
 

 

On nonlinear incidence rate of Covid-19  
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Abstract—Classical Susceptible-Infected-Removed model with constant transmission rate and removal rate may not capture 

real world dynamics of epidemic due to complex influence of multiple external factors on the spread. On top of that transmission 

rate may vary widely in a large region due to non-stationarity of spatial features which poses difficulty in creating a global model. 

We modified discrete global Susceptible-Infected-Removed model by using time varying transmission rate, recovery rate and 

multiple spatially local models. No specific functional form of transmission rate has been assumed. We have derived the criteria 

for disease-free equilibrium within a specific time period. A single Convolutional LSTM model is created and trained to map 

multiple spatiotemporal features to transmission rate. The model achieved 8.39% mean absolute percent error in terms of 

cumulative infection cases in each locality in a 10-day prediction period. Local interpretations of the model using perturbation 

method reveals local influence of different features on transmission rate which in turn is used to generate a set of generalized 

global interpretations. A what-if scenario with modified recovery rate illustrates rapid dampening of the spread when forecasted 

with the trained model. A comparative study with current normal scenario reveals key necessary steps to reach baseline.   

Index Terms—Artificial Intelligence, Discrete Mathematics, Neural nets, modeling and prediction 

——————————   ◆   —————————— 

1 INTRODUCTION

ynamical systems equations based on compartmental 
modelling of epidemiology have been widely used to 

predict the spread of an epidemic. Susceptible-Infected-Re-
moved or SIR model is one such simplified set of differen-
tial equations to model the spread. However, accurately 
determining parameter values like the transmission rate 
for a specific disease is a challenge. The dynamics of a dis-
ease may vary across space and time. Many external factors 
may influence the transmission rate. Considering the 
transmission rate constant for a disease, grossly oversim-
plifies the model, thus compromising accuracy. Secondly, 
knowing the factors influencing the transmission rate and 
the dynamics of the influence can provide a vivid under-
standing of the disease progression.  
There are several different types of nonlinear incidence 
rate suggested in the literature [3,4, 5, 6,7,8,9]. However, 
most of them adopt some type of simple predefined func-
tion with few parameters to model the incidence rate. Sim-
ple functions have low representational capability. Thus, 
they may not capture the detail dynamical variations of the 
incidence rate caused by multiple factors. We propose a 
Convolutional LSTM based spatiotemporal model to map 
the transmission rate of Covid-19 with respect to multiple 
input features and thereby map the derived incidence rate 
from transmission rate. The model can forecast incidence 
rate with high spatiotemporal resolution provided availa-
bility of clean historical data in that resolution. Exploratory 
analysis reveals probable influence of external features on 

transmission rate and eventually helped in feature selec-
tion. A spatiotemporal local interpretation method of a 
black box model is proposed which in turn is used to ex-
plain the trained model. The explanations reveal local in-
fluence of different external features on the transmission 
rate. A generalized global explanation is also generated to 
find common influence of factors across multiple locations 
and over a period.  
We experimented with available data of Covid-19 across 
multiple regions of USA and the model achieved 7.95% 
and 0.19% mean absolute percent error in terms of new in-
fection cases in each locality and cumulative total infection 
cases across the country in a 10-day prediction period re-
spectively. The generated explanations revealed high influ-
ence of population density, somewhat medium influence 
of gender ratio and median population age on the trans-
mission rate, globally. There are minor influences of tem-
perature and temperature deviation but barely any observ-
able influence of humidity. However, local influences of 
features vary widely across multiple small regions. A crite-
rion for disease-free equilibrium within a specific time pe-
riod has been derived for discrete SIR model with variable 
transmission and recovery rate. A long-term forecast using 
the trained model and modified recovery rate to satisfy 
disease-free equilibrium criteria reveals rapid damping of 
active infection cases to reach the baseline. However fre-
quent spikes due to resurgence are seen in this scenario. A 
comparative study is made with forecasted dynamics us-
ing current normal recovery rate to reveal necessary ac-
tions for rapid containment of the disease. 
The paper is organized as following. We conducted a brief 
literature survey in section 2. Section 3 briefly explains the 
discrete SIR model with variable transmission rate. Section 
4 discusses about spatiotemporal modelling of transmis-
sion rate. Section 5 discusses on spatiotemporal influence 
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of external features on transmission rate. We conduct long 
term forecasting of disease progression with a current nor-
mal scenario and a “what-if” scenario in section 6. Section 
7 concludes the paper.      

2 RELATED WORK 

Kermack and Mckendrick [1] modelled communicable dis-
eases using differential equations. Hethcote introduced the 
SIR model [2] where population is compartmentalized into 
susceptible, infected and removed groups. A set of differ-
ential equations modeled the dynamics of population in 
different compartments. In traditional SIR model incidence 
rate or the number of new infections per unit time varies 
bilinearly with the number of infections and number of 
susceptible in a population considering the transmission 
rate as constant. However, assumptions like homogenous 
mixing, non-dependence on external factors, no psycho-
logical effects on population etc. may not be realistic in 
many cases. Thus, several authors [3,4, 5, 6,7,8,9] intro-
duced different types of non-linear incidence rates mostly 
addressing the saturation and psychological effect. Satura-
tion effect states that the incidence rate might slow down 
and saturate as number of infected individuals increases 
due to low availability of susceptible individuals. Psycho-
logical effect on the population results in increased cau-
tiousness among susceptible individuals as the epidemic 
spreads thus, slowing down the transmission rate. Most of 
the incidence rates stated above satisfy weakly non-linear 
property and are too simple to capture any arbitrary effects 
of the environment. SIR model with time varying transmis-
sion recovery rate have been studied in [11] and thresholds 
theorems are derived. Liu et. al. [10] introduced a time var-
ying switched transmission rate to model nonlinear inci-
dence.  
Hu et. al. developed a modified stacked autoencoder 
model of the epidemic spread in China and they claimed 
to achieve high level of forecasting accuracy [26]. On ob-
serving a universality in the epidemic spread in each coun-
try, Fanelli and Piazza [27] applied mean-field kinetics of 
Susceptible-Infected-Recovered/Dead epidemic model to 
forecast the spread and provided an estimation of peak in-
fections in Italy. Zhan et. al. [14] integrated the intercity mi-
gration data in China with Susceptible-Exposed-Infected-
Removed model to forecast an estimation of epidemic 
spread in China. Hong et. al. [12] considered variable 
transmission rate of Covid19 and came up with variable R-
naught factor of Covid-19. Xi et. al. [28] used deep residual 
networks to model spatiotemporal characteristics of the 
spread of influenza and experimented with real dataset of 
Shenzhen city in China. Paul et. al. [35] used ensemble of 
ConvLSTM networks to forecast Covid-19 total infection 
cases. 

3 DISCRETE SIR MODEL WITH VARIABLE 

TRANSMISSION RATE 

In SIR model the total population in a region is compart-
mentalized into 3 classes, namely Susceptible (S), Infected 
(I) and Removed (R). Initially the whole population is in 

susceptible class. An individual can move from susceptible 
to infected class on contracting the disease. An infected in-
dividual can move to removed class by either getting re-
covered and immune to the disease or deceased. The dy-
namics of the disease spread can be modelled by the fol-
lowing set of differential equations.  

