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Abstract  

Mathematical models not only forecast the possible future but also is used to find hidden 

parameters of the COVID-19 pandemic.  Numerical estimates can inform us of both goals. Still, 

the interdependencies of parameters stay obscure. Many numerical solutions have been 

proposed so far; however, the analytical relationship between the outbreak growth, decay and 

equilibrium are much less studied. In this study, we have employed both an equivalent agent-

based model and a Susceptible-Exposed-Infected-Recovered (SEIR)-like model to prove that 

the growth rate can be determined analytically in terms of other model parameters, including 

contact tracing rate. We identify the most sensitive parameters as undocumented transmission 

rate and documentation ratio. Unfortunately, these are the parameters we have the least 

knowledge. We derived an identity that predicts the effectiveness of contact tracing in a 

country from observable parameters. We underline an unavoidable dilemma: that even in the 

case of high contact tracing, we cannot bring the outbreak to stalemate without applying 

substantial quarantine; however, some countries are benefiting from contact tracing. Besides, 

we have shown that the seemingly same parameters of the SEIR models and agent-based 

models are not equivalent. We propose a correction to bridge both models.  

Introduction 

In December 2019, a novel enveloped RNA beta-coronavirus that causes coronavirus disease 

(COVID-19) emerged in Wuhan, China, and the disease has become a global crisis rapidly. 

Besides being a global health-threatening factor, recent studies have shown that economic 
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spillovers and spillbacks will be very large1, each additional month of the epidemics costs 2.5-

3% of global GDP2, an increment of global poverty will be expected3. Therefore, the issue of 

finding efficient strategies to prevent the spread of the disease becomes more and more 

prominent for policymakers. 

Agent(individual)-based models and equation-based models are two common frameworks to 

investigate the dynamics of epidemics and the efficiency of the prevention strategies. The way 

of modelling the relationships between entities and the level-of-detail are the points where 

these two approaches differ. Agent-based models can capture individual contact processes and 

give a more realistic view of an outbreak and its evolution, however, the advantages come with 

costs of heavy computational burden and time to run the simulation. In standard 

compartmental models that are governed by a system of differential equations, the population 

is split into homogenous subpopulations such as S-[E]-I-R (Susceptible-[Exposed]-Infectious-

Recovered/Removed). Despite their short set up and running time, the homogeneity 

assumption is a shortcoming of compartmental models due to the small number of infective 

individuals at the beginning of the disease and the stochastic nature of transmission4. 

Branching processes are good approximations to the stochastic epidemic processes at the 

onset of epidemics when there are few infected individuals, and the number of susceptibles is 

large5.  

Even though agent-based modelling for COVID-19 is yet relatively rare, studies such as taking 

different transmission rates of symptomatic and undocumented patients into account and 

estimating population compliance level and making comparisons of different intervention 

strategies6, estimating the effectiveness of measures via taking super-spreaders and testing 

and quarantine-policies into account7, constructing a virtual community and calculating the 

effect of delay-time for interventions8 were published. There are also studies that use the 

agent-based modelling for combining human mobility data with SIR-like model and calculating 

the effect of measures on the peak level9,  using micro agent-based modelling and estimating 

the effect of interventions on the disease's cumulative incidence and mortality, and on ICU-

bed occupancy10, considering different stages of the disease and estimating the number of 

patients in hospitals and ICU11, dividing society into groups and estimating cost vs quarantine 

length12. 
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Since the beginning of the epidemic, many statistical, mathematical, and agent-based models 

have been used to estimate the epidemiological parameters and effectiveness of intervention 

strategies. However, limited knowledge about the nature of the disease, methodological 

differences(choice of parameters), model differences(deterministic versus stochastic) and use 

of different datasets caused asymptomatic cases were missed13-14, wrong predictions about 

the expected number of infected individuals15-16 or negligence of time delay between symptom 

onset - infectious state17-19. 

Previous works investigated the effects of intervention strategies, including contact tracing20-

26, quarantine8,9,21,24-29 , and testing30,25-26 on epidemiological parameters of the disease. As a 

result of investigating these interventions separately, the question to be answered to 

implement the most effective quarantine intervention; when and how long the quarantine is 

applied, the question to be answered for contact tracing; how many people contact tracing can 

be done on, for the random testing; determining whether the test application has an impact 

on the number of cases and the cost of the measures. When applied separately, it was 

observed that they have difficulties in practice20, although the effect of contact tracing and 

quarantine was demonstrated in reducing epidemic spread. 

Here, we have analytically derived a new equation which shows the relation of internal 

parameters of COVID-19 pandemic and the external control parameters. The derivation was 

made from an SEIR-like model that we constructed to be equivalent to our agent-based model. 

The models also include contact-tracing. We show that for both models to be equivalent, we 

must make corrections on the coefficients. The constructed models and our solution are 

modelling the exponential phase of the epidemic. The populations with low herd-immunity are 

in the exponential phase of the dynamics. Thus, practically all countries are in the exponential 

growth or decay phase. We then identified the most sensitive and correlating parameters on 

the pandemic growth rate. Through our solution, it is possible to find out the ratio of the 

intervention strategies to reach the equilibrium state. We show that increasing effectiveness 

of contact tracing does not have a substantial effect on the growth rate. We have also created 

an analytical expression which can predict the efficiency of contact-tracing from observable 

parameters. Also, we can compute the proportion of new cases originating from contacts that 

were identified earlier (or in isolation). Lastly, we have proved that the uncorrected SEIR-like 
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models lead to the miscalculation of day estimates.  We have confirmed all of our findings with 

the agent-based models. 

Results and Discussion 

Mathematical modelling. 

We have developed a discrete-time stochastic agent-based model and corrected SEIR-like 

model, including contact tracing strategies parameterized to the COVID-19 outbreak. The 

dynamic states include 𝐸(𝑡) (exposed), 𝑃(𝑡) (pre-symptomatic documented), 𝑈(𝑡) 

(undocumented), 𝐷(𝑡) (symptomatic documented), 𝐻(𝑡) (hospitalized) and 𝑅(𝑡) (recovered) 

individuals as shown in Fig. 1. By assuming exponential growth/decay of all state variables, we 

have proved that the people who will leave his/her own state in the classical SEIR model Eq. 

(15) cannot be distributed uniformly (see methods). With the help of our mathematical analysis 

over the agent-based model, we have proved that the coefficients like (
1

𝐷𝑎𝑦
) × 𝑆𝑡𝑎𝑡𝑒(𝑡) 

occurred in classical SEIR model must be replaced with the corrected coefficients 

(
𝑟

𝑒𝑟×𝑑𝑎𝑦−1
) × 𝑆𝑡𝑎𝑡𝑒(𝑡) where 𝑟 is corresponding growth rate. Thus, we have derived a 

corrected SEIR-like model Eq. (18) which is equivalent to the mean behaviour of the agent-

based model. The amount of error that will occur in the day predictions made with the 

uncorrected SEIR models an be given in the following form, 

𝐸(𝑟, 𝑑𝑎𝑦) = |𝑑𝑎𝑦 −
𝑙𝑛(𝑑𝑎𝑦×𝑟+1)

𝑟
|.                       (1) 

One major challenge in SEIR-like models is the addition of contact tracing strategies effectively. 

