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Abstract

A population attributable fraction (PAF) represents the relative change in
disease prevalence that one might expect if a particular exposure was absent
from the population. Often, one might be interested in what percentage
of this effect acts through particular pathways. For instance, the effect of
excessive alcohol intake on stroke risk may be mediated by blood pressure,
body mass index and several other intermediate risk factors. In this situation,
attributable fractions for each mediating pathway of interest can be defined
as the relative change in disease prevalence from disabling the effect of the
exposure through that mediating pathway.

This quantity is related to, but distinct from the recently proposed met-
rics of direct and indirect PAF by Sjölander. In particular, while differing
pathway-specific PAF will each usually be less than total PAF, they may
sum over differing mediating pathways to more than total PAF, whereas di-
rect and indirect PAF must sum to total PAF. Here, we present definitions,
identifiability conditions and estimation approaches for pathway-specific at-
tributable fractions. We illustrate results, and comparisons to indirect PAF
using INTERSTROKE, a case-control study designed to quantify disease
burden attributable to a number of known causal risk factors.
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Introduction

In causal inference, in addition to estimating an overall causal effect of an

exposure, one is often interested in the mediating pathways by which the

exposure effects an outcome. For instance, the effect of excessive alcohol

intake on stroke risk may be mediated by blood pressure, body mass index

and several other intermediate risk factors; mediation analysis [1, 2, 3] tries

to appropriate effect sizes to each of these known causal pathways.

In an analogous fashion, one can examine decompositions of attributable

fractions into direct and indirect components. For example, one might ask

‘what percentage of disease burden might be eliminated if the direct mecha-

nisms by which an exposure effects disease were disabled?’ Recently, Sjölander

[4] proposed definitions and estimation approaches for population attributable

fractions (PAF) in the spirit of the work by Robins, Greenland and Pearl that

attempts to answer these questions. As we show later, Sjölander’s definitions

of direct and indirect PAF can be viewed as types of sequential PAF [5, 6],

but formed by disabling causal pathways rather than eliminating risk fac-

tors. From this view, it turns out that direct and indirect PAF are defined

in a somewhat asymetric manner, which may skew the relative disease bur-

den appropriated to the differing pathways. Here, we propose an alternative

metric, the pathway-specific PAF, that summarizes the disease burden as-

sociated with a particular causal pathway, which is more generalizable to

multiple causal pathways and as opposed to Sjölander’s approach treats all

pathways in a symmetric fashion. In particular, while differing pathway-

specific PAF will usually be less than total PAF, they may sum over differing
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mediators to more than total PAF whereas direct and indirect PAF must

sum to total PAF. In the next section, we present definitions, identifiability

conditions and estimation approaches for pathway-specific attributable frac-

tions. We illustrate results and comparisons to indirect PAF using data from

INTERSTROKE, a case-control study designed to quantify disease burden

attributable to a number of known causal risk factors for stroke. We finish

the manuscript with a discussion, emphasizing differences between pathway-

specific and indirect PAF and examining whether additivity to total PAF is

a sensible property to require from our definitions.

Methods

Potential outcome notation used for mediation analyses

As is usual in the causal inference literature, we will define random variables

for observed quantities with unscripted notation, whereas potential outcomes

will be denoted using subscripts. In all cases, we use upper case letters to

denote random quantities, and lower-case to denote quantities that are fixed

or intervened on. In particular, let C denote a vector of confounders, A ∈

{0, 1} a binary exposure of interest, M a mediator on the causal pathway from

A to Y (as in Sjölander, [4], M can be binary, multi-category or continuous)

and Y ∈ {0, 1} a binary disease outcome. In the setting that there are

several (K > 1) known mediators, we denote these M1,...,MK . Figure 1

below demonstrates a multi-mediator scenario with 3 mediators, M1, M2

and M3.
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Figure 1: DAG showing causal structure linking exposure, mediators and
outcome

Potential outcomes, assuming the exposure is set at level a ∈ {0, 1} and

the mediator is set at level m are denoted Ya,m. In the case that there are

K > 1 mediators, the corresponding potential outcome setting exposure to a

and the mediators to m1,...mK is Ya,m1,...,mK . One can also define counterfac-

tuals for mediator k, assuming A is set to a as Mk
a , and nested counterfactuals

for the outcome Ya,Ma∗ , the last expression having the interpretation of the

outcome that would be observed if A was set to a, and M was set to the

value that it would naturally attain had A equalled a∗. When Ma 6= Ma∗

these nested counterfactuals are sometimes referred to as ‘cross world’ coun-

terfactuals, since they imagine combinations of values of the exposure and

mediator that could never occur together even under an intervention [7, 8].

