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Abstract

A population attributable fraction (PAF) represents the relative change in
disease prevalence that one might expect if a particular exposure was absent
from the population. Often, one might be interested in what percentage
of this effect acts through particular pathways. For instance, the effect of
excessive alcohol intake on stroke risk may be mediated by blood pressure,
body mass index and several other intermediate risk factors. In this situation,
attributable fractions for each mediating pathway of interest can be defined
as the relative change in disease prevalence from disabling the effect of the
exposure through that mediating pathway.

This quantity is related to, but distinct from the recently proposed met-
rics of direct and indirect PAF by Sjolander. In particular, while differing
pathway-specific PAF will each usually be less than total PAF, they may
sum over differing mediating pathways to more than total PAF, whereas di-
rect and indirect PAF must sum to total PAF. Here, we present definitions,
identifiability conditions and estimation approaches for pathway-specific at-
tributable fractions. We illustrate results, and comparisons to indirect PAF
using INTERSTROKE, a case-control study designed to quantify disease
burden attributable to a number of known causal risk factors.
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Introduction

In causal inference, in addition to estimating an overall causal effect of an
exposure, one is often interested in the mediating pathways by which the
exposure effects an outcome. For instance, the effect of excessive alcohol
intake on stroke risk may be mediated by blood pressure, body mass index
and several other intermediate risk factors; mediation analysis [1, 2, 3] tries
to appropriate effect sizes to each of these known causal pathways.

In an analogous fashion, one can examine decompositions of attributable
fractions into direct and indirect components. For example, one might ask
‘what percentage of disease burden might be eliminated if the direct mecha-
nisms by which an exposure effects disease were disabled?’ Recently, Sjclander
[4] proposed definitions and estimation approaches for population attributable
fractions (PAF) in the spirit of the work by Robins, Greenland and Pearl that
attempts to answer these questions. As we show later, Sjolander’s definitions
of direct and indirect PAF can be viewed as types of sequential PAF [5, 6],
but formed by disabling causal pathways rather than eliminating risk fac-
tors. From this view, it turns out that direct and indirect PAF are defined
in a somewhat asymetric manner, which may skew the relative disease bur-
den appropriated to the differing pathways. Here, we propose an alternative
metric, the pathway-specific PAF, that summarizes the disease burden as-
sociated with a particular causal pathway, which is more generalizable to
multiple causal pathways and as opposed to Sjolander’s approach treats all
pathways in a symmetric fashion. In particular, while differing pathway-

specific PAF will usually be less than total PAF, they may sum over differing
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mediators to more than total PAF whereas direct and indirect PAF must
sum to total PAF. In the next section, we present definitions, identifiability
conditions and estimation approaches for pathway-specific attributable frac-
tions. We illustrate results and comparisons to indirect PAF using data from
INTERSTROKE, a case-control study designed to quantify disease burden
attributable to a number of known causal risk factors for stroke. We finish
the manuscript with a discussion, emphasizing differences between pathway-
specific and indirect PAF and examining whether additivity to total PAF is

a sensible property to require from our definitions.

Methods

Potential outcome notation used for mediation analyses

As is usual in the causal inference literature, we will define random variables
for observed quantities with unscripted notation, whereas potential outcomes
will be denoted using subscripts. In all cases, we use upper case letters to
denote random quantities, and lower-case to denote quantities that are fixed
or intervened on. In particular, let C' denote a vector of confounders, A €
{0, 1} a binary exposure of interest, M a mediator on the causal pathway from
AtoY (asin Sjolander, [4], M can be binary, multi-category or continuous)
and Y € {0,1} a binary disease outcome. In the setting that there are
several (K > 1) known mediators, we denote these M',... M%. Figure 1

below demonstrates a multi-mediator scenario with 3 mediators, M*!, M?>

and M3.
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Figure 1: DAG showing causal structure linking exposure, mediators and
outcome

Potential outcomes, assuming the exposure is set at level a € {0,1} and
the mediator is set at level m are denoted Y, ,,. In the case that there are
K > 1 mediators, the corresponding potential outcome setting exposure to a
and the mediators to m',..m”* is Y, 1. k. One can also define counterfac-
tuals for mediator k, assuming A is set to a as M*, and nested counterfactuals
for the outcome Y /.., the last expression having the interpretation of the
outcome that would be observed if A was set to a, and M was set to the
value that it would naturally attain had A equalled ax. When M, # M,
these nested counterfactuals are sometimes referred to as ‘cross world’” coun-
terfactuals, since they imagine combinations of values of the exposure and
mediator that could never occur together even under an intervention [7, §].
We will sometimes abbreviate Y, y, as Y.