The corrected SEIR-like model is extended to include contact tracing strategies by considering 

isolated compartments as well. The derived model is given by Eq. (20). As we will prove through 

the simulations, the corrected SEIR-like model that includes contact tracing is also equivalent 

to the agent-based model for which the contact tracing strategies is explained in the methods. 

With the mathematical analysis of our corrected SEIR-like model Eq. (20), we have derived the 

following generalized identity  

𝛽(1 − 𝑄) +
𝑟𝑒𝑟𝑑3[𝑒𝑟(𝑑1+𝑑2+𝑝)+𝛼𝛽(1−𝑄)𝛾1𝑑1+𝛼𝛽(1−𝑄)(𝑑1−𝑑2−𝑝)𝑒𝑟𝑑1]

𝜇[𝑒𝑟(𝑑2+𝑝)−𝑒𝑟(𝑑2+𝑑3+𝑝)]+𝛼[(𝜇−1)𝑒𝑟(𝑑2+𝑑3+𝑝)−𝜇𝑒𝑟(𝑑2+𝑝)+𝑒𝑟𝑑3+𝜇𝛽(1−𝑄)(𝛾2−𝜇𝛾3)(𝑑1−𝑑2−𝑝)(𝑒𝑟𝑑3−1)]−𝜇𝛼2𝛽(1−𝑄)(𝑒𝑟𝑑3−1)(𝛾2−𝛾3)(𝑑1−𝑑2−𝑝)
= 0.(2)     

where the default parameter values and their roles are given in Table 1. The equilibrium 

identity can then be derived from Eq. (2) as follows, 

𝛽(1 − 𝑄) −
1+𝛼𝛽(1−𝑄)[𝑑1(𝛾1−𝛾2)+𝛾2(𝑑2+𝑝)]

𝜇𝑑3+𝛼2𝛽(1−𝑄)𝛼𝑑3𝜇(𝛾2−𝜇𝛾3)(𝑑1−𝑑2−𝑝)+𝛼(𝑑2+𝛽(1−𝑄)𝑑2𝑑3𝜇(𝛾2−𝜇𝛾3)+𝑑3𝜇(−1−𝛽(1−𝑄)(𝛾2−𝜇𝛾3)(𝑑1−𝑝))+𝑝)
= 0.     (3) 
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One more identity is derived for calculation of known-ratio, which is the proportion of new 

daily identified patients as traced from earlier contacts. The known-ratio is obtained as  

 𝜏 =
𝛼𝛽(1−𝑄)[𝑑1(𝛾1−𝑒𝑟𝑑1𝛾2)+𝑒𝑟𝑑1𝛾2(𝑑2+𝑝)]

𝑒𝑟(𝑝+𝑑2)+𝛼𝛽(1−𝑄)𝑑1𝛾1−𝛼𝛽(1−𝑄)𝑒𝑟𝑑1𝛾2(𝑑1−𝑑2−𝑝)
 .        (4) 

 

 

Figure 1 Graphical representation of the models and the parameters. 

Every COVID-19 positive agents start in the exposed state. Then, exposed individuals proceed randomly to 

undocumented or pre-symptomatic documented states. Different transmission rates of pre-symptomatic and 

undocumented cases have been taken into account. The susceptible agents are omitted due to low-herd 

immunity limit. The new exposed individuals are added as Poisson random variables per infectious patients. A 

single parameter, Q, has been used to represent all precautions implemented to prevent the spread of the 

disease. 

 

Parameter Definitions Values Source 

𝛼 the fraction of documented infections,  0.14 [31] 

𝑑1 mean number of days in exposed stage 3.69 [31] 

𝑑2 
mean number of days in pre-symptomatic 

documented stage 
3.47 [31] 

𝑑3 
mean number of days in the undocumented 

stage  
 

3.47 [31] 

𝑝 average time of going to the hospital 1.92 [34] 

𝛽 infectiousness rate of the symptomatic case 1.12 [31] 

𝜇 
transmission reduction factor for 

undocumented cases 
0.55 [31] 

𝑄(𝑡) level of total precautions in a country Depends on sim. Estimated 

𝛾1 
isolation probability of contacts at the 

exposed stage 
Depends on sim. Assumed 

𝛾2 
isolation probability of contacts at the pre-

symptomatic documented stage 
Depends on sim. Assumed 
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𝛾3 
isolation probability of contacts at the 

undocumented stage 
Depends on sim. Assumed 

 

Table 1 Parameters used in the model 

Symbols, descriptions and values of the model paramaters. 

 

 

Accuracy of the analytical solution compared to the agent-based model. 

We test the accuracy of the novel Eq. (2) with our agent-based model in terms of the 

logarithmic growth rates in Fig. 2. The comparison has been performed for all parameters, 

including contact tracing, and it has been shown that the novel equation predicts the growth 

rate with high accuracy. Even though the stochasticity of agent-based modelling has caused 

minor deviations between the novel equation and the agent-based model, the effect of the 

parameters on the growth rate has been found similar with only a 1% difference between the 

two models. Therefore, the proposed novel equation can be used to analyze the dynamics of 

the epidemics with respect to model parameters.  



7 
 

 

Figure 2 Analytical solution predicts the growth rate of the agent-based model. 

The comparison of the novel equation and agent-based modelling has been performed with respect to a, 

infectiousness rate of the symptomatic documented cases 𝛽 b, transmission reduction factor for undocumented 

cases 𝜇 c, the fraction of documented cases 𝛼 d, the mean number of days in exposed stage 𝑑1 e, the mean 

number of days in the undocumented stage 𝑑2 f, the mean number of days in the pre-symptomatic documented 

stage 𝑑3 g, the mean number of days in the symptomatic documented stage 𝑝 h, isolation probability of contacts 

at the exposed stage 𝛾1 i, isolation probability of contacts at the pre-symptomatic documented stage 𝛾2 j, isolation 

probability of contacts at the undocumented stage 𝛾3. (see methods parameter values) 

 

Correlation and sensitivity analysis of the COVID-19. 

The linear correlations of all parameters with the growth rate of the epidemic are illustrated in 

(Fig. 3 a). The transmission rates of both undocumented and symptomatic cases (𝛽, 𝜇, 𝛼)  have 

shown a dominant positive correlation with the growth rate of the disease. Another dominant 
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parameter is the latency period. The length of the latency period is inversely correlated to the 

growth rate. In contrast, the length of the infectious period is positively correlated. The analysis 

also includes contact tracing. We divided the efficiency of contact racing into three parts (Table 

1). Isolation of contacts at the latency period is more effective than to isolate them when they 

are at pre-symptomatic or undocumented stages to reduce the growth rate of the disease. The 

contacts that do not show any signs of disease are the hotbed of the spread of the epidemic. 

They must certainly be quarantined/isolated.  

 

Sensitivity analysis has been performed to find out the disease's growth rate is more sensitive 

to which parameter of the model (Fig. 3 b). The sensitivity is not synonymous with correlation. 

