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Abstract

Eye-tracking is used widely to investigate visual and cognitive processes in the context of electronic
medical record systems. We investigated a novel application of eye tracking to collect training data for
machine learning-based clinical decision support. Specifically, we recorded the information-seeking
behavior of physicians while they used electronic medical records in the context of a specific clinical
task. Using data captured by a low-cost eye tracking device, we evaluated the performance of several
methods for processing gaze points that were recorded using the device. Our results support the
use of a low-cost eye tracking device and relatively simple methods for processing gaze points to
record the information-seeking behavior of physicians. The eye-tracking methods and scripts that we
developed offer a first step in developing novel uses for eye-tracking for clinical decision support.
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Lay summary

In the context of electronic medical record systems, eye-tracking is used extensively to explore visual
and cognitive processes. We investigated a novel application of eye tracking to collect training data
for machine learning-based clinical decision support. We developed and evaluated several methods
for processing gaze points that were recorded using a low-cost eye tracking device. The eye-tracking
methods and scripts that we developed offer a first step in developing novel uses for eye-tracking for
clinical decision support.

1 Background and significance

Eye tracking is a sensor technology that detects where a person is looking and is widely used to
record and study human visual and cognitive processes. With the advent of affordable eye tracking
devices, there is growing interest in leveraging eye-tracking to provide input and to control computer
applications for people with disabilities.

In the context of electronic medical record (EMR) systems, eye tracking has been used to study
information search patterns [1]], evaluate usability [2]], understand clinical reasoning [3]], measure time
use [4], and quantify cognitive loads while performing tasks in the EMR system [5]]. An intriguing
application of eye-tracking in EMR systems is to enable clinical decision support applications.
For example, we have used eye-tracking to collect training data for machine learning models of
information-seeking behavior in an EMR system to identify and highlight data in the EMR that are
likely to be relevant to the user [6,[7, [8]. The availability of inexpensive eye-tracking devices makes
the broad deployment of eye-tracking enabled systems feasible.
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Eye tracking devices record a sequence of gaze points (the onscreen locations where a person is
looking) with a regular sampling rate (e.g., a sampling rate of 60 Hz produces a sequence of 60 gaze
points per second). Based on gaze points, eye movements are broadly classified into fixations and
saccades. A series of gaze points that cluster closely in space constitutes a fixation. Fixations are
periods when the eyes are more or less still and are focused on a singular region of interest. Gaze
points that occur between fixations and are widely dispersed in space constitute saccades. Saccades
are fast movements of the eyes from one region of interest to another.

Visual attention and cognitive processing are assumed to occur only during fixations and thus methods
have been developed to identify fixation durations and locations from a raw sequence of gaze points.
These methods are often used to measure the duration of visual attention directed to a region of
interest and to infer that if the duration is above a certain threshold then the information in that region
has been cognitively processed. Simple gaze point methods count the number of gaze points that fall
in each region of interest during the study period. More sophisticated methods count the number of
gaze points that fall in each region of interest during fixations. The proportion of all gaze points, or
gaze points during fixations, that are directed toward one region relative to others indicates the extent
of the attention paid to that region.

For clinical decision support, eye tracking can be effective in several ways: (a) in the collection of
training data for machine learning models of information-seeking behavior, (b) in the generation of
personalized alerts based on what the user has seen and cognitively processed —thus decreasing alert
fatigue—, and (c) in investigating visual and cognitive processes —the traditional application of eye
tracking— in the context of using decision support.

2  Objective

We investigated the suitability of eye tracking for collecting training data for machine learning-based
clinical decision support. Specifically, we record the information-seeking behavior of physicians
while they use electronic medical records in the context of a specific clinical task. We evaluated
the accuracy of several methods for processing gaze points that were recorded using a low-cost eye
tracking device.

3 Methods

In this section, we introduce the learning electronic medical record (LEMR) system and the eye-
tracking device. We then describe the data we collected and the gaze point processing methods we
evaluated.

3.1 The learning electronic medical record (LEMR) system

We developed the LEMR clinical information display to use machine learning models to prioritize
patient information that is relevant in the context of a clinical task [9,[10]]. For example, the task of
summarizing a patient’s clinical status at morning rounds in the intensive care unit (ICU) typically
requires the presenter to first review and identify relevant patient information in the EMR system.
This “pre-rounding” task is time-consuming and laborious, and the LEMR system was designed to
assist in this task.

The LEMR interface (see Figure[I]) enables the collection of physician information-seeking behavior
in two ways: (a) manual selection, when the user annotates relevant information by clicking on
checkboxes, and (b) gaze-derived, when an eye-tracking device records gaze points while the user is
reviewing the patient’s record. Both methods produce a list of clinical data for a patient that were
considered relevant by the user and are used to train the LEMR machine learning models. These
models are then applied to new patients to identify and highlight relevant information that the user is
predicted to view.

