Parental acceptance toward behavior guidance techniques for pediatric dental visits: a meta-analysis

Carla Massignan¹, Josiane Pezzini Soares², Maria Marlene de Souza Pires³, Bruce D. Dick⁴, André Luís Porporatti⁵, Graziela De Luca Canto⁶, Michele Bolan⁷

Affiliations:
¹DDS, MSc, PhD student, Department of Pediatric Dentistry, School of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
²DDS, MSc, PhD student, Department of Pediatric Dentistry, School of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
³MD, PhD, Department of Pediatrics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
⁴MD, PhD, Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
⁵DDS, MSc, PhD, School of Dentistry, Federal University of Santa Santa Catarina, Brazilian Center for Evidence-Based Research, Federal University of Santa Catarina Florianópolis, SC, Brazil
⁶DDS, MSc, PhD, School of Dentistry, Federal University of Santa Santa Catarina, Brazilian Center for Evidence-Based Research, Federal University of Santa Catarina Florianópolis, SC, Brazil
⁷DDS, MSc, PhD, Department of Pediatric Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil

Email:
¹carmassignan@yahoo.com.br; ²josipezzini@hotmail.com; ³mmspires@gmail.com;
⁴bruce.dick@ualberta.ca; ⁵andre.porporatti@ufsc.br; ⁶delucacanto@gmail.com;
⁷michele.bolan@ufsc.br

Address correspondence to: Michele Bolan, Departamento de Odontologia, Universidade Federal de Santa Catarina, UFSC, Campus Universitário, CCS-ODT-Trindade Florianópolis, Santa Catarina, Brasil 88040-900 [michele.bolan@ufsc.br], +55483721-9920

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Funding Source: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC).

Financial Disclosure: “This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)” (C.M. grant number 001) and (J.P.S. grant number 001)

Conflict of Interest: None.

Author contributions:
Carla Massignan: Conceptualized and designed the study, collected data, carried out the data analyses, drafted the initial manuscript, and revised the manuscript.

Josiane Pezzini Soares: Worked on study design, data collection, drafted the initial manuscript, reviewed the manuscript, and approved the final manuscript as submitted.

Maria Marlene de Souza Pires: Worked on study design, critically reviewed the manuscript for important intellectual content, and approved the final manuscript as submitted.

Bruce Dick: Worked on study design, critically reviewed the manuscript for important intellectual content, and approved the final manuscript as submitted.

André Luís Porporatti: Worked on study design, critically reviewed the manuscript for important intellectual content, and approved the final manuscript as submitted.

Graziela De Luca Canto: Conceptualized and designed the study, critically reviewed the manuscript for important intellectual content, and approved the final manuscript as submitted.

Michele Bolan: Worked on study conceptualization and design, coordinated and supervised data collection, critically reviewed manuscript for important intellectual content, and approved the final manuscript as submitted.
Abstract

Objective: The systematic review aimed to compare agreement with behavior guidance techniques (BGT) between parents of children with special health care needs (SHCN) and those non-SHCN. Methods: A structured search of Cochrane Library, Latin American and Caribbean Health Sciences, PubMed, PsycInfo, Scopus, Web of Science, ProQuest Dissertations and Theses Database, Opengrey and Google Scholar was taken up to October 2020. Two authors selected studies independently, extracted the data, assessed the studies’ methodological quality using the Joanna Briggs scale and the Recommendations, Assessment, Development and Evaluation (GRADE). Results: Forty-eight studies covering the parents’ agreement with BGT were included and 41 were retained for random-effects proportion meta-analysis. The methodological quality assessment varied from low to high. Among the parents of non-SHCN children, the agreement with BGT varied from 84.1% (95% CI: 75.8-90.9; p<0.001; I² 93.3%) for tell-show-do to 25.7% (95% CI: 17.8-34.4; p<0.001; I² 90.4%) for passive protective stabilization, without hand-over-mouth. Among the parents of children with SHCN, the acceptance of BGT varied from 89.1% (95% CI: 56.1-99.7; p<0.001; I² 95.7%) for tell-show-do to 29.1% (95% CI: 11.8-50.0; p=0.001; I² 84.8%) to general anesthesia. Conclusion: There is very low certainty in evidence that both the parents of children SHCN and non-SHCN were more likely to agree with basic BGT and that they were less likely to agree with the advanced ones.