𝑑𝑆/𝑑𝑡 = −𝛽(𝑡)𝑆(𝑡)𝐼(𝑡)           (1) 

𝑑𝐼/𝑑𝑡 = 𝛽(𝑡)𝑆(𝑡)𝐼(𝑡) − 𝛿(𝑡)𝐼(𝑡)          (2) 

𝑑𝑅/𝑑𝑡 = 𝛿(𝑡)𝐼(𝑡)            (3) 

Where 𝛽(𝑡) is disease transmission rate or contact rate and 
𝛿(𝑡) is removal rate which is sum of recovery rate and mor-
tality rate. It is assumed the population size (𝑁) remains 
constant during the course of epidemic. 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) 
are scaled as fraction of total population. Thus, the follow-
ing equation holds true. 

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1           (4) 

From [11] we get the following ∀𝑡 > 𝑡0, where 𝑟 = 𝑅(𝑡0), 
𝑅(𝑡) ≥ 𝑟 ∀𝑡 > 𝑡0 and 𝐼(𝑡) ≥ 0 

𝑑𝐼/𝑑𝑡 = 𝛽(𝑡)(1 − 𝐼(𝑡) − 𝑅(𝑡))𝐼(𝑡) − 𝛿(𝑡)𝐼(𝑡)
≤ [𝛽(𝑡)(1 − 𝑟) − 𝛿(𝑡)]𝐼(𝑡) 

We consider discrete time steps in our modelling and 
measurements are taken on daily basis. Thus, replacing 
differential with difference equation. 

𝐼(𝑡 + 1) − 𝐼(𝑡) ≤ [𝛽(𝑡)(1 − 𝑟) − 𝛿(𝑡)]𝐼(𝑡)         (5) 

Solving for 𝐼(𝑡) 

𝐼(𝑡) ≤ 𝐼(𝑡0) ∏ [1 + 𝛽(𝑢)(1 − 𝑟) − 𝛿(𝑢)]
𝑡−1

𝑡0
         (6) 

Since 0 ≤ 𝑟 < 1 

𝐼(𝑡) ≤ 𝐼(𝑡0) ∏ [1 + 𝛽(𝑢) − 𝛿(𝑢)]
𝑡−1

𝑡0
  

𝐼(𝑡) ≤ 𝐼(𝑡0)exp(∑ 𝑙𝑜𝑔[1 − 𝛿(𝑢) − 𝛽(𝑢)]𝑡−1
𝑡0

)         (7) 

Expanding log as Taylor series and taking only the first 
term, 

𝐼(𝑡) < 𝐼(𝑡0)exp(− ∑ [𝛿(𝑢) − 𝛽(𝑢)]𝑡−1
𝑡0

)         (8) 

Considering a constant average difference between trans-
mission rate and removal rate 𝜀 = 𝛿 − 𝛽 within the period 
𝑡0 = 0 and 𝑡 = 𝑇 such that 0 ≤ 𝜀 ≤ 1 

𝐼(𝑇) < 𝐼(0)exp (−𝜀𝑇)           (9) 

Considering 𝑁𝐼(𝑇) < 1 as disease free equilibrium state, 
the upper bound of 𝜀 can be derived as following such that 
the epidemic reaches baseline in time T. 

𝜀 < log[NI(0)] /T          (10) 

Maintaining 𝜀 > 0 asymptotically converges the total in-
fection count to 0 at exponential rate thus makes the dis-
ease-free equilibrium stable.  
Assuming a constant mortality rate, from (10) it can be de-
duced that increasing the recovery rate will directly reduce 
the time span of the disease outbreak. However, there is a 
hard limit for the removal rate, 𝛿(𝑡) ≤ 1. But 𝛽(𝑡) can be 
greater than 1, specially during initial outbreak when total 
infection count is low. In such situation dampening the 
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spread of infection will not be possible only with treatment 
facilities. Immediate restriction of mobility in area of out-
break and rapid isolation of infected individuals can re-
duce the transmission rate. Once it comes down below 1, 
enhanced treatment facilities can increase the recovery 
rate, thus reducing the span of the disease outbreak. 

4 SPATIOTEMPORAL MODELLING OF TRANSMISSION 

RATE 

The transmission rate 𝛽 can vary spatially as well as tem-
porally based on multiple variables. Geographical location, 
weather conditions [13], human mobility [14], population 
statistics might be some of the impacting factors changing 
the dynamics of the spread. An exploratory analysis re-
veals probable dependency of multiple spatial and tem-
poral features on the transmission rate. Spatially co-located 
regions might have similar dynamics of the spread with 
high autocorrelation of transmission rate in a localized re-
gion. However distant regions may have dissimilar trans-
mission dynamics with low correlation. Thus, a large geo-
graphic area has been divided into small regions called as 
grids. Each grid has been divided even further into smaller 
regions called pixels. A population within a pixel is as-
sumed to be constant and transmission dynamics is mod-
eled by separate SIR models for each pixel. Each grid con-
sists of co-located regions which might be impacting each 
other’s transmission rate. Feature is constructed for each 
grid as multichannel temporal sequence of matrices which 
in turn used for training a ConvLSTM [15] network to 
model the transmission rate. Data has been obtained for a 
region in United States from multiple sources [16, 29, 30, 
31, 32, 33, 34]. The time span of the data is from 2020-03-21 
to 2020-05-11.  

 
4.1 Feature Construction 

Covid19 daily data at USA county level are filtered by a spa-
tial region of USA as shown in Fig. 1. The region is geospa-
tially divided in M x N grids of equal sizes bounded by 
calculated latitudes and longitudes.  
Fig. 2a illustrates a grid bounded by latitudes and longi-
tudes. The dotted line box is called as frame. The overlap-
ping areas in all 4 directions in a frame allows flow of spa-
tial influence from neighboring grids. A frame is in turn 
divided into L x L pixel. Each pixel represents a bounded 
area in geospatial region. Each pixel contains a value 
mapped to certain feature in the bounded geospatial re-
gion. Frame matrices are constructed for each feature and 
concatenated through a third axis called channels. For ex-
ample, transmission rate and population density are two 
features and they represent two separate L x L matrices in 
a frame concatenated across a third axis. Some features like 
transmission rate, active infection fraction, weather etc. are 
distributed spatio temporally. Whereas other features like 
population density, female fraction, median age are as-
sumed time invariant and have no temporal component. 
Thus, they are only distributed spatially and copied along 
temporal axis. Population density has been log trans-
formed to reduce skewness and normalized. Other fea-
tures are only normalized in 0-1 scale. Daily transmission 

rate and removal rates at pixel level have been calculated as 
following, where 𝑖 ∈ {1. . 𝑛} denotes each pixel, ∆𝐼𝑖

+(𝑡) and 
∆𝑅𝑖(𝑡) are fraction of new cases in infected class and new 
individuals in removed class respectively at time 𝑡 in pixel 
𝑖.  

