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Supplementary Figure 2 | COVID-19, its growth rate, and the Air Quality Index in Hubei 
Province, Beijing, Shanghai, and Wuhan. These graphs show the COVID-19 outbreak (number 
of active, recovered, and deceased from COVID-19), the infection growth rate, and AQI in each 
region. 
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Supplementary Figure 3 | Strong correlation between thermal inversion and air pollution is 
robust to different specifications. These graphs show the correlation between temperature 
inversion and residual in the Air Quality Index, after controlling for the weather variables, city 
fixed effects, and date fixed effects. A. shows the coefficients of the contemporaneous relationship 
for each model, which corresponds to Figure 3A. B-D. show the distribution of thermal inversion 
and the average residual. B. includes lockdown status for the control variable, C. includes 
lockdown status and days since the outbreak (first confirmed cases). D. includes Wuhan city in 
the regression. 
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Supplementary Figure 4 | The effects of air pollution on the COVID-19 growth rate using the 
IV estimates are robust to a number of model specifications. A. lockdown status is added as a 
control variable. B. the lockdown status and days since the outbreak (the first case confirmed) are 
added in the regression. C. We include Wuhan. D and E. We adopt different segments for the 
Flexible Distributed Lag Model. F. We add three days of future air pollution. The joint coefficient 
for the three days lead is 0.002, with the standard error at 0.051, suggesting that future air 
pollution does not affect the disease growth rate. Thermal inversions and the same controls are 
used for all first-stage regressions. All regressions include weather controls (temperature, 
precipitation, and snow depth), date fixed effects, and city fixed effects. Standard errors are 
clustered at the city level. 
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Supplementary Figure 5 | The effects of air pollution on the COVID-19 growth rate using 
different lags. A. represents the results using IV. We use different lengths of lags from 16 days to 
24 days, while the main estimation uses 21 days. The blue line shows the baseline estimates, and 
the gray line shows the results with different lags. B. shows the results using OLS estimates. 
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Supplementary Figure 6 | Instrumental variables (IV) estimates are consistently larger than 
OLS estimates in existing studies linking air pollution and health outcomes. The graph 
represents the estimates of the effect per 10 unit increase in air pollution on mortality rate (%). 
Deryugina et al. (2020) use mortality among aged above 65. Except for Chay and Greenstone 
(2003), existing studies report the OLS estimates are smaller than the IV estimates. Note that 
different studies focus on different pollutants and use different instrumental variables. Therefore, 
we do not compare estimates across different studies but across different methods within each 
study.  
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Supplementary Figure 7 | The correlations between air pollution and COVID-19 growth rate 
using OLS estimates are robust to a number of model specifications. A. lockdown status is 
added as a control variable. B. the lockdown status and days since the outbreak (the first case 
confirmed) are added in the regression. C. We include Wuhan. D and E. We adopt different 
segments for the Flexible Distributed Lag Model. F. We add three days of future air pollution. 
The joint coefficient for the three days lead is 0.010, with the standard error at 0.010, suggesting 
that future air pollution does not affect the disease growth rate. All regressions include weather 
controls (temperature, precipitation, and snow depth), date fixed effects, and city fixed effects. 
Standard errors are clustered at the city level. 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.19.20215236doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.19.20215236
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 
Supplementary Figure 8 | The effects of air pollution on the COVID-19 growth rate using 
different air pollutants. A1-A6. Represents the results using IV. Each graph shows the coefficient 
of a 1 point increase in each pollutant in each day. Weather controls (temperature, precipitation, 
and snow depth), date fixed effects, and city fixed effects are included in both the first and second 
stage regression. The blue line represents the point estimates, while the blue area denotes the 95% 
confidence interval. B. represents the results using OLS. The regression includes the same controls 
as the IV estimates. The red line represents the point estimates, while the red area denotes the 
95% confidence interval. In all regressions, standard errors are clustered at the city level. 
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Supplementary Figure 9 |Impacts of air pollution on the COVID-19 death rate. A. The trend of 
the COVID-19 deaths over time outside Wuhan. B. Distribution of deaths in each city. C. The 
graph above shows the effect of air pollution on death rate using IV, while the graph below shows 
the effect using OLS. To keep the variation in death rate, we aggregate data to the week-by-city 
level. The results do not show a statistically significant relationship between AQI and the death 
rate. 
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Supplementary Tables 
 

 Each Air Pollutant  

AQI 
PM10 

(24hr) 
PM2.5 

(24hr) 
NO2 

(24hr) 
O3 

(8hr) 
CO 

(24hr) 
SO2 

(24hr) 
Air Quality Levels 

0-50 0-50 0-35 0-40 0-100 0-2 0-50 Excellent 

50-100 50-150 35-75 40-80 100-160 2-4 50-150 Good 

100-200 150-350 75-150 80-280 160-265 4-24 150-800 Slightly Polluted 

200-300 350-420 150-250 280-565 265-800 24-36 800-1600 Moderately Polluted 

300-400 420-500 250-350 565-750 / 36-48 1600-2100 Severely Polluted 

400-500 500-600 350-500 750-940 / 48-60 2100-2620 Severely Polluted 

Supplementary Table 1 | The relationship between the AQI and different air pollutants. This 
table reports the AQI sub-index levels for each air pollutant. The sub-index with the highest value 
will then be used as the AQI. For CO, the unit is mg/m3, and for other pollutants, the units are 
µg/m3. 
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Dependent Variable: 
Daily disease growth rate 

OLS IV 
coefficients s.e. coefficients s.e. 