The sensitivity shows us the effect of the uncertainty of the parameters. Especially four 

parameters have been found as more sensitive among all parameters. Those parameters are 

the transmission rate of documented cases (β), documentation ratio (α), the transmission 

reduction factor of the undocumented cases (𝜇), and the mean number of days in the latency 

period(𝑑1). The most sensitive parameter is the transmission reduction factor of the 

undocumented cases (𝜇), which is one of the most controversial parameters about COVID-1933.  

Depending on the various values of the documentation ratio 𝛼, sensitivity analysis is performed 

to illustrate the different scenarios in (Fig. 3 c and 3 d). The sensitivity of the growth rate with 

both tracing-free case and the full-tracing case has been analyzed in Fig. 3 a, and Fig. 3 b, 

respectively. 

As we observe from Fig. 3 c,  the sensitivity of the growth rate to the transmission rate (𝛽) is 

increasing with increasing values of the documentation ratio. It indicates that the transmission 

rate is the dominant parameter when the documentation ratio is high as opposed to our 

default case illustrated in (Fig. 3 b). For higher values of the documentation ratio, the sensitivity 

of the growth rate to the transmission reduction factor of undocumented cases (𝜇) is getting 

insignificant. For high contact tracing, it has been observed that the documentation ratio is not 

a dominant parameter (Fig. 3 d) as opposed to our default case stated in (Fig. 3 b). An 

interesting point here is that when the tracing values and documentation ratio are relatively 

high, a small positive change in documentation ratio leads to an adverse change in growth rate. 

The reason for this change is the increase in documentation ratio increases the effect of 

tracing. On the other hand, tracing parameters (𝛾1) and (𝛾2) become dominant parameters in 
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terms of the sensitivity in case of higher values of the documentation ratio and higher values 

of contact tracing probabilities (Fig 3 d). 

 

 

Figure 3 Correlation and sensitivity analysis of the COVID-19 dynamics shows the importance of non-observable 

parameters.  

Correlation of the parameters with growth rate and sensitivity analysis by considering default parameters stated 

in Table 1. a, Correlation between the model parameters and the growth rate of the pandemic has been 

determined by using the novel Eq. 2 b, Sensitivity analysis of the growth rate of the pandemic calculated via partial 

derivatives of the growth rate with respect to the parameters c, Sensitivity analysis with the use of default 

parameters and contact tracing probabilities 𝛾1 = 𝛾2 = 𝛾3 = 0 for various values of the documentation ratio 𝛼.  

d, Sensitivity analysis with the use of default parameters and contact tracing probabilities 𝛾1 = 𝛾2 = 𝛾3 = 1 for 

various values of the documentation ratio 𝛼. (For the derivation, Eq. (2) and default parameters are used) 

 

Quarantine/Precaution level required to stabilize the disease spread. 

We estimate the threshold quarantine level that can equilibrate the pandemic in the presence 

or absence of contact tracing, 𝑄𝐸 and 𝑄𝑇 respectively (Fig. 4 a and 4 b). The quarantine level is 

the sum of all precautions like masks, social distancing,  isolation. Any quarantine level higher 

than the threshold will turn the epidemic into decay. Afterwards, we compute the quarantine 

level for exponential decay with decay rate r = -0.2 (Fig. S4 a and S4 b). Contact tracing cannot 

make a significant effect to decrease the threshold quarantine levels at the low documentation 

ratio.  

First, we have calculated the quarantine level (𝑄𝐸  𝑎𝑛𝑑 𝑄𝑇) through our solutions Eqs. (2) and 

(3). We simulate the agent-based model with the calculated parameters. The dynamics of the 

a c db
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epidemic with the predicted (𝑄𝐸  𝑎𝑛𝑑 𝑄𝑇)   values satisfies our expectations for both 

equilibrium (Fig. 4 a and 4 b) and exponential decay (Fig. S4 a and S4 b). We have seen that the 

outbreak reaches equilibrium after nearly 9 days of the implementation of quarantine 

measures. In Fig. 4 c, it is shown that how much the growth rate can be reduced by applying 

contact tracing under different quarantine levels for relatively low documented ratio 𝛼 = 0.25. 

Since the documentation ratio is considered low, the growth rate has not significantly 

decreased with contact tracing. Higher documentation increases the effect of contact tracing 

significantly (Fig. S5). Using one of the main identities Eq. (3), we have illustrated the difference 

between quarantine levels with and without applying contact tracing to reach the equilibrium 

state (Fig. 4 d). The documentation ratio is essential to reduce the threshold quarantine level 

with the use of contact tracing. Extensive testing can increase the documentation ratio.  

 

Figure 4 Contact tracing’s effect on decreasing the required quarantine level to stabilize the disease is highly 

dependent on the documentation ratio. 

To reach an equilibrium state, we have estimated the threshold quarantine level with (black line) and without 

contact tracing (golden line) from Eq. (3). The simulations starts with zero quarantine level and then proceeded 

with the calculated threshold quarantine level after 40 days. The initial growth rate is taken as 𝑟 = 0.2, which is 

the mean value of the growth rates of countries Turkey, USA, Germany, Italy and Spain. The required 𝛽𝑒 value is 

estimated via Eq. (2). Same simulations were made for both a, α = 0.25 and b, α = 0.75. c, The effect of contact 

tracing to the growth rate with the various values of the quarantine level. d, The reduction in quarantine levels 

calculated from equilibrium Eq. (3) with and without applying contact tracing. (see methods for parameters).  

a

c d

b
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The proportion of newly documented patients being traced from earlier patients (known-ratio) can be 

used to predict the contact tracing efficiency. 

To determine the efficiency of tracing, we have calculated the proportion of the new cases that 

originated from the contacts of pre-documented patients. In Fig. 6, the expected known-ratio 

(𝜏) calculated with Eq. (4) by using uniformly distributed parameter values of 𝛾1 and 𝛾2. For 

testing the accuracy of our estimation, the agent-based model has been simulated with the 

same parameters. The validation procedure is illustrated for 𝛼 = 0.14, 𝛼 = 0.50 and 𝛼 =

0.70. The 𝛼 = 0.14 is the documentation ratio found in Spain, and the 𝛼 = 0.70 is the ratio of 

possibly discoverable patients found in Spain38.  The results have been found quite predictive.  

Minor deviations arose because of the intrinsic stochasticity of agent-based modelling. Thus, 

with an analytic solution, we can calculate the efficiency of the contact-tracing from the 

known-ratio. A country with an observable known-ratio can predict the efficacy of their contact 

tracing program. The effectiveness depends mainly on the documentation ratio, which can also 

be observed by antibody screening.   

 

Figure 5. Contact tracing efficiency can be predicted by the observable known-ratio. 

Contact tracing efficiency was calculated for different known-ratio (𝜏). Two values of 𝛼 = 0.14 and 𝛼 = 0.70 

were used. The known-ratio is the proportion of the newly documented patient that was being traced. For more 

straightforward illustration, we use the same value for all. The observable known-ratios of countries can be used 



12 
 

as a proxy to contact tracing efficiency. The analytical solution Eq. (25) is derived from Eq. (20) assuming that pre-

symptomatic state is growing/decaying exponential (see methods).  