𝛽𝑖(𝑡) = ∆𝐼𝑖
+(𝑡)/[𝑆𝑖(𝑡 − 1)𝐼𝑖(𝑡 − 1) + 1]  

𝛿𝑖(𝑡) = ∆𝑅𝑖(𝑡)/[𝐼𝑖(𝑡 − 1) + 1]        (11) 

Each training sample of a frame is represented by a tensor 
of dimension T x L x L x C, where T is the total time span 
and C is number of channels or features. As shown in Fig. 
2b each training sample is generated by sliding a time win-
dow size of W+1 by 1, leaving behind a test case sample of 
time window size of W′ in the most recent period. Number 
of training samples for a frame can be calculated as T −
W′ − W − 1. Thus, total number of training samples 𝑆𝑡𝑟𝑎𝑖𝑛 
for all frames can be calculated as Strain = (T − W′ − W −
1) ∗  M ∗  N.  
The forecasting problem is framed as supervised learning 
problem. Given a sequence of observed multichannel 
frames of spatial data as matrices 𝑋1, 𝑋2 … 𝑋𝑡 the objective 
of the model is to predict the next single channel frame 
𝑌𝑡+1. The training samples are divided into input sequences 
of length W and output frames. The model forecasts the 
transmission rate in each pixel in a frame for each timestep. 
Thus, the output frame consists of only 1 channel. The in-
put training dataset (Xtrain ) can be represented as a tensor 
of size Strain x W x L x L x C and the output dataset (Ytrain) as 

 
Fig. 1. A region of USA divided in 18x30 grids. The red bubbles denote 
cumulative number of Covid-19 cases  

 
Fig. 2. a) Illustration of overlapping frames obtained by spatially divid-
ing a geographical region. The bold lines represent latitudes and lon-
gitudes which separates the grids. The box with dotted line represents 
the overlapping frame that is used for training the model. Each grid is 
divided LxL pixels. The margin refers to number of pixels of overlap-
ping region. b) Illustration of sequence of a frame. t-0 is the most re-
cent frame. Xtrain, Ytrain are the training samples and Xtest, Ytest are test-
ing samples. 
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Strain x W x L x L x 1. For training, the input sequences are 
selected from all frames having non-zero total infection 
count. Fig. 1b illustrates the sequence of a frame. The 
frames t-7 to t-3 represents an input training sequence 
(Xtrain ) of length W. The output frame (Ytrain) for this train-
ing sample is t-2. Other training samples are generated by 
sliding the window W+1 backwards in time by 1. The most 
recent images t-0 and t-1 represents the test output images 
(Ytest) and immediate sequence of images t-6 to t-2 is the 
test input sample (Xtest). The test set Xtest is represented by 
a tensor of size (M ∗ N) x W x L x L x C and Ytest by (M ∗
N) x W′ x L x L x 1.  

4.2 Exploratory analysis of transmission rate 

The primary purpose of the exploratory analysis is to un-
derstand the distribution of transmission rate and identify 
probable influence of different features on the transmis-
sion rate. Eight external features are analyzed against 
transmission rate to find probable influence. Among eight 
features, four are spatial features having no temporal com-
ponent, namely population density, housing density, fe-
male fraction, median age. Fig. 3 illustrates scatter charts 
between average transmission rate and four spatial fea-
tures for multiple pixels. The color gradient represents log 
transformed cumulative number of infection cases in each 
pixel. Only those pixels are filtered which experienced at 
least 30 days of running infection cases and having at least 
10 cumulative infection cases at the beginning of the obser-
vation period. Fig 3a and 3b displays scatter charts and re-
gression lines of average transmission rate with respect to 
population density and housing density in each pixel re-
spectively. The two external features are log transformed 
and scaled to get upper bounded by 1. Log transformation 

reduces skewness and influence of outliers in data. As ob-
served in the charts the transmission rate is positively 

correlated with both the features which is quite intuitive. 
Places with high population density is expected to experi-
ence rapid spread of the disease. Locations with high pop-
ulation density also experienced highest number of cumu-
lative cases. Fig. 3c and 3b displays scatter charts and re-
gression lines of transmission rate with respect to female 
fraction and median age of the population respectively. In 
Fig 3c, 16 pixels have been filtered out having female frac-
tion less than 0.45 to remove the skewness in the data. 
There is a slight positive correlation between female frac-
tion and transmission rate. However, this might not invoke 
a suggestive idea about the dependency of this external 
feature on transmission rate as majority of the pixels re-
sides in the range of 0.50 – 0.53 female fraction with barely 
any trend in that range. Also, there is an indirect correla-
tion as in general pixels with high female fraction has high 
population density. Median age has negative correlation 
with transmission rate. There is an indirect correlation in 
this case also as in general pixels with high median age has 
low population density. Another intuitive assumption can 
be, population with high median age are less mobile thus 

 
Fig. 4. Time lagged Cross correlation between transmission rate 
(Contact rate) and different features across multiple pixels. Plot of 
cross correlation of transmission rate vs a) average temperature, b) 
temperature standard deviation in 3-day period, c) average relative 
humidity, d) removal rate 

TABLE 1 
GRANGER CAUSALITY TEST OF TRANSMISSION RATE VS DIFFER-

ENT FEATURES 

Feature % of Pvalue<0.05 % of ADF<10% 

Transmission Rate NA 77.35 

Average Temperature 74.19 67.26 

Temperature Standard Deviation 76.82 71.93 

Average Relative Humidity 73.66 86.38 

Removal Rate 72.46 72.31 

 
Fig. 3. Average transmission rate (contact rate) in pixels and plotted 
against multiple features. The points are color coded based on nor-
malized log transformed total patient count in each pixel. Plot of mean 
transmission rate against a) scaled log transformed population den-
sity, b) scaled log transformed housing density, c) fraction of female 
population, d) scaled median age 
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restricting the spread of the disease.   
Apart from four spatial features four other external spatio-
temporal features are analyzed to observe any influence on 
transmission rate. Fig. 4 illustrates time lagged cross corre-
lation between transmission rate and other spatio-tem-
poral features at pixel level. The external features are time 
lagged from 0 to 15 time steps and cross correlated with 
transmission rate for each lag. In the plot, pixels are ar-
ranged in increasing order of total infection cases. Fig. 4a 
and 4b shows the plot of cross correlation of transmission 
rate with respect to average daily temperature and 3-day 
running window temperature standard deviation respec-
tively. Average temperature is slightly positively corre-
lated in time lag range of 0-5. In the plot, offset 15 denotes 
time lag 0 and offset 0 as time lag 15. The correlation with 
temperature variation varies widely across pixels. How-
ever, on average there is a minor positive correlation in 
time lag range of 5-15. For both the features pixels having 
high total infections have negative correlation with trans-
mission rate in the time lag range of 0-10. Fig. 4c and 4d 
shows the plot of cross correlation of transmission rate 
with respect to average daily relative humidity and daily 
removal rate respectively. There is an overall positive cor-
relation with respect of relative humidity specially in pix-
els with highest infection cases. Removal rate is mostly 
negatively correlated with transmission rate except in few 
pixels having highest infection cases. 

