 572 

Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2004978117 573 

Geng, D. (Christina), Innes, J., Wu, W., Wang, G., 2021. Impacts of COVID-19 pandemic on urban 574 

park visitation: a global analysis. J. For. Res. 32; 553–567. https://doi.org/10.1007/s11676-020-575 

01249-w 576 

Google, 2020. Google COVID-19 Community Mobility Reports. 577 

https//www.google.com/covid19/mobility/ Accessed <18 May 2020>. 578 

Hamer, M., Kivimäki, M., Gale, C.R., Batty, G.D., 2020. Lifestyle risk factors, inflammatory 579 

mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 580 

adults in UK. Brain. Behav. Immun. https://doi.org/10.1016/j.bbi.2020.05.059 581 

Horby, P., Huntley, C., Davies, N., Edmunds, J., Ferguson, N., Medley, G., Semple, C., 2021. 582 

NERVTAG paper on COVID-19 variant of concern B.1.1.7. Gov.uk. 583 

Johnson, T.F., Isaac, N.J.B., Paviolo, A., González-Suárez, M., 2021. Handling missing values in 584 

trait data. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13185 585 

Jordan, R.E., Adab, P., Cheng, K.K., 2020. Covid-19: Risk factors for severe disease and death. 586 

BMJ. https://doi.org/10.1136/bmj.m1198 587 

Kraemer, M.U.G., Golding, N., Bisanzio, D., Bhatt, S., Pigott, D.M., Ray, S.E., Brady, O.J., 588 

Brownstein, J.S., Faria, N.R., Cummings, D.A.T., Pybus, O.G., Smith, D.L., Tatem, A.J., Hay, 589 

S.I., Reiner, R.C., 2019. Utilizing general human movement models to predict the spread of 590 

emerging infectious diseases in resource poor settings. Sci. Rep. 591 

https://doi.org/10.1038/s41598-019-41192-3 592 

Kraemer, M.U.G., Yang, C.H., Gutierrez, B., Wu, C.H., Klein, B., Pigott, D.M., du Plessis, L., Faria, 593 

N.R., Li, R., Hanage, W.P., Brownstein, J.S., Layan, M., Vespignani, A., Tian, H., Dye, C., 594 

Pybus, O.G., Scarpino, S. V., 2020. The effect of human mobility and control measures on the 595 

COVID-19 epidemic in China. Science (80-. ). https://doi.org/10.1126/science.abb4218 596 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

29 

 

Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Schubert, J., Bania, J., Khosrawipour, T., 597 

2020. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in 598 

China. J. Travel Med. https://doi.org/10.1093/jtm/taaa037 599 

Lauer, S.A., Grantz, K.H., Bi, Q., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., Reich, N.G., 600 

Lessler, J., 2020. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly 601 

reported confirmed cases: Estimation and application. Ann. Intern. Med. 172; 577–582. 602 

https://doi.org/10.7326/M20-0504 603 

Little, R.J. a, Rubin, D.B., 2002. Statistical Analysis with Missing Data, Statistical analysis with 604 

missing data Second edition. John Wiley & Sons. https://doi.org/10.2307/1533221 605 

Maas, J., Verheij, R.A., Groenewegen, P.P., De Vries, S., Spreeuwenberg, P., 2006. Green space, 606 

urbanity, and health: How strong is the relation? J. Epidemiol. Community Health. 607 

https://doi.org/10.1136/jech.2005.043125 608 

Mahase, E., 2020. China coronavirus: WHO declares international emergency as death toll exceeds 609 

200. BMJ. https://doi.org/10.1136/bmj.m408 610 

Mccallum, H., Dobson, A., 2002. Disease , habitat fragmentation and conservation. Proc. Biol. Sci. 611 

Ministry of Housing Communities & Local Government, 2019. English indices of deprivation 2019 612 

[WWW Document]. URL https://www.gov.uk/government/statistics/english-indices-of-613 

deprivation-2019 614 

Mitchell, R., Popham, F., 2007. Greenspace, urbanity and health: Relationships in England. J. 615 

Epidemiol. Community Health. https://doi.org/10.1136/jech.2006.053553 616 

Nutsford, D., Pearson, A.L., Kingham, S., 2013. An ecological study investigating the association 617 

between access to urban green space and mental health. Public Health. 618 

https://doi.org/10.1016/j.puhe.2013.08.016 619 

Office for National Statistics, 2021a. Local authority ageing statistics, based on annual mid-year 620 

population estimates [WWW Document]. URL https://www.ons.gov.uk/datasets/ageing-621 

population-estimates/editions/time-series/versions/3 622 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

30 

 

Office for National Statistics, 2021b. Population estimates for the UK, England and Wales, Scotland 623 

and Northern Ireland, provisional: mid-2019. 624 

Office for National Statistics, 2021c. Access to gardens and public green space in Great Britain 625 

[WWW Document]. URL 626 

https://www.ons.gov.uk/economy/environmentalaccounts/datasets/accesstogardensandpublicg627 

reenspaceingreatbritain 628 

R Development Core Team, 2020. R Development Core Team, R: a language and environment for 629 

statistical computing. R A Lang. Environ. Estat. Comput. 630 

Richardson, S., Hirsch, J.S., Narasimhan, M., Crawford, J.M., McGinn, T., Davidson, K.W., 631 