We will sometimes abbreviate Ya,Ma as Ya.

As is usual with causal inference using the potential outcomes framework,

we make Stable Unit Treated Value Assumptions (SUTVA) [9], which im-
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plies that the relationship between potential and observed outcomes satisfy

‘consistency’, or that Y = Ya,Ma when A = a. In addition, mediation analysis

requires some technical conditional independence assumptions which we will

list as needed in the following sections.

Total PAF, direct PAF and indirect PAF

Despite being an intrinsically causal idea, attributable fractions were orig-

inally defined in a non-causal framework. Recently the following potential

outcomes definition is becoming more prominent [10, 11, 12]:

PAFtotal =
P (Y = 1)− P (Y0 = 1)

P (Y = 1)
. (1)

Note that if we think of Y0 as the potential outcome for an individual if

they were never exposed to the risk factor, (1) can be directly interpreted as

the relative change in disease prevalence if an exposure was absent from the

population. That is, for exposures such as tobacco usage, where the pattern

of longitudinal exposure as well as current exposure is important in measuring

disease risk, we interpret the attributable fraction as a comparison of current

disease risk with counterfactual disease risk under the scenario that tobacco

usage in the population was always zero.

Recently, Sjölander [4] introduced the ideas of mediation into the litera-

ture for PAF, defining a decomposition of the above total PAF into direct and

indirect components, relevant for a single mediator. The direct PAF aims

to measure the effect of the exposure directly on the response, that is the

proportion of outcome events that can be attributed to direct and not medi-
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ated pathways; likewise the indirect PAF aims to measure the proportion of

outcome events that can be attributed to mediated effects. The definitions :

PAFdirect =
P (Y = 1)− P (Y0,M = 1)

P (Y = 1)
(2)

PAFindirect =
P (Y0,M = 1)− P (Y0,M0 = 1)

P (Y = 1)
. (3)

are constructed to enforce an additivity property (direct + indirect =

total), paralleling the definitions of natural direct and indirect, given in [8]

and [7]. From the definitions, it is clear that the direct PAF can be interpreted

as what the PAF would be if the exposure did not effect the distribution of

the mediator, although it is not immediately clear what interpretation the

indirect PAF may have except being the remainder when the direct PAF is

subtracted from the overall PAF.

Sjölander’s Direct and Indirect PAF as types of sequen-

tial PAF

We could think of the effect of eliminating the risk factor A, as the effect

of first disabling direct effects due to A (i.e. a comparison of P (YA,M = 1)

and P (Y0,M = 1)) and afterwards disabling the remaining mediated effect

of A, (i.e. a comparison of P (Y0,M = 1) and P (Y0,M0 = 1)). The first

operation corresponds to Sjölander’s direct effect and the second to the indi-

rect effect above. This interpretation suggests Sjölander’s direct and indirect

PAF are kinds of sequential PAF [5, 13], but defined on groups of pathways
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rather than groups of risk factors and differing in their elimination position

(here the direct pathway is removed first, corresponding to the direct PAF,

the indirect pathway is subsequently removed, corresponding to the indirect

PAF). Removal ordering can sometimes have substantial effects on the size

of sequential PAF [6], particularly when independent mechanisms interact

in causing disease. For instance, suppose for some individuals with A = 1,

Y1,M1=1, but Y0,M1 = Y1,M0 = Y0,M0 = 0). For these individuals, the con-

tribution to the direct PAF Y1,M1 − Y0,M1 from eliminating A is 1, and the

contribution to the indirect PAF: Y0,M1 − Y0,M0 is 0. This seems unsatisfac-

tory as for these individuals the indirect and direct pathways interact equally

in causing disease (in other language, the direct and mediating effects of A

are a joint sufficient cause for Y = 1 [11]). In general, the indirect PAF de-

fined above might be surprisingly small as it is an operator on the population

where the direct effect of the exposure on the outcome has been disabled,

and many disease cases that would occur in the regular population would

have already been prevented in this hypothetical population. This motivates

a new type of attributable fraction, specific to a particular causal pathway,

which removes the asymetries in the definitions of direct and indirect PAF

discussed above.

pathway-specific PAFs

The pathway-specific attributable fraction for the mediating pathway A− >

M− > Y in the example above is defined as

8
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PAFA−>M−>Y =
P (Y = 1)− P (YA,M0 = 1)

P (Y = 1)
(4)