3.2 Eye-tracking device

We used Tobii EyeX, an inexpensive portable eye-tracking device and software package, which
is primarily marketed for developing computer gaming and virtual reality applications [[L1]. The
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LEMR. interface Eye-tracking device

Figure 1: A computer monitor displaying the LEMR system with an eye-tracking device mounted
at the bottom. From left to right, the system displays patient information on vital signs, ventilator
settings, and intake and output, medication administrations, laboratory test results, and free-text notes
and reports.

hardware component, the Tobii EyeX Controller, is mounted at the bottom edge of a computer monitor
and samples eye gaze point coordinates at approximately 60 Hz. The software component, the Tobii
EyeX Software Development Kit, records and outputs x-axis and y-axis gaze point coordinates for
each eye.

3.3 Data collection

We randomly selected 178 ICU patients who were admitted to an ICU between June 2010 and May
2012 at the University of Pittsburgh Medical Center, and had a diagnosis of either acute kidney failure
(AKF; ICD-9 584.9 or 584.5; 93) or acute respiratory failure (ARF; ICD-9 518.81; 85). Eleven
critical care physicians reviewed the EMRs of the selected patients in the LEMR system.

Each patient record was loaded into the LEMR system as shown in Figure[I] The physicians reviewed
a record by completing three tasks. In the familiarization task, the physician was shown patient
information from the time of ICU admission up to 8:00 AM on a random ICU day between day two
and the day before discharge from the ICU (inclusive). The physician was asked to understand the
clinical course of the patient. In the preparation task, the physician was shown an additional 24 hours
of patient information and was instructed to review the information for the task of summarizing the
patient record for presentation at morning rounds. During this task, eye-tracking was used to record
the physician’s gaze points as they reviewed the latest patient information. In the selection task, the
physician indicated which patient information was relevant by clicking on checkboxes.

From gaze points recorded during the preparation task, we estimated which patient information was
considered to be relevant by the physician; from the manual checkbox selections recorded during the
selection task, we derived a reference standard of patient information that was specified as relevant by
the same physician. We evaluated the performance of the gaze-derived relevant patient information
against the manual selection reference standard.
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3.4 Eye-tracking methods

We evaluated four eye-tracking methods to infer relevant patient information from the gaze points
recorded from the 11 physician reviewers. We selected two fixation identification algorithms that
are widely used and include the dispersion-threshold identification (I-DT) and area-of-interest
identification (I-AOI) methods. In addition, we developed two simple gaze point algorithms called
the gaze point (GP) and distributed gaze point (DGP) methods.

The I-DT method identifies fixations from a series of gaze points collected during a study period. It
categorizes a group of consecutive gaze points as a fixation if they are within a maximum distance of
one another and within a period of time exceeding some minimum length (generally 100 milliseconds).
Thus, the I-DT requires two input parameters, the dispersion threshold and the duration threshold.

In contrast to the I-DT that identifies fixations in any location in the visual field, the I-AOI identifies
fixations that occur within one or more specified target areas. Typically, a target area is a rectangular
region of interest that represents a unit of information in the visual field. Similar to I-DT, I-AOI
utilizes a duration threshold to distinguish fixations in the target area from saccades crossing that
area. Thus, the I-AOI requires a duration threshold as an input parameter.

We developed two simple and efficient gaze point methods that do not rely on fixation identification.
The GP method maps all gaze points to specified target areas without classifying the points as part of
a fixation or a saccade. In our application, a target area is a rectangular region that displays one type
of patient information, e.g., a laboratory test time series or a medication order time series. A higher
proportion of gaze points that map to a target area (compared to all gaze points that are recorded for
the preparation task) indicate that more visual attention has been directed there (see Figure[2). Thus,
the GP method does not require inputs like the dispersion threshold and the duration threshold.
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Figure 2: The panel on the left shows four illustrative laboratory test results that are four target areas.
The orange points denote gaze points. The GP method computes the value assigned to each target
area as the number of gaze points that fall within each target area. For example, the value assigned by
the GP method to the bicarbonate laboratory test target area is 5 as shown in the right had panel.

The DGP method is a probabilistic refinement of the GP method in which each gaze point contributes
to several adjacent target areas in probability fashion (see Figure3). The fractional contribution of a
gaze point to a target area is equal to the density of a bivariate normal distribution. The means of the
distribution are located at the center of the gaze point and the variances are derived from the average
error of the eye-tracking device in the horizontal and vertical directions that we estimated in a prior
study [7].