Correlation might not represent causality. Thus, we per-

formed granger causality test [17] of transmission rate with 

respect to different features. Granger causality is a statisti-

cal hypothesis test for finding if one time series can help 

improving the forecasting accuracy of another time series. 

It might not measure true causality rather it measures pre-

dictive causality. Chi square test is chosen as the hypothe-

sis testing method and minimum pvalues for each pixel are 

calculated.  Augmented Dickey-Fuller test [18] is per-

formed to test stationarity of all the timeseries. Table 1 dis-

plays the result of granger causality and Dickey-Fuller 

tests. The column ‘% of pvalue < 0.05’ represents percent-

age of pixels for which the granger causality test gave 

pvalue less than 0.05 for each feature. The column ‘% of 

ADF<10%’ represents percentage of pixels for which the 

Dickey-Fuller test gave test statistic less than 10% critical 

value and having pvalue less than 0.1 for each feature. 

From the observed results it seems for majority of the pix-

els the weather features and removal rate have predictive 

causal relation with transmission rate. Also, for majority of 

the pixels the feature timeseries are stationary or weakly 

stationary. 

4.3 ConvLSTM model of transmission rate 

Recurrent neural networks (RNN) are a class of artificial 

neural networks with nodes having feedback connections 

thereby allowing it to learn patterns in variable length tem-

poral sequences. However, it becomes difficult to learn 

long term dependencies for traditional RNN due to van-

ishing gradient problem [19]. LSTMs [20] solve the 

problem of learning long term dependencies by introduc-

ing a specialized memory cell as recurrent unit. The cells 

can selectively remember and forget long term information 

in its cell state through some control gates. In convolu-

tional LSTM [15] a convolution operator is added in state 

to state transition and input to state transition. All inputs, 

outputs and hidden states are represented by 3D tensors 

having 2 spatial dimensions and 1 temporal dimension. 

This allows the model to capture spatial correlation along 

with the temporal one. In our model we configured multi-

channel input such that distinct features can be passed 

through different channels. Multiple convolutional LSTM 

layers are stacked sequentially to form a network with high 

nonlinear representation. The final layer is a 2D convolu-

tional layer having one filter which constructs a single 

channel output image as the next frame prediction. We as-

sume the transmission rate saturates as number of infec-

tion cases increases. Thus, the modified transmission rate 

is calculated as 𝛽𝑖
′(𝑡) = 𝛽𝑖(𝑡) ∗ (τ𝑖 +  𝐼𝑖(𝑡)) which serves as 

the response variable for the model and τ𝑖 = 1/𝑁𝑖 and 𝑁𝑖 is 

total population in pixel 𝑖. 

The model is tested by feeding in input sequence of frames 
and next output frame is predicted which in turn is com-
bined with other features along channel and appended 
with the input sequence. The new input sequence is fed to 
the model again to get the next predicted frame. This con-
tinues until forecasting completes for a desired time pe-
riod. “Mean absolute percent error” (MAPE) and Kull-
back-Liebler (KL) divergence [17] are used to measure the 
accuracy of the model. The model predicts the transmis-
sion rate for a future time period for each pixel which in 
turn is used to calculate daily new infection cases ∆𝐼𝑖

+(𝑡) 
using equation 11. The removal rate is estimated as run-
ning average of previous 3-days and daily removed cases 
are calculated using equation 11.  The active infection cases 
(𝐼𝑖(𝑡)) and susceptibles (𝑆𝑖(𝑡))  are calculated using equa-
tion 1 and 2.  Cumulative infection cases (∑ ∆𝐼𝑖

+(𝑡)) are cal-
culated by summing up all new infection cases upto a cer-
tain day. MAPE of modified transmission rate is calculated 
at pixel level for the prediction period and averaged. The 
pixels with 0 susceptible population count are filtered out 
while calculating MAPE and KL divergence. Pixel MAPE 
is calculated as per equation 12, where G is set of all grids 
and G′ set of all pixels such that the frame for each corre-
sponding grid have non zero cumulative infection count, 
𝑊′ is prediction time period, 𝑊′′ = 𝑇 − 𝑊′ is total time pe-
riod in training set, 𝛽̂

𝑖

′
(𝑡) and 𝛽

𝑖
′(𝑡) are predicted and actual 

modified transmission rate for 𝑖𝑡ℎ pixel at time 𝑡 respec-
tively.  

𝑀𝐴𝑃𝐸𝑝𝑖𝑥𝑒𝑙 =
1

𝑊′|𝐺′|
∑ ∑  

|𝛽̂𝑖
′(𝑡)−𝛽𝑖

′(𝑡)|

𝛽𝑖
′(𝑡)∀𝑖 | 𝑖𝑊′ ∈ 𝐺′                 (12)  

KL divergence at pixel level is calculated for modified 
transmission rate in the prediction period to measure the 
dissimilarity of distribution of predicted transmission rate 
with respect to actual. 𝜎 is softmax function applied after 
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scaling a series in 0 to 1 scale and 𝑃(𝑋) is probability dis-
tribution of 𝑋. Softmax is applied to convert total infection 
cases as probability distribution across pixels. Since KL di-
vergence measures the dissimilarity between two distribu-
tion thus a lower value of it indicates better performance 
of the model. 

𝐷𝐾𝐿
𝑝𝑖𝑥𝑒𝑙

= ∑ 𝑃(𝜎(𝛽̂𝑖
′(𝑡))) log (

𝑃(𝜎(𝛽̂𝑖
′(𝑡)))

𝑃(𝜎(𝛽𝑖
′(𝑡)))

)∀𝑖           (13) 

MAPE is also calculated at grid and country level with re-
spect to cumulative predicted infection cases across the re-
gion during the prediction period. 

𝑀𝐴𝑃𝐸𝑔𝑟𝑖𝑑 =

1

|𝑊′||𝐺|
∑ ∑ (

∑ 𝑁𝑖∆𝐼𝑖
+(𝑡)𝑖∈𝑔 −∑ 𝑁𝑖∆𝐼𝑖

+(𝑡)𝑖∈𝑔

∑ 𝑁𝑖∆𝐼𝑖
+(𝑡)𝑖∈𝑔 +∑ ∑ 𝑁𝑖∆𝐼𝑖

+(𝑘)𝑘∈𝑊′′𝑖∈𝑔
)∀𝑔∈𝐺∀𝑡∈𝑊′      (14) 

𝑀𝐴𝑃𝐸𝑐𝑜𝑢𝑛𝑡𝑟𝑦 =  

1

|𝑊′|
∑ (

∑ 𝑁𝑖∆𝐼𝑖
+(𝑡)𝑖∈𝐺′ −∑ 𝑁𝑖∆𝐼𝑖

+(𝑡)𝑖∈𝐺′

∑ 𝑁𝑖∆𝐼𝑖
+(𝑡)𝑖∈𝐺′ +∑ ∑ 𝑁𝑖∆𝐼𝑖

+(𝑘)𝑘∈𝑊′′𝑖∈𝐺′
)∀𝑡∈𝑊′       (15) 