As is usual with causal inference using the potential outcomes framework,

we make Stable Unit Treated Value Assumptions (SUTVA) [9], which im-
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plies that the relationship between potential and observed outcomes satisfy
‘consistency’, or that Y =Y, »;, when A = a. In addition, mediation analysis
requires some technical conditional independence assumptions which we will

list as needed in the following sections.

Total PAF, direct PAF and indirect PAF

Despite being an intrinsically causal idea, attributable fractions were orig-
inally defined in a non-causal framework. Recently the following potential

outcomes definition is becoming more prominent [10, 11, 12]:

PAEotal =

PY =1) ' (1)

Note that if we think of Yy as the potential outcome for an individual if
they were never exposed to the risk factor, (1) can be directly interpreted as
the relative change in disease prevalence if an exposure was absent from the
population. That is, for exposures such as tobacco usage, where the pattern
of longitudinal exposure as well as current exposure is important in measuring
disease risk, we interpret the attributable fraction as a comparison of current
disease risk with counterfactual disease risk under the scenario that tobacco
usage in the population was always zero.

Recently, Sjolander [4] introduced the ideas of mediation into the litera-
ture for PAF, defining a decomposition of the above total PAF into direct and
indirect components, relevant for a single mediator. The direct PAF aims
to measure the effect of the exposure directly on the response, that is the

proportion of outcome events that can be attributed to direct and not medi-
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ated pathways; likewise the indirect PAF aims to measure the proportion of

outcome events that can be attributed to mediated effects. The definitions :

P =1) - P(You = 1)

PAFdirect == P(Y _ 1) (2)

P(You =1) — P(Yo, = 1)

PAF’indirect - P(Y _ 1) . (3)

are constructed to enforce an additivity property (direct + indirect =
total), paralleling the definitions of natural direct and indirect, given in [§]
and [7]. From the definitions, it is clear that the direct PAF can be interpreted
as what the PAF would be if the exposure did not effect the distribution of
the mediator, although it is not immediately clear what interpretation the
indirect PAF may have except being the remainder when the direct PAF is

subtracted from the overall PAF.

Sjolander’s Direct and Indirect PAF as types of sequen-

tial PAF

We could think of the effect of eliminating the risk factor A, as the effect
of first disabling direct effects due to A (i.e. a comparison of P(Y4 5 = 1)
and P(Ypy = 1)) and afterwards disabling the remaining mediated effect
of A, (i.e. a comparison of P(Yyy = 1) and P(Yon, = 1)). The first
operation corresponds to Sjolander’s direct effect and the second to the indi-
rect effect above. This interpretation suggests Sjolander’s direct and indirect

PAF are kinds of sequential PAF [5, 13], but defined on groups of pathways
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rather than groups of risk factors and differing in their elimination position
(here the direct pathway is removed first, corresponding to the direct PAF,
the indirect pathway is subsequently removed, corresponding to the indirect
PAF). Removal ordering can sometimes have substantial effects on the size
of sequential PAF [6], particularly when independent mechanisms interact
in causing disease. For instance, suppose for some individuals with A = 1,
Yiam =1, but Yor, = Yinm, = Yo, = 0). For these individuals, the con-
tribution to the direct PAF Y; 5, — Yy as, from eliminating A is 1, and the
contribution to the indirect PAF: Yj ar, — Y004, is 0. This seems unsatisfac-
tory as for these individuals the indirect and direct pathways interact equally
in causing disease (in other language, the direct and mediating effects of A
are a joint sufficient cause for Y = 1 [11]). In general, the indirect PAF de-
fined above might be surprisingly small as it is an operator on the population
where the direct effect of the exposure on the outcome has been disabled,
and many disease cases that would occur in the regular population would
have already been prevented in this hypothetical population. This motivates
a new type of attributable fraction, specific to a particular causal pathway,
which removes the asymetries in the definitions of direct and indirect PAF

discussed above.

pathway-specific PAFs

The pathway-specific attributable fraction for the mediating pathway A— >

M— >Y in the example above is defined as
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P(Y =1) = P(Yiu = 1)
PY =1) )