Uncorrected SEIR-like models underestimate the parameters of the COVID-19 dynamics. 

In classical SEIR-like models, the number of people who change their states is assumed as 

uniformly distributed. However, in the case of exponential growth or decay phases of the 

epidemics, the number of newly infected people is expected to be higher than the number of 

people who leave their stages. We have shown that the distribution of the number of people 

who leave their stages in compartmental models should not be uniform as adopted in SEIR-like 

models (for details see methods). We have calculated the error caused by accepting the 

uniform distribution in terms of growth rate and estimated days, as shown in Fig. 6. 

As a case in point; we have used the number of daily cases in China and calculated the growth 

rate of the epidemics as 0.176932, and obtained the latency period estimation for China as 

3.6931 from the article that uses an SEIR-like model. The error, which indicates the 

miscalculation in terms of days, has been determined as nearly 1 day (Fig. 6). We have shown 

that the predictions of the length of the stages using the classical compartmental models are 

not totally correct and that our model can be used for this purpose.  

 

Figure 6 Model parameters are underestimated by uncorrected SEIR-models 

Prediction of error in days when using classical SEIR-like models. The error equation is derived in the methods 

section as 𝐸(𝑟, 𝑑𝑎𝑦) = |𝑑𝑎𝑦 − 𝑙𝑛(𝑑𝑎𝑦 × 𝑟 + 1)/𝑟|. Higher growth rates increase underestimation. 
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Discussion 

Since the emerging of the first coronavirus cases in December 2019, several studies have 

attempted to understand the dynamics of the outbreak. However, the analytical relationship 

between the outbreak growth and other parameters, including contact tracing levels, has not 

been analyzed so far. In this study, we have developed a new SEIR-like model with the help of 

mathematical analysis of the agent-based model; and shown that it is possible to find out a 

novel identity which indicates the relations of the internal and external parameters of the 

outbreak. Our solution assumes exponential growth or decay. It is important to remember that 

the criteria for exponential growth or decay are low herd-immunity. At low herd-immunity, the 

majority of the population is susceptible. We assume susceptibles as constant, and the non-

linear system of equations reduces to a linear system of differential equations. The analytical 

solution not only predicts the growth rate, but it can also be used to estimate parameters. Any 

pairwise or higher-order dependencies are easily analyzable. By contrasting SEIR-like models 

and agent-based model, we identified the difference between the models could be overcome 

by augmenting the coefficients of the model. The bridge between the two models can also be 

applied to different questions. 

Through the linear correlation and sensitivity analyses, we have concluded that on the way of 

understanding the dynamics of the epidemic, correctly, it is essential to determine the roles of 

the infected undocumented cases as proposed by previous studies35-37. Sadly, we are less 

knowledgable about the undocumented cases. Without a doubt, this is the reason that this 

pandemic was never under control. The current antibody screenings show us that in Spain, 

20% was documented. However, nearly 50% had or thought to have some form of symptoms. 

This pool might be discoverable by extensive testing or close watchfulness. If the 

documentation ratio was as high as 50%, with 75% effective contact tracing, the required 

quarantine level is only 40%. The most difference we can make is increasing the documentation 

ratio. 

 

In our view, there is a big dilemma: if we assume that the documentation ratio is at max 25%, 

then the contact tracing should not make a meaningful difference in the growth rate; however, 

some countries seem to be benefiting from the contact tracing. Either the contact tracing is 

not a successful program, so those countries are benefiting from social distancing measures, 

or there is a different dynamic that we are sadly unaware. 
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Observing the effectiveness of the contact tracing can be difficult. We devised an equation for 

estimating the contact tracing effectiveness. This equation predicts the efficacy with respect 

to the known-ratio. The known-ratio is the ratio of the newly discovered positives from earlier 

traced patients to total daily positives. The known-ratio is easily observable.  

One of our main findings in this study is the day estimates of SEIR-like models are not accurate 

because of the assumption of uniform distribution. This discrepancy can be observed in other 

models as well. Our analysis can also shed light into bridging SEIR-like models and agent-based 

models. 

 

Methods 

 

Agent-Based Model 

 

We have developed a discrete-time stochastic agent-based model with the use of the 

branching process, parameterized to the COVID-19 outbreak. The branching process is 

established with dynamic states of 𝐸(𝑡) (exposed), 𝑃(𝑡) (pre-symptomatic documented), 𝑈(𝑡) 

(undocumented), 𝐷(𝑡) (symptomatic documented), 𝐻(𝑡) (hospitalized) and 𝑅(𝑡) (recovered)  

shown in Fig. 1. 

The simulation process for the outbreak starts with one exposed person. Initially, an exposed 

agent cannot infect others during his/her latent period for 𝑃𝑜𝑖𝑠𝑠(𝑑1) days. After the latency 

period finishes, the person tends to one of the two branches; either being pre-symptomatic 

documented with a ratio of 𝛼 or undocumented with a ratio of (1 −  𝛼).  When the latency 

period expires, we generate a random number 𝐾; if 𝐾 >  𝛼 he/she proceeds to the 

undocumented stage. If the person becomes undocumented, the length of infectious period is 

drawn stochastically from 𝑃𝑜𝑖𝑠𝑠(𝑑3) distribution, he/she infects daily 𝑃𝑜𝑖𝑠𝑠(𝜇𝛽(1 − 𝑄(𝑡))) 

numbers of susceptible persons. When the infectious period of the undocumented stage 

finishes, the person goes on to the recovery stage and becomes healthy. If 𝐾 ≤  𝛼 then the 

person proceeds to the pre-symptomatic case. The infectious period of the pre-symptomatic 

documented stage is 𝑃𝑜𝑖𝑠𝑠(𝑑2) days. Through the infectious period of the pre-symptomatic 

documented stage, he/she infects daily 𝑃𝑜𝑖𝑠𝑠(𝜇𝛽(1 − 𝑄(𝑡))), numbers of susceptible 
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persons. When the infectious period of the pre-symptomatic documented stage finishes the 

person proceeds to the symptomatic documented stage. Person stays in the symptomatic 

documented stage for a random number of days, 𝑃𝑜𝑖𝑠𝑠(𝑝). Throughout the infectious period 

of the symptomatic documented stage, he/she infects daily 𝑃𝑜𝑖𝑠𝑠(𝛽(1 − 𝑄(𝑡))) numbers of 

susceptible persons. When the symptomatic period finishes person proceeds to the 

hospitalization stage where he/she will recover or die. The default parameter values for the 

simulations with their sources were presented in Table 1. 

 

Contact Tracing in the Agent-Based Model 

Contact tracing starts when the person 𝑋 proceeds to the hospitalization stage (𝐻). The persons who 

are infected by person 𝑋 are in the exposed stage (𝐸), undocumented stage (𝑈), pre-symptomatic 

documented stage (𝑃) or symptomatic documented stage (𝐷). Isolating the contacts is depending on 

their stages and the parameters 𝛾1, 𝛾2 and 𝛾3 which are the isolation probabilities of contacts at the 

stage of exposed (𝐸), pre-symptomatic documented (𝑃) and undocumented (𝑈), respectively. 