4.4 Model test results 

 
The model is constructed by stacking 4 Convolutional 
LSTM layer sequentially and terminating the network with 
a Convolutional 2D layer. The final layer is followed by ex-
ponential linear unit as activation. The input and other hid-
den Convolutional LSTM layers are followed by sigmoid 
activation. Each Convolutional LSTM layer has 32 filters 
and kernel size 3x3. The input layer is configured to take 
tensors of size 16x16x8. Eight input features are con-
structed and fed into the model as separate channels. 
Namely transmission rate, population density, female frac-
tion, median age, active infection fraction, average temper-
ature, temperature standard deviation and average rela-
tive humidity. The model is trained for 20 epochs with 
batch size of 50 and mean squared error as loss function. 
Out of 11378 samples 10809 are used for training the model 
and 569 are for validation. The model is trained and tested 
twice. Once with all the eight features another with only 
five leaving out the weather features.  

The dataset has a time span of 51 days out of which data 
from 42nd to 51st day is used for testing the model and rest 
for training and validation. Table 2 displays the training, 
validation and test results of the model. Statistics suggests 
there is a slight improvement of overall accuracy when 
weather features are included while training the model. 

Pixel MAPE and grid MAPE are below 10% in both the 
cases and country MAPE is below 1%. Predicted total in-
fection cases at the end of prediction period is little overes-
timated than actual (1330525) when weather features are 
included in modelling and overestimated when weather 
features are not included. All future reference of trained 
model suggests the model has been trained with all eight 
features unless otherwise mentioned. Fig. 5 illustrates dif-
ferent plots of predicted vs actual infection cases in 10-day 

prediction period. Fig. 5a and 5b shows the plot of pre-
dicted vs actual new infection cases and cumulative infec-
tion cases per day in 10-day period. Fig. 5c and 5d shows 
the plot of predicted vs actual log transformed total new 
infection cases and cumulative infection cases per grid in 
10-day prediction period. All the predicted curves closely 
approximate the actual values.  

5 EXPLAINING INFLUENCE ON TRANSMISSION RATE 

One of our goal of this study is to understand how different 
external features are influencing the transmission rate. We ex-
pect to find simple interpretable predictive causal relations 
between transmission rate and different features. One of the 
ways to find such relations is building an accurate predictive 
model followed by explaining the predictions in terms of in-
put features. As described in previous sections deep neural 
networks can model the dynamics of epidemic quite accu-
rately due to its high nonlinear representation. However high 
accuracy is tradeoff against model interpretability. Given the 
complexity of the Convolutional LSTM network used to 
model the transmission rate it is nearly impossible to find 
how each feature is influencing the transmission rate just by 
studying the weight matrices. Using a high bias predictive 
model like linear regression or shallow decision tree not only 

 
Fig. 5. Predicted vs actual new and total infection count in a 10-day 
prediction period. Model is trained with all features. a) Days vs scaled 
new infection count across all pixels. b) Days vs scaled cumulative 
infection count across all pixels. c) Grids vs logarithm of sum of new 
infection count. d) Grids vs logarithm of sum of cumulative infection 
count. 

TABLE 2 
MODEL TRAINING, VALIDATION AND TEST RESULTS 

Metric Value with 

weather features 

Value without 

weather features 

Training mean absolute error 0.0140 0.0140 

Validation mean absolute error 0.0043 0.0063 

Pixel KL divergence 8.306x10^-9  8.338x10^-9 

Pixel MAPE 7.95% 10.10% 

Grid MAPE 8.39% 10.36% 

Country MAPE 0.19% 0.25 % 

Predicted total cases (1330525) 1331175 1328605 
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reduces the accuracy but also drops interpretability [21]. Sim-
ple models can serve as interpretable models but may fail to 
capture true relations among features globally. This problem 
can be solved by building simple local models and drawing 
local explanations of feature relations. However, there may 
not be enough data points available or data distribution may 
be highly skewed in a local region to confidently build a pre-
dictive model and draw interpretations on it. Thus, we use the 
trained Convolutional LSTM model as the global model and 
draw spatio-temporal local interpretations of it using locally 
perturbated synthetic data by satisfying a criterion called lo-
cal fidelity [22]. Local fidelity suggests the explanations 
should be locally faithful with the model behavior. Local fi-
delity does not imply global fidelity however global fidelity 
implies local. To increase interpretability simple surrogate 
models can be trained with local data as it is expected that the 
response variable varies with the features almost linearly in a 
local region. In fact, there is a tradeoff between local fidelity 
and interpretability that needs to be made. Model agnostic 
methods perturbs the input features in a local region around 
a single or a group of datapoints and feeds the model to ob-
tain predicted response variable. This synthetic data is in turn 
used to train simple surrogate models to obtain local interpre-
tations of global model. There are several existing methods 
available in the literature to derive local interpretations of a 
model [22,23, 25]. Few works also proposed methods to de-
rive global explanations from local interpretations of any 
black box models [21, 24].  

5.1 Spatiotemporal locality of Transmission rate 

Similar to as stated in [22] deriving explanations requires op-
timization of the following function, where G is set of inter-
pretable surrogate models in a locality, 𝑓 is the global model 
to be explained, 𝑙𝑥 is the distribution function defining the lo-
cality of 𝑥, ℒ is the loss function and 𝛺𝑔 is the complexity of 
the model 𝑔. 

𝜉(𝑥) =  argmin
𝑔∈𝐺

ℒ(𝑓, 𝑔, 𝑙𝑥) + Ω𝑔         (16) 

It is desirable to minimize both Ω𝑔 and ℒ. However, in gen-
eral they are inversely proportional when the spread of 𝑙 is 
large. A very small spread of 𝑙𝑥 is also not desirable as it will 
oversimplify g to draw any meaningful explanations in the 
locality. Thus, a choice of 𝑙𝑥 is important to derive meaningful 
interpretations.  
The locality of 𝑥 is defined by a threshold distance in all direc-
tions from 𝑥 both spatially and temporally and it is defined 
by the following tuple, where 𝑥𝑠 and 𝑥𝑡 are spatial and tem-
poral components of observation 𝑥. 𝑑𝑠 and 𝑑𝑇 are spatial and 
temporal threshold distances from 𝑥 to the boundary of local-
ity.   