PAFA—>M—>Y =

This metric has several desirable properties. As above, this is a kind of
sequential PAF on pathways, but now corresponding to disabling the effect
of the mediating pathway first. The direct PAF defined by Sjolander, also
being a sequential PAF but where the direct pathway is disabled first, is

correspondingly a pathway-specific PAF:

P(Y =1)— P(You = 1)
PY =1) (5)

PAF, >y =

Whereas the PAFy;eer and PAF},4ireet pertain to single mediated path-
ways, pathway-specific PAF can easily be extended to K>1 mediated path-
ways. For instance, if there are K = 3 known mediators, pathway-specific

attributable fractions for each of the 4 pathways are defined as:

PY =1) - P(YA,M&,MQ,M?’ =1)

PAFA—>M1—>Y = P(Y — 1) )
P(Y - 1) - P(YA,Ml,M2,M3 - 1)

PAFA—>M2—>Y = P(Y . 1) . )

- (6)

P(Y - 1) - P(YA,Ml,M2,Mg - 1)

PAFA—>M3—>Y = P(Y — 1) )
PY=1)—PYor azms =1

PAFy oy — ( ) P(i(/ iﬂi)’M s = 1)

The causal graph associated with K = 3 mediators is illustrated in Fig-
ure 1. While in this manuscript, we will continue to illustrate formulae and

estimation approaches for the setting where K = 3, the methods extend in
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a staightforward way for other values of K. Note that the last equation
for PAF,_~y, is the obvious extension of Sjolander’s direct effect to mul-
tiple mediators. While this formula seems to differ slightly from the other
pathway-specific PAFs; this difference is slightly artificial. For instance, if
we regard the direct pathway A— > Y as operating completely through a set
of unobserved mediators M* (extending the potential outcome notation, we
would require that Yj 1 m2 1m3 ma = Y3 1 m2.ms ma, for all possible fixed values
mt, m% m3, m*), we could then write PAFy_~y=PAF,_<p1_sy, with the
formula for PAF,_<a_~y then appearing symmetrical with the formulae

for the other mediating pathways.

Identifiability conditions

Further identifiability conditions are needed to estimate (6) when values on
the exposure, mediators, observed confounders and outcome are available.

In particular, we need to assume:

L Yy mtm2ms AL (M} M2 M33)|A, C for any choice of (a1, as, a3) € {0,1}3

ay’ a2’

and possible values (m!, m?, m3) for the mediator

2. AL M,|C, fora€0,1

3. (Mg, L M2, 1L M? |A,C) for any choice of (a1, as,a3) € {0,1}?

Under these assumptions, we show in the supplementary material that:

10
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PAF,_sypn_sy = (P(Y =1) — Ep(P(Y = 1|A,C, M*, M?, M*)))/P(Y = 1),

PAF,_syp_sy = (P(Y =1) — Ep2(P(Y = 1|A,C, M*, M?, M*)))/P(Y = 1),

PAF,_syps_sy = (P(Y =1) — Eps(P(Y = 1|A, C, M*, M?, M*)))//P(Y = 1)
(7)

where Ep: is the expectation operation with respect to a modified distri-
bution of (A, C, M*, M?, M?), that is constructed via sampling (A, C, M?, M?3)
from its marginal observational distribution, and then sampling M* from the
conditional observational distribution of M! given A=0 and C. P? and P?
are constructed similarly.

Similarly for the pathway-specific direct effect:

PAF, oy = (P(Y =1) - E(P(Y = 1|A=0,C, M*, M?*, M?*)))/P(Y = 1)
(8)
where F is now the regular expectation operator with respect to the

observational distribution of (A, C, M*, M? M?).

Estimation

In cohort and cross-sectional studies, the differing components of (7) and (8),
as well as the distribution being integrated over can be estimated without
bias from the empirical conditional expectations and distributions in the orig-
inal data. For case control studies, we use a simple-reweighting trick which

assumes that the prevalence of disease, 7 is known, and the sampled disease

11
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cases and controls are randomly selected from their respective populations.
We assume for simplicity that the case:control matching ratio is 1:r, for some
r > 1. Under these assumptions, the components of (7) and (8) can be
found as the corresponding empirical expectations and distributions in the
re-weighted dataset where cases are assigned weights w; = 1, and controls
are assigned weights w; = (1/m — 1)/r. (Note that under the assumptions
that prevalence is known and the cases and controls are randomly selected
from their source populations, this reweighted sample is a random sample
from the source population). Suppose then, that the researcher specifys
and estimates correct models for P(Y = 1|A,C, M, M?, M?3) and a correct
conditional model for each M*, conditioned on A and C (perhaps in the
re-weighted population if the original data is from a case-control study). To
avoid numerical integration in the continuous mediator case, and simplify the
algorithm, we propose that Epi(P(Y = 1|A,C, M*, M? M?)) is estimated

via the following algorithm:

1. Choose a number of simulation iterates, S
2. for(j in 1:S){

(a) For each individual in the data, 7, with exposure, A;, covariate
vector C; and mediators M M2 M3 simulate M from the
estimated conditional distribution of M?! given A; and C;

(b) Estimate P(Y = 1]A;, C;, M, M? M3") for each i using the es-
timated statistical model

(c) Calculate E; = >,y P(Y = 1|Ai,Cm*,M2,M3)/N for co-

hort/cross sectional designs; calculate

12
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B =3 ywiP(Y = 1|Ai,ci7Mﬁ42i,M3i)/ > i<y wi for case

control designs.

}

3. Ep(P(Y = 1[A,C, M\, M2, M?)) = 3, _¢ E;/S

E(P(Y =1]A=0,C, M, M? M?3))) can be estimated more simply by es-
timating E(P(Y = 1|A = 0,C;, MY, M2 M3)) for each individual, and av-
eraging over individuals in the data, taking care to incorporate weighting
under a case control design. As an alternative, a double robust estimator
for E(P(Y = 1|]A = 0,C, M*, M? M?)) can be derived using the same ap-

proaches Sjolander describes in [4].

Data Example

INTERSTROKE, [14], is a large international case control study designed to
quantify the contribution of established risk factors to stroke prevalence at
a global level. Here we consider investigate the possible mediating effects of
physical activity on stroke through waist hip ratio, apolipoproteins B to Al
ratio and diagnosis of high blood pressure. We treat waist hip ratio and apo-
lioproteins as continuous variables, whereas diagnosed high blood pressure
is binary. Confounders and mediators are as shown in the causal structure
shown by Figure 2. To estimate Sjolander’s direct and indirect attributable
fractions, and the pathway-specific attributable fractions described above, we
fit a main-effects logistic regression predicting stroke status as a function of

age,sex,diet,physo-social stress factors,smoking status, alcohol use, physical

13
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activity, waist hip ratio, apoB/apoA ratio and clinically diagnosed high blood
pressure, with the terms for wasit hip ratio and apoB/apoA ratio entering as
5-degree of freedom natural cubic splines. In this regression, stroke controls
were upweighted by a factor of 284 to reflect a yearly stroke incidence of first
stroke of 0.0035 or 3.5 strokes per 1000 individuals per year, estimated via
data from the global burden of disease [15]. To apply the algorithm in the
previous section, we also need to simulate from the predicted distribution for
the mediators, ApoB/ApoA ratio, waist hip ratio and clincially diagnosed
hypertension (conditioned on values for age, sex, region, physical activity,
diet-score, stress, smoking and alcohol). To do this, we resample residuals
from a fitted linear model for ApoB/ApoA ratio and waist hip ratio and add
to resampled residuals to the fitted values, whereas for hypertension we sim-
ply draw Bernoulli variables with probabilities according to the fitted logistic

models.

14
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Sjolander’s direct PAF is defined on a mediator by mediator basis in the

following fashion:

PY =1) - P(YO,MI,Mg,Mg =1)
PY =1) )

PfélF’direct,M1 =

and is estimated in a similar fashion to the methods for the pathway-
specific PAF. Note that while there is only one overall direct pathway-specific
PAF, Sjolander’s definition is with reference to a single mediating pathway
- and will change depending on that pathway. For instance, in this example
the Sjolander direct effect with reference to high blood pressure essentially
pools together all other pathways not going through high-blood pressure.
In this example, the mediating pathways and direct pathway due to lack
of exercise are all deleterious, and one would expect the pathway-specific
attributable fraction to be somewhat larger than Sjolander’s indirect PAF,
which is what we see in Table 1 - the estimated pathway-specific PAFs rang-
ing from 3.2%-4.5%, whereas the indirect PAFs range from 0.5% to 1.8%. On
the other hand, the overall direct-pathway-specific PAF is 35%. The analysis
suggests that population disease burden for stroke attributable to physical
activity may partially depend on these mediating pathways, but mostly de-
pends on other mechanisms not directly through blood pressure, waist hip
ratio or lipids. As with any causal analysis, these tentative conclusions de-
pend jointly on correct modeling of conditional probability distributions and
on the validity of the causal identifiability assumptions that we listed earlier.
These assumptions are doutful here: the modeling here which thresholds