Contact tracing procedure in the agent-based model has been explained in the following pseudocode: 

begin Person 𝑋 proceed to hospitalization stage 

input 𝛾1, 𝛾2, 𝛾3 

for 𝑖 = 1,2, … , 𝑁 Person 𝑋 exposed 𝑋1, 𝑋2, . . . , 𝑋𝑁 

if 𝑿𝒊 = 𝑬 

 if 𝒓𝒂𝒏𝒅 ≤ 𝛾1 

  Person 𝑋𝑖  proceeds to 𝐸̅ 

 endif 

if 𝑿𝒊 = 𝑷 

 if 𝒓𝒂𝒏𝒅 ≤ 𝛾2 

  Person 𝑋𝑖  proceeds to 𝑃̅ 

 endif 

if 𝑿𝒊 = 𝑼 

 if 𝒓𝒂𝒏𝒅 ≤ 𝛾3 

  Person 𝑋𝑖  proceeds to 𝑈̅ 

 endif 

if 𝑿𝒊 = 𝑫 

Person 𝑋𝑖  proceeds to 𝐻̅ 

endif 

endfor 
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Mathematical Analysis of the Agent-Based Model 

 

We try to achieve a constraint that all these parameters must satisfy in the case of exponential 

growth or decay of the disease. Let assume that all state variables grow or decay with the rate 

of parameter 𝑟. Let us denote 𝐸𝑥(𝑡), 𝑃𝑥(𝑡), 𝑈𝑥(𝑡) and 𝐷𝑥(𝑡) as the number of people who are 

at these states with 𝑥 days at any time 𝑡. Let us first observe that, 

𝐸𝑥+𝑑𝑡(𝑡 + 𝑑𝑡) = 𝐸𝑥(𝑡).           (5) 

By considering exponential growth/decay of all states, we get 

𝐸𝑥+𝑑𝑡(𝑡 + 𝑑𝑡) = 𝑒𝑟𝑑𝑡𝐸𝑥+𝑑𝑡(𝑡) = 𝐸𝑥(𝑡)          (6) 

and 

𝐸𝑥(𝑡) = 𝑒−𝑟𝑥𝐸0(𝑡).            (7) 

With a similar way we get  

𝑃𝑥(𝑡) = 𝑒−𝑟𝑥𝑃0(𝑡),  

𝑈𝑥(𝑡) = 𝑒−𝑟𝑥𝑈0(𝑡),                (8) 

𝐷𝑥(𝑡) = 𝑒−𝑟𝑥𝐷0(𝑡).  

We can determine 𝑃0(𝑡), 𝑈0(𝑡) and 𝐷0(𝑡) in terms of 𝐸0(𝑡) as follows,   

𝑃0(𝑡 + 𝑑𝑡) = 𝑒𝑟𝑑𝑡𝑃0(𝑡) = 𝛼𝐸𝑑2
(𝑡) = 𝛼𝑒−𝑟𝑑2𝐸0(𝑡)        (9) 

𝑃0(𝑡) = 𝛼𝑒−𝑟(𝑑2+𝑑𝑡)𝐸0(𝑡)                      (10) 

and similarly 

𝑈0(𝑡) = (1 − 𝛼)𝑒−𝑟(𝑑3+𝑑𝑡)𝐸0(𝑡)                     (11) 

𝐷0(𝑡) = 𝛼𝑒−𝑟(𝑑2+𝑝+𝑑𝑡)𝐸0(𝑡)                                  (12) 

where 𝑑𝑡 is infinitely small time increment. New exposed individuals at 𝑡 + 𝑑𝑡 can be 

expressed as 

𝐸0(𝑡 + 𝑑𝑡) = 𝛽(1 − 𝑄) [∫ 𝑃𝑥(𝑡)𝑑𝑥 + 𝜇 ∫ 𝑈𝑥(𝑡)𝑑𝑥 + ∫ 𝐷𝑥(𝑡)𝑑𝑥
𝑑3

0

𝑑3

0

𝑑2

0
]                (13) 

After writing the Eqs. (7)-(8) into Eq. (13) and tending 𝑑𝑡 to zero, we finally get the following 

equation, 

𝑄 = 1 +
𝑟

𝛽[𝜇(1−𝛼)𝑒−𝑟(𝑑1+𝑑3)+𝛼𝜇𝑒−𝑟(𝑑1+𝑑2+𝑝)+(𝛼𝜇−𝛼−𝜇)𝑒−𝑟𝑑1]
                  (14) 

where 0 ≤ 𝑄 ≤ 1.  The Eq. (14) implies how the internal and external parameters of the 

outbreak behave together. We have illustrated the relations between the growth rate and the 

other parameters in numerical experiments. 
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The SEIR Model 

 

The classical SEIR model with the same parameters used in the agent-based model can be 

stated as follows 

𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝑄)[𝑃(𝑡) + 𝐷(𝑡)] + 𝜇𝛽(1 − 𝑄)𝑈(𝑡) −

𝐸(𝑡)

𝑑1
  

𝑑𝑃

𝑑𝑡
= 𝛼

𝐸(𝑡)

𝑑1
−

𝑃(𝑡)

𝑑2
  

𝑑𝑈

𝑑𝑡
= (1 − 𝛼)

𝐸(𝑡)

𝑑1
−

𝑈(𝑡)

𝑑3
                     (15) 

𝑑𝐷

𝑑𝑡
=

𝐸(𝑡)

𝑑2
−

𝐷(𝑡)

𝑝
  

In this model, we assume that there always exist enough susceptible individuals to be infected. 

Additionally, since recovered and dead individuals do not affect the growth/decay dynamics, 

we omitted these state variables. The terms (
1

𝐷𝑎𝑦
) × 𝑆𝑡𝑎𝑡𝑒 are due to the simplification of the 

original derivation of Kermack and Kendrick10. Most of the recent papers related to the 

modelling of COVID-19 outbreak use this simplification, and the key parameters are estimated 

via this assumption. 

 

The Corrected SEIR Model 

 

In the equation system Eq. (15), the last terms of the differential equations indicate the uniform 

distribution of the state variables. For instance, the distribution of the sub-states 𝐸𝑥(𝑡) for 0 ≤

𝑥 ≤ 𝑑1 are uniform in the system Eq. (15). But as we proved in the last subsection, these 

statements are no longer valid when the exponential growth/decay occurs for all state 

variables. Thus, one needs to find out how many people should leave from his/her state at any 

specific time 𝑡 for all states 𝐸(𝑡), 𝑃(𝑡), 𝑈(𝑡) and 𝐷(𝑡). With the consideration of exponential 

growth/decay and Eqs. (5)-(14), we get the following distributions, 

𝐸𝑑1(𝑡)

∫ 𝐸𝑥(𝑡)𝑑𝑥
𝑑1

0

=
𝐸0(𝑡)𝑒−𝑟𝑑1

𝐸0(𝑡)[
1

𝑟
−

1

𝑟
𝑒−𝑟𝑑1]

=
𝑟

𝑒𝑟𝑑1−1
=

1

𝑑1
+ 𝑂 (

𝑑1𝑟2−6𝑟

12
)      

𝑃𝑑2(𝑡)