𝑙(𝑥) = {𝑥𝑠 ± [0, 𝑑𝑠), 𝑥𝑡 ± [0, 𝑑𝑇)}        (17) 

Fig. 6 illustrates spatiotemporal locality of observation 𝑥. Spa-
tial locality is bounded by pixels up to 𝑑𝑠 in all direction from 
𝑥𝑠 such that locality of 𝑥𝑠 is bounded by a square box of pixels 
of size (2𝑑𝑠 + 1) X (2𝑑𝑠 + 1). No paddings are applied at the 
edges. Thus, perimeter defining locality of pixels at the edges 
of a frame are trimmed. As illustrated in Fig. 6 temporal local-
ity is also defined similarly. Combining spatial and temporal 
locality the local region of observation 𝑥 is defined by a 

sequence of group of pixels with equal time lead and lag from 
𝑥 unless 𝑥 resides on temporal edge of an input tensor in 
which case temporal locality is trimmed on the direction of 
the edge. 
Perturbated data points are generated by randomly perturb-
ing the pixel values of 𝑥 following a uniform distribution. Per-
turbated distribution is calculated separately for each feature.  
The perturbated sample distribution is calculated as follow-

ing, where  𝑈(𝑘, 𝑘′) is uniform distribution with upper and 
lower bound as 𝑘, 𝑘′, 𝜎(𝑙(𝑥)) is standard deviation of all ob-
servations in the locality of 𝑥 and 𝑟𝑎𝑛𝑑 randomly selects one 
sample from two. 

𝑍𝑥 = {𝑥 + 𝑟𝑎𝑛𝑑 [𝑈(−1,0)min(𝜎(𝑙(𝑥)), 𝑥),
𝑈(0,1)min(𝜎(𝑙(𝑥)), (1 − 𝑥))]}         (18) 

The spatial features are only perturbated spatially and same 
values are copied temporally along the corresponding chan-
nel. The channels having temporal component are pertur-
bated for different time slice within an input tensor. Each per-
turbated pixel in a time slice represents a separate feature. In-
put tensors are constructed using the perturbated values and 
passed through the blackbox model 𝑓 to generate a predicted 
output value. The set of all input perturbated data points of 𝑥 
and the corresponding predicted output values serves as the 
training dataset for the surrogate model 𝑔. Each input chan-
nels and the predicted values are normalized to 0 mean and 1 
standard deviation prior to training the surrogate model. 
Normalization is done to convert the features into same scale 
so that coefficients of a linear regression surrogate model 
gives the relative influence of the features on the response var-
iable. Thus, the loss function is defined as following, where 
the function 𝑆 constructs the input tensor in the original rep-
resentation from perturbated samples. 

ℒ(𝑓, 𝑔, 𝑙𝑥) = ∑ ℎ(𝑓(𝑆(𝑧))) − 𝑔(ℎ(𝑓(𝑧))𝑧 ∈ 𝑍𝑥
, where 

ℎ(𝑧) = (𝑧 − 𝑧)̅/𝜎(𝑧)          (19) 

Though 𝑍𝑥 can be created by perturbing all features of a pixel 
in each channel within an input tensor, however in our anal-
ysis only a subset of all features is perturbated to produce 𝑍𝑥 
to find effect of those features on transmission rate. Other fea-
tures are kept constant as per the original observation. 

 
Fig.6. Illustration of spatio temporal locality 
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Intuitively this will explain the effect of the chosen features on 
the transmission rate in a single pixel area given all other pa-
rameters remain constant including feature values of spatio 
temporal neighboring pixels.   

5.2 Interpreting prediction of Transmission rate 

In our analysis 𝑍𝑥 is created by perturbing the following fea-
tures only. Population density, female fraction, median age, 
weather at 4th, 5th and 6th time lag. Weather includes average 
daily temperature, 3-day temperature standard deviation and 
average daily relative humidity. Apart from the weather fea-
tures the other three features have no temporal component. 
So, for them the perturbated values are copied temporally in 
the input tensor during reconstruction. The weather features 
from 4th to 6th time lag is chosen by assuming the average in-
cubation period of Sars-Cov-2 between 4 to 6 days. The spatial 
(𝑑𝑠) and temporal (𝑑𝑇) distance for defining locality is taken 
as 1. The perturbated samples for each feature are generated 
by equation 18. Local interpretations are carried out for each 
pixel which experienced at least 10 cumulative infection cases 
on 21st March 2020. The objective is to deduce the influence of 
aforementioned features on the transmission rate in each 
pixel given all other parameters remains constant. 250 pertur-
bated input samples are generated for each pixel. The samples 
are reconstructed in tensor format and fed to the model to ob-
tain the predicted transmission rate and together they form 
the input output samples. For each pixel a linear regression 
surrogate model is trained with the training samples. The co-
efficients of each feature denote the influence on the transmis-
sion rate.   
Fig. 7 illustrated the feature influence chart for different pixels 
in grid 387. We choose grid 387 as it experienced highest num-
ber of cumulative infection cases with nearly 10% of total in-
fection cases in USA as of 1st May 2020. Only those coefficients 
are plotted which have pvalue < 0.05. The features whose ab-
solute value of median and standard deviation across all days 
are less than 0.05, are considered unimportant and filtered out 
from the plot. The counties covered by each pixel in grid 387 
which have nonzero population is stated in Table 3. The Influ-
ence values are smoothed using 3rd degree polynomial. New 
York & Bronx have somewhat positive influence of popula-
tion density (pop den) and female fraction (f perc) on trans-
mission rate. Median age (med age) has positive effect in the 
mid period and negative on early and later days. 6th day time 
lag temperature (T6 temp) have slight negative effect on later 
days. On average Putnam also have positive influence of pop-
ulation density, median age and female fraction. However, 
population density and female fraction shows negative influ-
ence on later days. 4th time lag and 5th time lag relative humid-
ity (T4 rh & T5 rh) have slight negative impact on average. At 
grid level population density and female fraction positively 
impacts transmission rate on daily basis. Median age has mi-
nor positive impact on earlier days and negative impact on 
later days. Fig 7d. shows median of influence across all days 
for different pixels in grid 387. Population density and female 
fraction have positive impact across all pixels. Median age 
closely resembles a sinusoidal curve which implies that its in-
fluence varies widely across pixels. 
Fig. 8 illustrates the global effects of the features on transmis-
sion rate. To generate global interpretations local surrogate 

models are built for each pixel with 100 perturbated samples. 
For each feature the distribution of influence values for all pix-
els with nonzero population is plotted against time. Consid-
ering the median of the distribution, population density, fe-
male fraction has positive impact across all days whereas me-
dian age has negative impact. Temperature has minor posi-
tive impact, temperature standard deviation has minor nega-
tive impact and relative humidity barely have any noticeable 
impact on transmission rate. From this study it is clear local 
influence of features at pixel and grid level may widely devi-
ate from global average. This is important as spread of infec-
tion is highly skewed regionally such that few hotspots con-
tribute majority of the infection cases. Thus, studying the local 
influence of features can shed light on the local dynamics of 
spread and at the same time global influence charts provides 
a general idea of the influence on spread. 