This metric has several desirable properties. As above, this is a kind of

sequential PAF on pathways, but now corresponding to disabling the effect

of the mediating pathway first. The direct PAF defined by Sjölander, also

being a sequential PAF but where the direct pathway is disabled first, is

correspondingly a pathway-specific PAF:

PAFA−>Y =
P (Y = 1)− P (Y0,M = 1)

P (Y = 1)
(5)

Whereas the PAFdirect and PAFindirect pertain to single mediated path-

ways, pathway-specific PAF can easily be extended to K>1 mediated path-

ways. For instance, if there are K = 3 known mediators, pathway-specific

attributable fractions for each of the 4 pathways are defined as:

PAFA−>M1−>Y =
P (Y = 1)− P (YA,M1

0 ,M
2,M3 = 1)

P (Y = 1)
,

PAFA−>M2−>Y =
P (Y = 1)− P (YA,M1,M2

0 ,M
3 = 1)

P (Y = 1)
,

PAFA−>M3−>Y =
P (Y = 1)− P (YA,M1,M2,M3

0
= 1)

P (Y = 1)
,

PAFA−>Y =
P (Y = 1)− P (Y0,M1,M2,M3 = 1)

P (Y = 1)
.

(6)

The causal graph associated with K = 3 mediators is illustrated in Fig-

ure 1. While in this manuscript, we will continue to illustrate formulae and

estimation approaches for the setting where K = 3, the methods extend in
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a staightforward way for other values of K. Note that the last equation

for PAFA−>Y , is the obvious extension of Sjölander’s direct effect to mul-

tiple mediators. While this formula seems to differ slightly from the other

pathway-specific PAFs, this difference is slightly artificial. For instance, if

we regard the direct pathway A− > Y as operating completely through a set

of unobserved mediators M4 (extending the potential outcome notation, we

would require that Y0,m1,m2,m3,m4 = Y1,m1,m2,m3,m4 , for all possible fixed values

m1,m2,m3,m4), we could then write PAFA−>Y =PAFA−>M4−>Y , with the

formula for PAFA−>M4−>Y then appearing symmetrical with the formulae

for the other mediating pathways.

Identifiability conditions

Further identifiability conditions are needed to estimate (6) when values on

the exposure, mediators, observed confounders and outcome are available.

In particular, we need to assume:

1. Ya,m1,m2,m3 ⊥⊥ (M1
a1
,M2

a2
,M3

a3
)|A,C for any choice of (a1, a2, a3) ∈ {0, 1}3

and possible values (m1,m2,m3) for the mediator

2. A ⊥⊥Ma|C, for a ∈ 0, 1

3. (M1
a1
⊥⊥M2

a2
⊥⊥M3

a3
|A,C) for any choice of (a1, a2, a3) ∈ {0, 1}3

Under these assumptions, we show in the supplementary material that:
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PAFA−>M1−>Y = (P (Y = 1)− EP 1(P (Y = 1|A,C,M1,M2,M3)))/P (Y = 1),

PAFA−>M2−>Y = (P (Y = 1)− EP 2(P (Y = 1|A,C,M1,M2,M3)))/P (Y = 1),

PAFA−>M3−>Y = (P (Y = 1)− EP 3(P (Y = 1|A,C,M1,M2,M3)))//P (Y = 1)

(7)

where EP 1 is the expectation operation with respect to a modified distri-

bution of (A,C,M1,M2,M3), that is constructed via sampling (A,C,M2,M3)

from its marginal observational distribution, and then sampling M1 from the

conditional observational distribution of M1 given A=0 and C. P 2 and P 3

are constructed similarly.

Similarly for the pathway-specific direct effect:

PAFA−>Y = (P (Y = 1)− E(P (Y = 1|A = 0, C,M1,M2,M3)))/P (Y = 1)

(8)

where E is now the regular expectation operator with respect to the

observational distribution of (A,C,M1,M2,M3).

Estimation

In cohort and cross-sectional studies, the differing components of (7) and (8),

as well as the distribution being integrated over can be estimated without

bias from the empirical conditional expectations and distributions in the orig-

inal data. For case control studies, we use a simple-reweighting trick which

assumes that the prevalence of disease, π is known, and the sampled disease

11

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.15.20212845doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.15.20212845


cases and controls are randomly selected from their respective populations.