∫ 𝑃𝑥(𝑡)𝑑𝑥
𝑑2

0

=
𝑃0(𝑡)𝑒−𝑟𝑑2

𝑃0(𝑡)[
1

𝑟
−

1

𝑟
𝑒−𝑟𝑑2]

=
𝑟

𝑒𝑟𝑑2−1
=

1

𝑑2
+ 𝑂 (

𝑑2𝑟2−6𝑟

12
)  

𝑈𝑑3
(𝑡)

∫ 𝑈𝑥(𝑡)𝑑𝑥
𝑑3

0

=
𝑈0(𝑡)𝑒−𝑟𝑑3

𝑈0(𝑡)[
1

𝑟
−

1

𝑟
𝑒−𝑟𝑑3]

=
𝑟

𝑒𝑟𝑑3−1
=

1

𝑑3
+ 𝑂 (

𝑑3𝑟2−6𝑟

12
)                (16) 
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𝐷𝑝(𝑡)

∫ 𝐷𝑥(𝑡)𝑑𝑥
𝑝

0

=
𝐷0(𝑡)𝑒−𝑟𝑝

𝐷0(𝑡)[
1

𝑟
−

1

𝑟
𝑒−𝑟𝑝]

=
𝑟

𝑒𝑟𝑝−1
=

1

𝑝
+ 𝑂 (

𝑝𝑟2−6𝑟

12
)  

Eq. (16) show that any estimation of the exposed day, pre-symptomatic documented day, 

undocumented day and symptomatic documented day with the use of classical SEIR model Eq. 

(15) will have an approximation error. In other words, any coefficients like 
1

𝑑𝑎𝑦
 estimated with 

the system Eq. (15) can not exactly represent the true values of the days. Before specifying the 

corrected SEIR model, we can express the amount of error that will occur in the day predictions 

made with the classic SEIR models in the following form, 

𝐸(𝑟, 𝑑𝑎𝑦) = |𝑑𝑎𝑦 −
𝑙𝑛(𝑑𝑎𝑦×𝑟+1)

𝑟
|                     (17) 

Thus, with the assumption of exponential growth/decay, the corrected SEIR model can be 

expressed as  

𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝑄)[𝑃(𝑡) + 𝐷(𝑡)] + 𝜇𝛽(1 − 𝑄)𝑈(𝑡) −

𝑟

𝑒𝑟𝑑1−1
𝐸(𝑡)  

𝑑𝑃

𝑑𝑡
= 𝛼

𝑟

𝑒𝑟𝑑1−1
𝐸(𝑡) −

𝑟

𝑒𝑟𝑑2−1
𝑃(𝑡)  

𝑑𝑈

𝑑𝑡
= (1 − 𝛼)

𝑟

𝑒𝑟𝑑1−1
𝐸(𝑡) −

𝑟

𝑒𝑟𝑑3−1
𝑈(𝑡)                    (18) 

𝑑𝐷

𝑑𝑡
=

𝑟

𝑒𝑟𝑑2−1
𝑃(𝑡) −

𝑟

𝑒𝑟𝑝−1
𝐷(𝑡).  

Note that, we can easily show that system Eq. (18) also satisfies Eq. (14) in exponential 

growth/decay. Except that the stochastic nature of the agent-based model stated in the last 

section, both models are equivalent if the time is continuously treated also in the agent-based 

model. The equilibrium equation can then be stated as  

𝑄 = 1 +
1

𝛽[𝜇(1−𝛼)(2𝑑1+𝑑3)−𝛼(𝑑2+𝑝)]
.                    (19) 

 

Contact Tracing 

 

It is important to follow the contacts of the identified cases to break the transmission chain in 

the COVID-19 outbreak. The growth of the outbreak can be significantly reduced by identifying 

and isolating people who have been contacted by people known to carry the virus. It is known 

from the system Eq. (17) that the number of new confirmed cases at any specific time 𝑡 is 

𝑟

𝑒𝑟𝑝−1
𝐷(𝑡). Since these group of infected cases have been transmitted the virus at the previous 

(𝑑2 + 𝑝) days, their contacts are in the exposed stage, undocumented stage and pre-

symptomatic documented stage. Here we assume that 𝑑1 > 𝑝 and it is not possible to find out 
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a contacted people in the symptomatic documented stage. Isolating the contacts is depending 

on their stage and the parameters 𝛾1, 𝛾2 and 𝛾3 are used for the isolation probabilities of 

contacts at the stage of exposed, pre-symptomatic documented and undocumented, 

respectively. Thus, we get the following ODE system  

𝑑𝐸

𝑑𝑡
= 𝛽(1 − 𝑄)[𝑃(𝑡) + 𝐷(𝑡)] + 𝜇𝛽(1 − 𝑄)𝑈(𝑡) −

𝑟

𝑒𝑟𝑑1−1
𝐸(𝑡) −

𝛾1𝑑1𝛽(1−𝑄)𝑟

𝑒𝑟𝑝−1
𝐷(𝑡)  

𝑑𝑃

𝑑𝑡
= 𝛼

𝑟

𝑒𝑟𝑑1−1
𝐸(𝑡) −

𝑟

𝑒𝑟𝑑2−1
𝑃(𝑡) −

𝛾2𝛼(𝑑2+𝑝−𝑑1)𝛽(1−𝑄)𝑟

𝑒𝑟𝑝−1
𝐷(𝑡)   

𝑑𝑈

𝑑𝑡
= (1 − 𝛼)

𝑟

𝑒𝑟𝑑1−1
𝐸(𝑡) −

𝑟

𝑒𝑟𝑑3−1
𝑈(𝑡) −

𝛾3(1−𝛼)(𝑑2+𝑝−𝑑1)𝛽(1−𝑄)𝑟

𝑒𝑟𝑝−1
𝐷(𝑡)     

𝑑𝐷

𝑑𝑡
=

𝑟

𝑒𝑟𝑑2−1
𝑃(𝑡) −

𝑟

𝑒𝑟𝑝−1
𝐷(𝑡).  

𝑑𝐻

𝑑𝑡
=

𝑟

𝑒𝑟𝑝−1
𝐷(𝑡)           (20) 

𝑑𝐸̅

𝑑𝑡
=

𝛾1𝑑1𝛽(1−𝑄)𝑟

𝑒𝑟𝑝−1
𝐷(𝑡) −

𝑟

𝑒𝑟𝑑1−1
𝐸̅(𝑡)  

𝑑𝑃̅

𝑑𝑡
= 𝛼

𝑟

𝑒𝑟𝑑1−1
𝐸̅(𝑡) +

𝛾2𝛼(𝑑2+𝑝−𝑑1)𝛽(1−𝑄)𝑟

𝑒𝑟𝑝−1
𝐷(𝑡) −

𝑟

𝑒𝑟𝑑2−1
𝑃̅(𝑡)   

𝑑𝑈̅

𝑑𝑡
= (1 − 𝛼)

𝑟

𝑒𝑟𝑑1−1
𝐸̅(𝑡) +

𝛾3(1−𝛼)(𝑑2+𝑝−𝑑1)𝛽(1−𝑄)𝑟

𝑒𝑟𝑝−1
𝐷(𝑡)  −

𝑟

𝑒𝑟𝑑3−1
𝑈̅(𝑡)  

𝑑𝐻̅

𝑑𝑡
=

𝑟

𝑒𝑟𝑑2−1
𝑃̅(𝑡)  

where 𝐸̅(𝑡), 𝑃̅(𝑡), 𝑈(𝑡) and 𝐻̅(𝑡)  represent the isolated exposed, pre-symptomatic 

documented, undocumented and hospitalized number of people at any time 𝑡, respectively. 