5 LONG TERM FORECASTING OF DISEASE 

PROGRESSION 

Classical SIR model assumes a constant transmission rate 
and it typically predicts a smooth bell curve of active 

 
Fig. 7. Feature influence chart by day, for pixels in grid 387. a) Influence 
chart of pixel covering the area of New York and Bronx, b) influence 
chart of pixel covering the area of Putnam, c) median influence chart 
by day for grid 387, d) median influence chart per pixel in grid 387 

TABLE 3 
COUNTY NAMES FOR EACH PIXEL IN GRID 387 

Pixel County  Pixel County  Pixel County 

85 King & Queens 133 Rockland 166 Putnam 

101 New York & Bronx 134 Westchester 171 Middlesex 

102 Nassau 151 Fairfield 182 Dutchess 

122 Suffolk 153 New Haven 184 Litchfield 
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infection cases with respect to time with a single peak. 
However, transmission rate may vary with respect to mul-
tiple external factors including intervention methods like 
lockdown. A variable transmission rate may result in peri-
odic subsidence and resurgence of the spread of infection 
and in turn producing multiple peaks of active infection 
cases along time. Along with this the recovery rate may 
also change due to multiple intervention methods like en-
hancing hospital facilities, improving treatment procedure 
etc.  As shown in equation 10, recovery rate is very im-
portant in achieving disease free stable equilibrium state. 
In general, the average removal rate (recovery rate + death 
rate) over a period should exceed average transmission 
rate in order to reach the disease-free equilibrium. Consid-
ering the death rate to be constant and quite small com-
pared to recovery rate of Covid-19, the time required to 
reach the equilibrium state is inversely proportional to the 
difference between recovery rate and transmission rate. In 
our experiments we used the trained model to do long 
term forecasting of the epidemic with current normal pa-
rameters and compared with an “what if” analysis by 
modifying the removal rate.  
A 300 days forecasting is carried out for the grid 387. Since 
weather features barely impacts transmission rate in grid 
387 thus the model trained without weather features is 
used for forecasting. “What if” analysis is done by setting 
high removal rate to expedite disease-free equilibrium and 
compared with current normal forecasting by setting re-
moval rate as running average of past 5 days. In “what if” 
analysis removal rate is set as per equation 10 by setting 
T = 200 with upper hard limit 0.2. As removal rate 
changes daily active infection cases which in turn impacts 
future transmission rate and due to upper hard limit of 

removal rate the value of 𝜀 in some pixels is less than upper 
bound calculated by equation 10. From fig. 9a and 9b it is 
evident that number of active infection cases reduced 
much faster in the “what if” analysis and most of the pixels 

hit near baseline state at least once within 200-day period. 
However rapid periodic resurgence of the disease is seen 
in this case. As recovery rate has upper hard limit thus in 
some cases resurgence with high transmission rate re-
sulted in destabilizing disease-free equilibrium. The 
growth is again quickly dampened due to high recovery 

 
Fig. 8. Global Influence of different features on transmission rate 

 
Fig. 9. Plot of daily log transformed active infection cases and new 
infection cases for each pixel in grid 387. a) Daily active infections 
with normal running average removal rate b) daily active infections 
with modified removal rate to expedite disease-free equilibrium, c) 
daily new infections per pixel with normal running average removal 
rate d) daily active infections with modified removal rate 
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rate in future periodic resurgences. This can be empirically 
explained by the fact that population gets cautious and 
maintains social distancing with low intermixing when in-
fection cases are high and vice versa. Fig. 9c and 9d sug-
gests there is rapid periodic resurgence of new infection 
cases in “what if” analysis compared to current normal 
and multiple short low new infection periods are seen. The 
resurgences in some cases (pixel 85, 101) are stronger com-
pared to current normal. Thus, it is evident, by only in-
creasing recovery rate abruptly, infection spread may not 
be controlled fully unless other intervention methods are 
adopted to prevent spike of transmission rate during re-
surgence periods. Fig. 10a and 10b shows the plot of daily 
active infections when only pixel 101 and 102 are subjected 
to modified recovery rate respectively and other pixels are 
set with current normal recovery rate. In both the cases 
there is a quick dampening of active cases in 101 and 102 
pixels and resurgence spike is shorter and weaker com-
pared to Fig. 9b. It is evident there is spatial influence of 
neighboring active cases and transmission rate. One expla-

nation can be, isolated intervention measures to dampen 
the spread does not breaks the cautiousness and preven-
tive measures among the population. This makes deter-
mining an ideal recovery rate for a region a complex opti-
mization problem.  
Fig. 11 shows active infection cases at grid level quickly 
reaches baseline in “what if” scenario compared to current 
normal, but it is not eradicated fully. There are also small 

periodic spikes in future. The current normal scenario sug-
gests unless strict intervention actions are not taken to re-
duce transmission rate or recovery rate it is going to take 
long time to reach the baseline. The trace of new infection 
cases suggests the trend is quite similar in both the scenar-
ios with more frequent and stronger spikes in “what if” 
scenario. In current normal scenario the model estimates 
487254 new infection cases and 711040 removed cases in 
300-day period. In “what if” scenario it estimates 549158 
new infection cases and 909437 removed cases. However, 
Fig. 11c suggests most of the removal happens in initial 50 
days of forecast period due to abrupt increase of removal 
rate in forecast period. In real world such abrupt increase 
of removal rate may not be possible. However, on an aver-
age if the difference between removal rate and transmis-
sion rate can be maintained as per equation 10 it is possible 
to dampen the spread of infection within desired time pe-
riod. Though in our analysis we took removal in strict 
sense however it may not refer to complete recovery. Iden-
tification and complete isolation of a patient such that there 
is negligible chance of further spread of the infection from 
the patient may also be referred to removal. Thus, main-
taining high recovery rate, rapid and strict isolation of in-
fected patient and intervention methods to reduce trans-
mission rate are the keys to rapid convergence to disease-
free equilibrium.  

6 CONCLUSION 

 
A thorough study on the transmission rate of Covid19 in 
USA revealed several insights. Key influencers are identi-
fied. However, there might be other influencers like human 
mobility, demographics, government interventions etc. On 
availability of those feature data, proposed methods may 
be applied to find influences. These methods can also be 
applied to other countries. Though a threshold condition is 
derived for disease free equilibrium, yet it is not straight-
forward to determine ideal recovery rate to rapidly 
dampen the infection spread due to complex dependency 
of transmission rate. A general solution method may be in-
vestigated to solve this optimization problem and come up 
with ideal regional recovery rate.  
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Fig. 11. Comparison of forecasted infection spread between current 
normal scenario and “what if” scenario with increased recovery rate 
for grid 387. Trace of a) active infection cases, b) new infection cases 
and c) removed infection cases in “what if” scenario. Trace of a) active 
infection cases, b) new infection cases and c) removed infection 
cases in current normal scenario. 

 
Fig. 10. “What if” analysis with increased recovery rate for specific 
pixels in grid 387. Daily active infections with normal running average 
removal rate for all pixels except a) pixel 101 and b) pixel 102, where 
recovery rate is set to a high value in the forecast period. 

 . CC-BY 4.0 International licenseIt is made available under a 
preprint in perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the(which was not certified by peer review)this preprint 
The copyright holder forthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.19.20215665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.19.20215665
http://creativecommons.org/licenses/by/4.0/


SWARNA ET AL.:  ON NONLINEAR INCIDENCE RATE OF COVID-19 11 

 

Journal of Animal Ecology, vol. 47, no. 1, pp. 219–267, 1978 

[7] Zhang, J. Z., Jin, Z., Liu, Q. X., & Zhang, Z. Y. (2008). Analysis of 

a delayed SIR model with nonlinear incidence rate. Discrete Dy-

namics in Nature and Society, 2008.) 