We assume for simplicity that the case:control matching ratio is 1:r, for some

r ≥ 1. Under these assumptions, the components of (7) and (8) can be

found as the corresponding empirical expectations and distributions in the

re-weighted dataset where cases are assigned weights wi = 1, and controls

are assigned weights wi = (1/π − 1)/r. (Note that under the assumptions

that prevalence is known and the cases and controls are randomly selected

from their source populations, this reweighted sample is a random sample

from the source population). Suppose then, that the researcher specifys

and estimates correct models for P (Y = 1|A,C,M1,M2,M3) and a correct

conditional model for each Mk, conditioned on A and C (perhaps in the

re-weighted population if the original data is from a case-control study). To

avoid numerical integration in the continuous mediator case, and simplify the

algorithm, we propose that EP 1(P (Y = 1|A,C,M1,M2,M3)) is estimated

via the following algorithm:

1. Choose a number of simulation iterates, S

2. for(j in 1:S){

(a) For each individual in the data, i, with exposure, Ai, covariate

vector Ci and mediators M1i,M2i,M3i simulate M1∗ from the

estimated conditional distribution of M1 given Ai and Ci

(b) Estimate P (Y = 1|Ai, Ci,M
1∗,M2i,M3i) for each i using the es-

timated statistical model

(c) Calculate Ej =
∑

i≤N
̂P (Y = 1|Ai, Ci,M1∗,M2,M3)/N for co-

hort/cross sectional designs; calculate

12
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Ej =
∑

i≤N wi
̂P (Y = 1|Ai, Ci,M1∗,M2i,M3i)/

∑
i≤N wi for case

control designs.

}

3. ̂EP 1(P (Y = 1|A,C,M1,M2,M3)) =
∑

j≤S Ej/S

E(P (Y = 1|A = 0, C,M1,M2,M3))) can be estimated more simply by es-

timating ˆE(P (Y = 1|A = 0, Ci,M1i,M2i,M3i)) for each individual, and av-

eraging over individuals in the data, taking care to incorporate weighting

under a case control design. As an alternative, a double robust estimator

for E(P (Y = 1|A = 0, C,M1,M2,M3)) can be derived using the same ap-

proaches Sjölander describes in [4].

Data Example

INTERSTROKE, [14], is a large international case control study designed to

quantify the contribution of established risk factors to stroke prevalence at

a global level. Here we consider investigate the possible mediating effects of

physical activity on stroke through waist hip ratio, apolipoproteins B to A1

ratio and diagnosis of high blood pressure. We treat waist hip ratio and apo-

lioproteins as continuous variables, whereas diagnosed high blood pressure

is binary. Confounders and mediators are as shown in the causal structure

shown by Figure 2. To estimate Sjölander’s direct and indirect attributable

fractions, and the pathway-specific attributable fractions described above, we

fit a main-effects logistic regression predicting stroke status as a function of

age,sex,diet,physo-social stress factors,smoking status, alcohol use, physical
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activity, waist hip ratio, apoB/apoA ratio and clinically diagnosed high blood

pressure, with the terms for wasit hip ratio and apoB/apoA ratio entering as

5-degree of freedom natural cubic splines. In this regression, stroke controls

were upweighted by a factor of 284 to reflect a yearly stroke incidence of first

stroke of 0.0035 or 3.5 strokes per 1000 individuals per year, estimated via

data from the global burden of disease [15]. To apply the algorithm in the

previous section, we also need to simulate from the predicted distribution for

the mediators, ApoB/ApoA ratio, waist hip ratio and clincially diagnosed

hypertension (conditioned on values for age, sex, region, physical activity,

diet-score, stress, smoking and alcohol). To do this, we resample residuals

from a fitted linear model for ApoB/ApoA ratio and waist hip ratio and add

to resampled residuals to the fitted values, whereas for hypertension we sim-

ply draw Bernoulli variables with probabilities according to the fitted logistic

models.

14

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.15.20212845doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.15.20212845


to
ta

l
D

ir
e
ct

D
ir

e
ct

In
d
ir

e
ct

P
a
th

P
a
th

w
a
y

P
A

F
(o

v
e
ra

ll
)

(S
jö
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Sjölander’s direct PAF is defined on a mediator by mediator basis in the

following fashion:

PAFdirect,M1 =
P (Y = 1)− P (Y0,M1,M2

0 ,M
3
0

= 1)

P (Y = 1)
(9)

and is estimated in a similar fashion to the methods for the pathway-

specific PAF. Note that while there is only one overall direct pathway-specific

PAF, Sjölander’s definition is with reference to a single mediating pathway

- and will change depending on that pathway. For instance, in this example

the Sjölander direct effect with reference to high blood pressure essentially

pools together all other pathways not going through high-blood pressure.