It is important to understand how the parameters should behave for an exponential 

growth/decay in the presence of the contact tracing. Applying a similar procedure by 

considering 𝑃(𝑡) = 𝑃0𝑒𝑟𝑡, the desired growth/decay functions of the other states in large time 

can be obtained as 

𝐷(𝑡) =
𝑒𝑟𝑝−1

𝑒𝑟𝑑2−1
𝑃0𝑒𝑟(𝑡−𝑝)  

𝐸(𝑡) =
(𝑒𝑟𝑑1−1)(𝑒𝑟(𝑑2+𝑝)+𝛼𝛽(1−𝑄)𝛾2(𝑑2+𝑝−𝑑1)

𝛼(𝑒𝑟𝑑2−1)
𝑃0𝑒𝑟(𝑡−𝑝)        

𝑈(𝑡) =
(𝛼−1)(𝑒𝑟𝑑3−1)(−𝑒𝑟𝑝+1+𝑒𝑟(𝑝+𝑑2)+1−𝑟𝑒𝑟𝑝+𝑟𝑒𝑟(𝑝+𝑑2)−𝛼𝛽(1−𝑄)(𝛾2−𝜇𝛾3)(𝑑1−𝑑2−𝑝)

𝛼(𝑒𝑟𝑑2−1)𝑟
𝑃0𝑒𝑟(𝑡−𝑑3−𝑝). 

𝐻(𝑡) =
1

𝑒𝑟𝑑2−1
𝑃0𝑒𝑟(𝑡−𝑝)          (21) 

𝐸̅(𝑡) =
𝛽(1−𝑄)𝑑1𝛾1(𝑒𝑟𝑑1−1)

(𝑒𝑟𝑑2−1)
𝑃0𝑒𝑟(𝑡−𝑑1−𝑝)  

𝑃̅(𝑡) = 𝛼𝛽(1 − 𝑄)[𝑑1(𝛾1 − 𝑒𝑟𝑑1𝛾2) + 𝑒𝑟𝑑1𝛾2(𝑑2 + 𝑝)]𝑃0𝑒𝑟(𝑡−𝑑1−𝑑2−𝑝)  

𝑈̅(𝑡) =
(1−𝛼)𝛽(1−𝑄)(𝑒𝑟𝑑3−1)[𝑑1(𝛾1−𝑒𝑟𝑑1𝛾3𝜇)+𝑒𝑟𝑑1𝛾3𝜇(𝑑2+𝑝)]

(𝑒𝑟𝑑2−1)
𝑃0𝑒𝑟(𝑡−𝑑1−𝑑3−𝑝)  

𝐻̅(𝑡) =
𝛼𝛽(1−𝑄)[𝑑1(𝛾1−𝑒𝑟𝑑1𝛾2)+𝑒𝑟𝑑1𝛾2(𝑑2+𝑝)]

(𝑒𝑟𝑑2−1)
𝑃0𝑒𝑟(𝑡−𝑑1−𝑑2−𝑝)  

Finally, the following constraint can be achieved for the system Eqs. (20) 
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𝛽(1 − 𝑄) +
𝑟𝑒𝑟𝑑3[𝑒𝑟(𝑑1+𝑑2+𝑝)+𝛼𝛽(1−𝑄)𝛾1𝑑1+𝛼𝛽(1−𝑄)(𝑑1−𝑑2−𝑝)𝑒𝑟𝑑1]

𝜇[𝑒𝑟(𝑑2+𝑝)−𝑒𝑟(𝑑2+𝑑3+𝑝)]+𝛼[(𝜇−1)𝑒𝑟(𝑑2+𝑑3+𝑝)−𝜇𝑒𝑟(𝑑2+𝑝)+𝑒𝑟𝑑3 +𝜇𝛽(1−𝑄)(𝛾2−𝜇𝛾3)(𝑑1−𝑑2−𝑝)(𝑒𝑟𝑑3 −1)]−𝜇𝛼2𝛽(1−𝑄)(𝑒𝑟𝑑3 −1)(𝛾2−𝛾3)(𝑑1−𝑑2−𝑝)
= 0.        (22)     

The equilibrium state equation can be derived from Eq. (22) as follows, 

𝛽(1 − 𝑄) −
1+𝛼𝛽(1−𝑄)[𝑑1(𝛾1−𝛾2)+𝛾2(𝑑2+𝑝)]

𝜇𝑑3+𝛼2𝛽(1−𝑄)𝛼𝑑3𝜇(𝛾2−𝜇𝛾3)(𝑑1−𝑑2−𝑝)+𝛼(𝑑2+𝛽(1−𝑄)𝑑2𝑑3𝜇(𝛾2−𝜇𝛾3)+𝑑3𝜇(−1−𝛽(1−𝑄)(𝛾2−𝜇𝛾3)(𝑑1−𝑝))+𝑝)
= 0.        (23)     

The efficiency of the applied contact tracing can be measured by the evaluation of the following 

known-ratio: 

𝜏 =

𝑟

𝑒𝑟𝑑2−1
𝑃̅(𝑡)

𝑟

𝑒𝑟𝑑2−1
𝑃̅(𝑡)+

𝑟

𝑒𝑟𝑝−1
𝐷(𝑡)

=
𝛼𝛽(1−𝑄)[𝑑1(𝛾1−𝑒𝑟𝑑1𝛾2)+𝑒𝑟𝑑1𝛾2(𝑑2+𝑝)]

𝑒𝑟(𝑑1+𝑑2)+𝛼𝛽(1−𝑄)𝑑1𝛾1−𝛼𝛽(1−𝑄)𝑒𝑟𝑑1𝛾2(𝑑1−𝑑2−𝑝)
                   (24) 

i.e. the rate of isolated hospitalized cases in the total hospitalized number of people at any 

time 𝑡. With the consideration of equal tracing probabilities 𝛾 = 𝛾1 = 𝛾2 = 𝛾3, the contact 

tracing probability 𝛾 can be written in terms of the known-ratio and other parameters as 

follows 

𝛾 =
𝜏𝑒𝑟(𝑑1+𝑑2)

𝛼𝛽(1−𝑄)(1−𝜏)[𝑑1(1−𝑒𝑟𝑑1)+𝑒𝑟𝑑1(𝑑2+𝑝)]
.                      (25) 

 

Parameters 

 

The model parameters and default values have been demonstrated in Table 1. Depending on 

the given figures we can summarize the parameter values as follows; 

Figure 2. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14, 𝛽 = 1.12, 𝜇 = 0.55, 𝑄 =

0, 𝛾1 = 𝛾2 = 𝛾3 = 0. Together with these default parameter values, all parameters individually 

changed in subfigures as illustrated in 𝑥 −axis.  