Barnaby, D.P., Becker, L.B., Chelico, J.D., Cohen, S.L., Cookingham, J., Coppa, K., 632 

Diefenbach, M.A., Dominello, A.J., Duer-Hefele, J., Falzon, L., Gitlin, J., Hajizadeh, N., Harvin, 633 

T.G., Hirschwerk, D.A., Kim, E.J., Kozel, Z.M., Marrast, L.M., Mogavero, J.N., Osorio, G.A., 634 

Qiu, M., Zanos, T.P., 2020. Presenting Characteristics, Comorbidities, and Outcomes among 635 

5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA - J. Am. Med. 636 

Assoc. https://doi.org/10.1001/jama.2020.6775 637 

Rowland, C.S., Morton, R.D., Carrasco, L., McShane, G., O’Neil, A.W., Wood, C.., 2017. Land 638 

Cover Map 2015. NERC Environ. Inf. Data Cent. 639 

Seo, S., Choi, S., Kim, K., Kim, S.M., Park, S.M., 2019. Association between urban green space 640 

and the risk of cardiovascular disease: A longitudinal study in seven Korean metropolitan 641 

areas. Environ. Int. https://doi.org/10.1016/j.envint.2019.01.038 642 

Shoari, N., Ezzati, M., Baumgartner, J., Malacarne, D., Fecht, D., 2020. Accessibility and allocation 643 

of public parks and gardens in England and Wales: A COVID-19 social distancing perspective. 644 

PLoS One. https://doi.org/10.1371/journal.pone.0241102 645 

Slater, S.J., Christiana, R.W., Gustat, J., 2020. Recommendations for keeping parks and green 646 

space accessible for mental and physical health during COVID-19 and other pandemics. Prev. 647 

Chronic Dis. https://doi.org/10.5888/PCD17.200204 648 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

31 

 

Soga, M., Evans, M.J., Tsuchiya, K., Fukano, Y., 2020. A room with a green view: the importance of 649 

nearby nature for mental health during the COVID-19 pandemic. Ecol. Appl. 650 

https://doi.org/10.1002/eap.2248 651 

Taylor, L., Hochuli, D.F., 2017. Defining greenspace: Multiple uses across multiple disciplines. 652 

Landsc. Urban Plan. https://doi.org/10.1016/j.landurbplan.2016.09.024 653 

Travaglio, M., Yu, Y., Popovic, R., Selley, L., Leal, N.S., Martins, L.M., 2021. Links between air 654 

pollution and COVID-19 in England. Environ. Pollut. 268. 655 

https://doi.org/10.1016/j.envpol.2020.115859 656 

UK Government, 2020a. The Health Protection (Coronavirus, Restrictions) (England) (Amendment) 657 

(No. 4) Regulations 2020, legislation.gov.uk. 658 

UK Government, 2020b. UK gridded population 2011 based on Census 2011 and Land Cover Map 659 

2015. 660 

UK Government, 2020c. Unemployment by ethnicity. 661 

UK Government, 2018. Unemployment by ethnicity: Unemployment by local authority [WWW 662 

Document]. URL https://data.gov.uk/dataset/fe6c83aa-62aa-4a8c-94cc-663 

225f47287225/unemployment-by-ethnicity/datafile/eba34752-0512-4cbe-9941-664 

c9e5745fa937/preview 665 

Van Buuren, S., Groothuis-Oudshoorn, K., 2011. MICE: Multivariate Imputation by Chained 666 

Equations in R. J. Stat. Softw. 10; 1 – 68. https://doi.org/10.1177/0962280206074463 667 

van den Berg, M., Wendel-Vos, W., van Poppel, M., Kemper, H., van Mechelen, W., Maas, J., 2015. 668 

Health benefits of green spaces in the living environment: A systematic review of 669 

epidemiological studies. Urban For. Urban Green. https://doi.org/10.1016/j.ufug.2015.07.008 670 

Venter, Z.S., Barton, D.N., Gundersen, V., Figari, H., Nowell, M., 2020. Urban nature in a time of 671 

crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, 672 

Norway. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abb396 673 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

32 

 

Williamson, E.J., Walker, A.J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C.E., Curtis, H.J., 674 

Mehrkar, A., Evans, D., Inglesby, P., Cockburn, J., McDonald, H.I., MacKenna, B., Tomlinson, 675 

L., Douglas, I.J., Rentsch, C.T., Mathur, R., Wong, A.Y.S., Grieve, R., Harrison, D., Forbes, H., 676 

Schultze, A., Croker, R., Parry, J., Hester, F., Harper, S., Perera, R., Evans, S.J.W., Smeeth, 677 

L., Goldacre, B., 2020. Factors associated with COVID-19-related death using OpenSAFELY. 678 

Nature. https://doi.org/10.1038/s41586-020-2521-4 679 

Wood, S., 2021. mgcv 1.8-34. 680 

Zhang, N., Huang, H., Su, B., Ma, X., Li, Y., 2018. A human behavior integrated hierarchical model 681 

of airborne disease transmission in a large city. Build. Environ. 682 

https://doi.org/10.1016/j.buildenv.2017.11.011 683 

 684 

 685 

 686 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731