[8] Xue, Y. A. K. U. I., & Duan, X. (2011). Dynamic analysis of an SIR 

epidemic model with nonlinear incidence rate and double de-

lays. Int J Inf Syst Sci, 7(1), 92-102. 

[9] P. van den Driessche, J. Watmough, A simple sis epidemic model 

with a backward bifurcation, Math. Biol. 40 (2000) 525–540. 

[10] Liu, X., & Stechlinski, P. (2012). Infectious disease models with 

time-varying parameters and general nonlinear incidence 

rate. Applied Mathematical Modelling, 36(5), 1974-1994. 

[11] Bacaër, N., & Gomes, M. G. M. (2009). On the final size of epi-

demics with seasonality. Bulletin of mathematical biology, 71(8), 

1954. 

[12] Hong, H. G., & Li, Y. (2020). Estimation of time-varying transmis-

sion and removal rates underlying epidemiological processes: a 

new statistical tool for the COVID-19 pandemic. arXiv preprint 

arXiv:2004.05730.  

[13] Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Mi-

ralles-Wilhelm, F., & Amoroso, A. (2020). “Temperature and lati-

tude analysis to predict potential spread and seasonality for 

covid-19”. Available at SSRN 3550308 

[14] Zhan, C., Tse, C., Fu, Y., Lai, Z., & Zhang, H. (2020). “Modelling 

and Prediction of the 2019 Coronavirus Disease Spreading in 

China Incorporating Human Migration Data”. Available at 

SSRN 3546051 

[15] Xingjian, S. H. I., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., 

& Woo, W. C. (2015). “Convolutional LSTM network: A machine 

learning approach for precipitation nowcasting”. In Advances in 

neural information processing systems (pp. 802-810 

[16] China Data Lab, 2020, "US COVID-19 Daily Cases with Base-

map",https://doi.org/10.7910/DVN/HIDLTK, Harvard 

Dataverse, V18, UNF:6:s0u1J15PWisF3mouUiT6Kw== [fileUNF] 

[17] Granger, C. W. (1969). Investigating causal relations by econo-

metric models and cross-spectral methods. Econometrica: jour-

nal of the Econometric Society, 424-438. 

[18] Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estima-

tors for autoregressive time series with a unit root. Journal of the 

American statistical association, 74(366a), 427-431. 

[19] Hochreiter, S. (1998). “The vanishing gradient problem during 

learning recurrent neural nets and problem solutions”. Interna-

tional Journal of Uncertainty, Fuzziness and Knowledge-Based 

Systems, 6(02), 107-116. 

[20] Hochreiter, S., & Schmidhuber, J. (1997). “LSTM can solve hard 

long time lag problems”. In Advances in neural information pro-

cessing systems (pp. 473-479). 

[21] Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., 

Nair, B., ... & Lee, S. I. (2020). From local explanations to global 

understanding with explainable AI for trees. Nature machine in-

telligence, 2(1), 2522-5839. 

[22] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why 

should i trust you?" Explaining the predictions of any classifier. 

In Proceedings of the 22nd ACM SIGKDD international confer-

ence on knowledge discovery and data mining (pp. 1135-1144). 

[23] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki 

Kawanabe, Katja Hansen, and Klaus-Robert MÃžller. How to ex-

plain individual classification decisions. Journal of Machine 

Learning Research, 11(Jun):1803–1831, 2010.  

[24] Ribeiro, M. T., Singh, S., and Guestrin, C. Anchors: Highprecision 

model-agnostic explanations. In AAAI, 2018a. 

[25] Plumb, G., Molitor, D., & Talwalkar, A. S. (2018). Model agnostic 

supervised local explanations. In Advances in Neural Infor-

mation Processing Systems (pp. 2515-2524) 

[26] Hu, Z., Ge, Q., Jin, L., & Xiong, M. (2020). “Artificial intelligence 

forecasting of covid-19 in china”. arXiv preprint 

arXiv:2002.07112. 

[27] Fanelli, D., & Piazza, F. (2020). “Analysis and forecast of COVID-

19 spreading in China, Italy and France”. Chaos, Solitons & Frac-

tals, 134, 109761. 

[28] Xi, G., Yin, L., Li, Y., & Mei, S. (2018, November). “A deep residual 

network integrating spatial-temporal properties to predict influ-

enza trends at an intra-urban scale”. In Proceedings of the 2nd 

ACM SIGSPATIAL International Workshop on AI for Geo-

graphic Knowledge Discovery (pp. 19-28). 

[29] https://covidtracking.com/api/v1/states/daily.csv 

[30] China Data Lab, 2020, "US COVID-19 Daily Cases with Base-

map", https://doi.org/10.7910/DVN/HIDLTK, Harvard 

Dataverse, V24, UNF:6:4iyX7x/Oqi+dloA11aGvdQ== [fileUNF] 

[31] U.S. Department of Commerce, Office of Textiles and Apparel. 

(2002). U.S. Total Exports in U.S. Dollars. Retrieved from 

http://otexa.ita.doc.gov/tqexp/htsdata. 

[32] Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston, 

2012:  An overview of the Global Historical Climatology Net-

work-Daily Database.  Journal of Atmospheric and Oceanic 

Technology, 29, 897-910, doi:10.1175/JTECH-D-11-00103.1. 

[33] Diamond, H. J., T. R. Karl, M. A. Palecki, C. B. Baker, J. E. Bell, R. 

D. Leeper, D. R. Easterling, J. H. Lawrimore, T. P. Meyers, M. R. 

Helfert, G. Goodge, and P. W. Thorne, 2013: U.S. Climate Refer-

ence Network after one decade of operations: status and assess-

ment. Bull. Amer. Meteor. Soc., 94, 489-498. 

[34] https://www.kaggle.com/headsortails/covid19-us-county-jhu-

data-demographics?select=us_county.csv 

[35] Paul S.K, Jana, S., & Bhaumik, P. (2020). A multivariate spatio-

temporal spread model of COVID-19 using ensemble of Con-

vLSTM networks. medRxiv. 
 

 

 . CC-BY 4.0 International licenseIt is made available under a 
preprint in perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the(which was not certified by peer review)this preprint 
The copyright holder forthis version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.19.20215665doi: medRxiv preprint 

https://doi.org/10.7910/DVN/HIDLTK
https://covidtracking.com/api/v1/states/daily.csv
https://doi.org/10.7910/DVN/HIDLTK
http://otexa.ita.doc.gov/tqexp/htsdata
https://www.kaggle.com/headsortails/covid19-us-county-jhu-data-demographics?select=us_county.csv
https://www.kaggle.com/headsortails/covid19-us-county-jhu-data-demographics?select=us_county.csv
https://doi.org/10.1101/2020.10.19.20215665
http://creativecommons.org/licenses/by/4.0/