Figure 3 a. The parameter values are randomly selected from the intervals 0.5 ≤ 𝑑1 ≤ 5,

0.5 ≤ 𝑑2 ≤ 5, 0.5 ≤ 𝑑3 ≤ 5, 0 ≤ 𝑝 ≤ 5, 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 5, 0 ≤ 𝜇 ≤ 1, 0 ≤ 𝛾1 ≤

1, 0 ≤ 𝛾2 ≤ 1, 0 ≤ 𝛾3 ≤ 1. 10,000 different set of parameters taken and the corresponding 

growth rates are evaluated from novel Eq. (2). 

Figure 3 b. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14, 𝛽 = 1.12, 𝜇 = 0.55, 𝑄 =

0, 𝛾1 = 𝛾2 = 𝛾3 = 0. Together with these default parameter values, the growth rate is 

evaluated from novel Eq. (2) as 𝑟 = 0.1767. 

Figure 3 c. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛽 = 1.12, 𝜇 = 0.55, 𝑄 = 0, 𝛾1 =

𝛾2 = 𝛾3 = 0.  Together with these default parameter values, the growth rates are evaluated 

from novel Eq. (2) with respect to the changing values of 𝛼. 
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Figure 3 d. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛽 = 1.12, 𝜇 = 0.55, 𝑄 = 0, 𝛾1 =

𝛾2 = 𝛾3 = 1.  Together with these default parameter values, the growth rates are evaluated 

from novel Eq. (2) with respect to the changing values of 𝛼. 

Figure 4 a. 

Simulations without applying contact tracing. Before quarantine application: 𝑑1 = 3.69, 𝑑2 =

3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.25, 𝛽 = 1.17, 𝜇 = 0.55, 𝑄 = 0, 𝑟 = 0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.  

After quarantine application: 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14, 𝛽 =

1.17, 𝜇 = 0.55, 𝑄 = 0.6942, 𝑟 = 0, 𝛾1 = 𝛾2 = 𝛾3 = 0. 

Simulations with applying contact tracing. Before quarantine application: 𝑑1 = 3.69, 𝑑2 =

3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.25, 𝛽 = 1.17, 𝜇 = 0.55, 𝑄 = 0, 𝑟 = 0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.  

After quarantine application: 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14, 𝛽 =

1.17, 𝜇 = 0.55, 𝑄 = 0.6282, 𝑟 = 0, 𝛾1 = 𝛾2 = 𝛾3 = 0.5. 

Figure 4 b. 

Simulations without applying contact tracing. Before quarantine application: 𝑑1 = 3.69, 𝑑2 =

3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.75, 𝛽 = 0.93, 𝜇 = 0.55, 𝑄 = 0, 𝑟 = 0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.  

After quarantine application: 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.75, 𝛽 =

0.93, 𝜇 = 0.55, 𝑄 = 0.7073, 𝑟 = 0, 𝛾1 = 𝛾2 = 𝛾3 = 0. 

Simulations with applying contact tracing. Before quarantine application: 𝑑1 = 3.69, 𝑑2 =

3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.75, 𝛽 = 0.93, 𝜇 = 0.55, 𝑄 = 0, 𝑟 = 0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.  

After quarantine application: 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.75, 𝛽 =

0.93, 𝜇 = 0.55, 𝑄 = 0.6282, 𝑟 = 0, 𝛾1 = 𝛾2 = 𝛾3 = 0.5. 

Figure 4 c. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.25, 𝛽 = 1.12, 𝜇 = 0.55, 𝑄 = 0.  

Figure 4 d. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.25, 𝛽 = 1.12, 𝜇 = 0.55, 𝑄 =

0, 𝑟 = 0.2.  

Figure  5. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14/0.70, 𝛽 = 1.12, 𝜇 =

0.55, 𝑄 = 0, 𝛾1 = 𝛾2 = 𝛾3 = 0. Together with these default parameter values, the growth rate 

is evaluated from novel Eq. (2) with respect to changing values of contact tracing probabilities. 

Figure S1. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14, 𝑟 = 0.1767, 𝜇 = 0.55, 𝑄 =

0, 𝛾1 = 𝛾2 = 𝛾3 = 0. Together with these default parameter values, all parameters individually 

changed in subfigures as illustrated in 𝑥 −axis. 𝛽 values are obtained from novel Eq. (2).  

Figure S2. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.25, 𝛽 = 1.12, 𝜇 = 0.55, 𝑄 =

0, 𝛾1 = 𝛾2 = 𝛾3 = 0.75. Together with these default parameter values, all parameters 
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individually changed in subfigures as illustrated in 𝑥 −axis. 𝑟 values are obtained from novel 

Eq. (2) and known-ratio (𝜏) values are obtained from Eq. (4). 

Figure S3. 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝑟 = 0.2, 𝜇 = 0.55. Together with 

these default parameter values, the documented ratio is taken uniformly as illustrated in 

𝑥 −axis. 𝛽 values are obtained from novel Eq. (2) and 𝑄𝑇 values are obtained from Eq. (3).  

Figure S4 a. 

Simulations without applying contact tracing. Before quarantine application: 𝑑1 = 3.69, 𝑑2 =

3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.25, 𝛽 = 1.17, 𝜇 = 0.55, 𝑄 = 0, 𝑟 = 0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.  

After quarantine application: 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14, 𝛽 =

1.17, 𝜇 = 0.55, 𝑄 = 0.9139, 𝑟 = −0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0. 

Simulations with applying contact tracing. Before quarantine application: 𝑑1 = 3.69, 𝑑2 =

3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.25, 𝛽 = 1.17, 𝜇 = 0.55, 𝑄 = 0, 𝑟 = 0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.  

After quarantine application: 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14, 𝛽 =

1.17, 𝜇 = 0.55, 𝑄 = 0.8668, 𝑟 = −0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.5. 

Figure S4 b. 

Simulations without applying contact tracing. Before quarantine application: 𝑑1 = 3.69, 𝑑2 =

3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.75, 𝛽 = 0.93, 𝜇 = 0.55, 𝑄 = 0, 𝑟 = 0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.  

After quarantine application: 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.75, 𝛽 =

0.93, 𝜇 = 0.55, 𝑄 = 0.9221, 𝑟 = −0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0. 

Simulations with applying contact tracing. Before quarantine application: 𝑑1 = 3.69, 𝑑2 =

3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.75, 𝛽 = 0.93, 𝜇 = 0.55, 𝑄 = 0, 𝑟 = 0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.  

After quarantine application: 𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.75, 𝛽 =

0.93, 𝜇 = 0.55, 𝑄 = 0.8379, 𝑟 = −0.2, 𝛾1 = 𝛾2 = 𝛾3 = 0.5. 

Figure S5.  𝑑1 = 3.69, 𝑑2 = 3.47, 𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.70, 𝜇 = 0.55, 𝛽 = 1.12. 

Together with these default parameter values, contact tracing probabilities are taken 

uniformly as illustrated in 𝑥 −axis. 𝑟 values are obtained from novel Eq. (2). 
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