In our experiments, we explored a range of values for the input parameters for I-DT and I-AOI. For
the I-DT algorithm, dispersion thresholds values were picked from values [50, 80, 100, 150, 200
pixels] and the duration threshold was selected from values [10, 20, 30, 40 data points]. For I-AOI,
values [10, 20, 30, 40, 50, 100, 150, 200 data points] were assigned to the duration threshold. Since
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Figure 3: The panel on the left shows the same four illustrative laboratory test results with gaze points
as in Figure 2] The DGP method computes the fractional contribution of a gaze point to a target
area as equal to the density of a bivariate normal distribution. For illustration, five bivariate normal
distributions are shown overlaid on five gaze points on the bicarbonate laboratory test target area. For
example, the value assigned by the DGP method to the bicarbonate laboratory test target area is 5.4
as shown in the right had panel.

the sampling frequency is 60 Hz, the interval between consecutive data points is 16.7 milliseconds;
thus 10 data points for the duration threshold translates to a duration of 167 milliseconds.

We evaluated the performance of the methods on several measures including accuracy, precision,
recall. Accuracy is the percent of target areas, both relevant and irrelevant, that were correctly
identified by an eye-tracking method. Precision is the fraction of relevant target areas among all
target areas identified as relevant and recall is the fraction of relevant target areas among all target
areas that are relevant.

4 Results

Overall, GP had the highest accuracy and precision of 69% and 53% and DGP has the highest recall
at 48% (see Table m) The two fixation methods, I-DT and I-AOI, had lower values on precision and
recall and slightly lower accuracy than GP and DGP.

The scripts for the four eye-tracking methods with accompanying documentation are freely available
on GitHub at https://github.com/ajk77/EyeBrowserPy.

Table 1: Accuracy, precision, and recall values with standard error of four eye-tracking methods. The
highest values for each performance measure are in bold font.

5 Discussion

We evaluated several eye-tracking methods to collect data for training machine learning models that
underlie a clinical decision support application. Specifically, we evaluated four methods including

Method | Accuracy % | Precision % | Recall %
I-DT 67 £0.03 46 £0.05 26 +£0.23
I-AOI 68 +0.03 49 £ 0.09 31+0.26
GP 69 + 0.04 53+ 0.10 | 38+0.28
DGP 67+ 0.05 50+ 0.08 | 48 £0.25
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two that we developed for processing gaze points collected while a physician was using a custom-built
EMR system in the clinical context of pre-rounding in the ICU. Our results support the use of a
low-cost eye tracking device and relatively simple methods for processing gaze points to record the
information-seeking behavior of physicians. Next, we applied our methods to collect training data
and derived machine learning models to predict the relevance of laboratory tests, medications, vital
sign measurements, ventilator settings and fluid intake and output for the task of pre-rounding in the
ICU. The models that were derived using eye-tracking data performed as well as models that were
derived using manual annotations made by physicians to indicate relevant patient information using
the LEMR system [6].

The eye tracking device, Tobii EyeX, was not developed explicitly for research applications and the
device’s modest temporal and spatial resolution, moderate precision, and low sampling frequency
may be inadequate for many research applications, especially those that investigate human visual
and cognitive processes [12]. However, it is adequate for applications that only require more than
monitoring of simple eye movements. In an earlier evaluation, we found that the EyeX is adequate
for collection of information-seeking behavior data for the LEMR system, and its accuracy—for our
task—was comparable to that of a more expensive eye-tracking device [7].

There are several limitations to our study. One is the use of a custom-built LEMR system whose
interface is significantly different from the vendor EMR systems currently used in clinical care.
Further studies are needed to assess the adequacy of low-cost eye tracking devices when used in
conjunction with vendor EMR systems. A second limitation is that the eye-tracking device currently
for sale from the same company is a newer model (Tobii Eye Tracker 5) than the eye tracking device
used in this study (Tobii EyeX), and has a higher sampling frequency. A third limitation is that the
eye tracking device used in this study could not track head movements, which restricts its use to
studies in which head movement is restrained. However, this limitation may be mitigated with newer
devices like Tobii Eye Tracker 5 that are capable of tracking both head and eye movements offer the
ability to robustly estimate the coordinates of eye-gaze even if the position of the head changes [13]].

6 Conclusion

Eye-tracking provides an automated and unobtrusive method to capture the information-seeking
behavior of physicians. Data obtained from an inexpensive eye-tracking device are suitable for
building machine learning models that identify and highlight relevant patient information. The
eye-tracking methods and scripts that we developed offer a first step in developing novel uses of
eye-tracking in clinical decision support.
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