In this example, the mediating pathways and direct pathway due to lack

of exercise are all deleterious, and one would expect the pathway-specific

attributable fraction to be somewhat larger than Sjölander’s indirect PAF,

which is what we see in Table 1 - the estimated pathway-specific PAFs rang-

ing from 3.2%-4.5%, whereas the indirect PAFs range from 0.5% to 1.8%. On

the other hand, the overall direct-pathway-specific PAF is 35%. The analysis

suggests that population disease burden for stroke attributable to physical

activity may partially depend on these mediating pathways, but mostly de-

pends on other mechanisms not directly through blood pressure, waist hip

ratio or lipids. As with any causal analysis, these tentative conclusions de-

pend jointly on correct modeling of conditional probability distributions and

on the validity of the causal identifiability assumptions that we listed earlier.

These assumptions are doutful here: the modeling here which thresholds

blood pressure and ignores potential exposure-mediator interactions is po-
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tentially overly-simplistic, and it is probable that unmeasured variables exist

(i.e. variables not listed in Figure 2) which confound the exposure mediator

or mediator outcome relationship. However, the differences between the esti-

mated pathway-specific direct and mediated PAFs observed here are so large

that it would be hard to completely attribute these differences to incorrect

modeling or an incomplete causal model.

Discussion

In this paper we have introduced pathway-specific attributable fractions as a

metric for measuring the disease burden attributable to particular exposure

mediator pathways. As shown in Table 2, this idea is related to but distinct

from the recently proposed metrics of direct and indirect PAF [4] in a number

of ways. All the metrics can be interpreted as kinds of sequential PAF defined

on pathways. In particular, one can informally interpret a pathway-specific

PAF for a mediated pathway as the relative change in disease burden if a

particular mediated pathway were disabled. In contrast one could think of

the indirect PAF as associated with disabling the mediating pathway, but

this time subsequent to disabling the direct pathway. Since the effect of

disabling both the direct and mediating pathways is equivalent to the effect

of eliminating the risk factor, this effectively forces the additivity property

that total PAF is the sum of direct and indirect PAF.

While this additivity property at first seems appealing, it perhaps is un-

natural in the context of attributable fractions, where it is well recognized

that the PAF for differing risk factors may sum to more than the joint PAF
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and sometimes to more than 1 [16]. Indeed, the lack of additivity for at-

tributable fractions can be understood again from the context of sequen-

tial PAFs. The usual ‘non-sequential’ definition of PAF for a risk factor

can be interpreted as the sequential PAF for that risk factor if it is elimi-

nated first in sequence before other risk factors. While a set of sequential

PAFs, corresponding to eliminating a group of risk factors in a certain or-

der must sum to the joint PAF for that set of risk factors, these sequential

PAFs generally decrease as a function of elimination position with the result

that non-sequential PAFs generally sum to more than the joint PAF. The

sufficient/component cause framework [17] gives a simple but enlightening

explantion for this phenomenon. For particular individuals, a certain collec-

tion of risk factors (perhaps diet, stress and tobacco usage) might collectively

lead to disease at a particular point in time, but the disease may not have

occured at that time if any of the risk factors were not present. The same

logic implies that pathway-specific PAFs will tend to be larger than indirect

PAFs as illustrated in this manuscript. We note that a larger result is not in

itself a compelling reason to introduce a new metric; what constitutes a good

definition of a causal effect or estimand is open to some interpretation. How-

ever, compared to indirect PAF, pathway-specific PAFs are defined more in

the spirit of regular attributable fractions, and in a symmetric manner for di-

rect and mediated pathways. As a result, an examination of pathway-specific

PAFs will constitute a fairer reflection of the relative strengths of direct and

mediating pathways compared to a similar comparison of direct and indirect

PAF.

Note that the issue of whether enforcing additivity for PAFs is sensible
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is paralleled to a certain extent in the wider literature regarding mediation.

Natural direct and indirect causal effects have been defined by Pearl [18]

which don’t necessarily add up to the total causal effect, and redefined by

authors such as Vanderweele [8] so that they do. It turns out that for linear

systems with no interactions (where the conditional expectation of the medi-

ator given confounders and exposure is linear in confounders and exposure,

and similarly the conditional expectation of the outcome is linear in con-

founders, mediator and exposure), all definitions will co-incide. In a similar

way pathway-specific PAF and indirect PAF will agree in this very specific

setting, although for a binary disease outcome linearity or even approximate

linearity in the conditional expectation of the outcome would be implausible,

particular if the mediator is continuous.
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Figure 2: DAG showing assumed causal structure for risk factors in IN-
TERSTROKE. The direct and mediating pathways associated with physical
activity are highlighted in bold red. Age, sex and geographic region are con-
founders for the risk/factor disease relationship for all listed factors on the
figure.
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