blood pressure and ignores potential exposure-mediator interactions is po-
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tentially overly-simplistic, and it is probable that unmeasured variables exist
(i.e. variables not listed in Figure 2) which confound the exposure mediator
or mediator outcome relationship. However, the differences between the esti-
mated pathway-specific direct and mediated PAFs observed here are so large
that it would be hard to completely attribute these differences to incorrect

modeling or an incomplete causal model.

Discussion

In this paper we have introduced pathway-specific attributable fractions as a
metric for measuring the disease burden attributable to particular exposure
mediator pathways. As shown in Table 2, this idea is related to but distinct
from the recently proposed metrics of direct and indirect PAF [4] in a number
of ways. All the metrics can be interpreted as kinds of sequential PAF defined
on pathways. In particular, one can informally interpret a pathway-specific
PAF for a mediated pathway as the relative change in disease burden if a
particular mediated pathway were disabled. In contrast one could think of
the indirect PAF as associated with disabling the mediating pathway, but
this time subsequent to disabling the direct pathway. Since the effect of
disabling both the direct and mediating pathways is equivalent to the effect
of eliminating the risk factor, this effectively forces the additivity property
that total PAF is the sum of direct and indirect PAF.

While this additivity property at first seems appealing, it perhaps is un-
natural in the context of attributable fractions, where it is well recognized

that the PAF for differing risk factors may sum to more than the joint PAF

17
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and sometimes to more than 1 [16]. Indeed, the lack of additivity for at-
tributable fractions can be understood again from the context of sequen-
tial PAFs. The usual ‘non-sequential’ definition of PAF for a risk factor
can be interpreted as the sequential PAF for that risk factor if it is elimi-
nated first in sequence before other risk factors. While a set of sequential
PAFs, corresponding to eliminating a group of risk factors in a certain or-
der must sum to the joint PAF for that set of risk factors, these sequential
PAFs generally decrease as a function of elimination position with the result
that non-sequential PAFs generally sum to more than the joint PAF. The
sufficient /component cause framework [17] gives a simple but enlightening
explantion for this phenomenon. For particular individuals, a certain collec-
tion of risk factors (perhaps diet, stress and tobacco usage) might collectively
lead to disease at a particular point in time, but the disease may not have
occured at that time if any of the risk factors were not present. The same
logic implies that pathway-specific PAFs will tend to be larger than indirect
PAFs as illustrated in this manuscript. We note that a larger result is not in
itself a compelling reason to introduce a new metric; what constitutes a good
definition of a causal effect or estimand is open to some interpretation. How-
ever, compared to indirect PAF, pathway-specific PAFs are defined more in
the spirit of regular attributable fractions, and in a symmetric manner for di-
rect and mediated pathways. As a result, an examination of pathway-specific
PAFs will constitute a fairer reflection of the relative strengths of direct and
mediating pathways compared to a similar comparison of direct and indirect
PAF.

Note that the issue of whether enforcing additivity for PAFs is sensible
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is paralleled to a certain extent in the wider literature regarding mediation.
Natural direct and indirect causal effects have been defined by Pearl [18]
which don’t necessarily add up to the total causal effect, and redefined by
authors such as Vanderweele [8] so that they do. It turns out that for linear
systems with no interactions (where the conditional expectation of the medi-
ator given confounders and exposure is linear in confounders and exposure,
and similarly the conditional expectation of the outcome is linear in con-
founders, mediator and exposure), all definitions will co-incide. In a similar
way pathway-specific PAF and indirect PAF will agree in this very specific
setting, although for a binary disease outcome linearity or even approximate
linearity in the conditional expectation of the outcome would be implausible,

particular if the mediator is continuous.
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Figure 2: DAG showing assumed causal structure for risk factors in IN-
TERSTROKE. The direct and mediating pathways associated with physical
activity are highlighted in bold red. Age, sex and geographic region are con-
founders for the risk/factor disease relationship for all listed factors on the
figure.
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