(1) (2) (3) (4) 
Current Day -0.011** [0.005] -0.054  [0.035] 
lag: 1 day -0.003 [0.002] -0.002  [0.014] 
lag: 2 days 0.003** [0.002] 0.028** [0.012] 
lag: 3 days 0.006*** [0.002] 0.042*** [0.014] 
lag: 4 days 0.008*** [0.002] 0.044*** [0.013] 
lag: 5 days 0.008*** [0.001] 0.038*** [0.010] 
lag: 6 days 0.007*** [0.001] 0.028*** [0.010] 
lag: 7 days 0.006*** [0.001] 0.018  [0.013] 
lag: 8 days 0.006*** [0.001] 0.012  [0.013] 
lag: 9 days 0.006*** [0.001] 0.011  [0.013] 
lag: 10 days 0.006*** [0.001] 0.012  [0.012] 
lag: 11 days 0.006*** [0.001] 0.014  [0.012] 
lag: 12 days 0.007*** [0.001] 0.016  [0.014] 
lag: 13 days 0.006*** [0.001] 0.018  [0.016] 
lag: 14 days 0.006*** [0.001] 0.017  [0.016] 
lag: 15 days 0.004*** [0.001] 0.014  [0.016] 
lag: 16 days 0.003** [0.001] 0.008  [0.019] 
lag: 17 days 0.001 [0.001] 0.003  [0.021] 
lag: 18 days -0.000 [0.001] -0.001  [0.022] 
lag: 19 days -0.002 [0.001] -0.003  [0.019] 
lag: 20 days -0.002 [0.002] 0.000  [0.020] 
lag: 21 days -0.002 [0.003] 0.009  [0.044] 

     

z-Segment, k-order 3, 3 3, 3 
Observations (cities) 22,701 (329) 22,701 (329) 
Weather Control Y Y 
Date fixed effects Y Y 
City fixed effects Y Y 

Supplementary Table 2 | Full results of the effect of air quality on the COVID-19 growth rate. 
The results correspond to Figure 4. The dependent variable is the day-by-city level growth rate of 
the activated COVID-19 cases. Each estimate indicates the effect of the current and past air 
pollution (Air Quality Index) on the growth rate of COVID-19. Weather controls include 
temperature, precipitation, and snow depth. Standard errors are clustered at the city level and 
shown in the right-side brackets. Significance levels are indicated by *** p<0.01, ** p<0.05, and * 
p<0.01. 
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Starting Date Cities 

23-Jan Wuhan 

24-Jan Huangshi, Shiyan, Yichang, Ezhou, Jingmen, Xiaogan, Huanggang, Xianning, Enshi 

25-Jan Qinhuangdao 

26-Jan Xiangyang, Jingzhou, Xiantao 

28-Jan Tangshan 

30-Jan Dongying 

31-Jan Chongqing, Yinchuan, Wuzhong 

2-Feb Wenzhou 

3-Feb Wuxi, Jining 

4-Feb Harbin, Nanjing, Xuzhou, Changzhou, Nantong, Hangzhou, Ningbo, Fuzhou, 
Jingdezhen, Zaozhuang, Linyi, Zhengzhou, Zhumadian 

5-Feb Shenyang, Dalian, Anshun, Fushun, Benxi, Dandong, Jinzhou, Fuxin, Liaoyang, Panjin, 
Tieling, Chaoyang, Huludao, Yangzhou, Hefei, Quanzhou, Nanchang, Jinan, Qingdao, 
Taian, Rizhao, Laiwu, Nanning 

6-Feb Tianjin, Shijiazhuang, Suzhou, Pingxiang, Jiujiang, Xinyu, Yingtan, Ganzhou, Ji’an, 
Yichun, Fuzhou, Shangrao, Neijiang, Yibin, Xinyang 

7-Feb Suzhou, Guangzhou 

8-Feb Shenzhen, Foshan, Fangchenggang, 

9-Feb Cangzhou, Huaibei 

10-Feb Beijing, Shanghai 

13-Feb Hohhot, Baotou, Wuhai, Chifeng, Tongliao, Ordos, Hulun Buir, Bayan Nur, Ulanqab, 
Xing’an League, Xilingol League, Alxa League 

Supplementary Table 3 | List of locked-down cities. The lockdown information is from local 
government and various media news in 2020. 
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