Keywords: Children, Parents, Behavior, Systematic Review, Acceptance
Introduction

The long-term success of any dental treatment provided for children depends on the behavior guidance technique (BGT). The dentist approach needs to be integrated to the overall BGT use, taking into account children’s individuality, the practitioner’s skills and the parents’ opinion. Given the changes in the society in the past years where more fathers, mothers, and siblings are accompanying children to their dental appointments, there is considerable interest of families to take part of the treatment decisions. As a result, the attitudes of modern parents have influenced the use of BGT.

The techniques utilized by the dental team have evolved along the years accompanying the society and parenting changes. Currently, according to American Academy of Pediatric Dentistry (AAPD), the BGT are divided in basic behavior guidance, which include communication and communicative guidance; positive pre-visit imagery; direct observation; tell-show-do; ask-tell-ask; voice control; nonverbal communication; positive reinforcement and descriptive praise; distraction; memory restructuring; parental presence/absence; communication techniques for parents and age appropriate patients; and nitrous oxide/oxygen inhalation; and advanced behavior guidance which include protective stabilization, sedation, and general anesthesia. Furthermore, protective stabilization can involve another person, a device or a combination thereof.

Behavioral guidance techniques are used to reduce anxiety and fear, establish a positive attitude, and provide oral health care with physical and emotional security for children with and without special health care needs children (SHCN). Some patients find it very difficult to cooperate during treatment and the use of only non-pharmacological techniques may be insufficient. In such cases, behavior guidance can be individualized according to the patient’s needs and the parents’ preferences.
Considering that the treatment plan also depends on the parents’ opinion about BGT use, exploring parents’ opinions is critical when identifying BGT application priorities. More invasive procedures can produce clinical situations of greater stress, demanding from the professional greater performance in the management of a child's behavior. Such cases might require more restrictive techniques. Therefore, dentists should pay particular attention to parents’ acceptance of BGT use to accomplish children’s treatment. It is noteworthy, however, that no scientific evidence is available to attest to the parents’ agreement with BGT. Thus, the purpose of this systematic review was to evaluate parental agreement with BGT during dental visits.

MATERIAL AND METHODS

Study design

The protocol of this systematic review was planned following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P). It was registered in the International Prospective Register of Systematic Reviews (PROSPERO) under number CRD42018103834. The research is reported following the PRISMA Statement.

Study question

We addressed the acronym PECOS (Population, Exposition, Comparison, Outcomes, and Study design) to formulate the focused question: ‘What is the proportion of acceptance reported by the parents toward pediatric BGT?’ Where P – the parents of special health care needs (SHCN) children and the parents of non-special health care needs (non-SHCN) children submitted to dental care; E – the use of BGT in dental pediatric visits; C – none; O – the proportion of the parent’s acceptance with behavior guidance techniques; and S – observational studies.
Eligibility criteria

To be included in this systematic review, the studies had to have observational designs. Studies that evaluated the parents’ agreement with BGT during the child’s dental treatment were included. Parents and legal guardians were accepted. The parents of non-special health care needs (non-SHCN) and special health care needs (SHCN) children of all ages were evaluated. Any kind of parental awareness of BGT (ex.: questionnaire, video, verbal or written information) was accepted. Due to limitation in publication records in some newer behavior guidance, the most BGT described by the AAPD in the current guideline were evaluated, including GA. Although hand over mouth (HOM) is no longer recommended by the guidelines, it was included in the study as well because many older studies have evaluated this technique. Hypnosis is not listed as one of the behavior management, also not in the past. It is worth mentioning, however, that primary studies did evaluate parents acceptance of hypnosis, therefore it was also evaluated. All dental procedures described in the studies were considered and all measures of the parents’ agreement were accepted.

The exclusion criteria were as follows: 1) Studies that did not evaluate the parents’ agreement of behavior guidance techniques but instead addressed the parents’ satisfaction/preferences and/or success rate and treatment costs, 2) Lacked data regarding parents’ agreement with BGT, 3) Secondary studies (review articles, letters to the editors, books, book chapters, etc.), 4) the studies that could not be found available in the complete text and 5) articles that duplicated participants from other publications.

Information sources and search strategies

Detailed search strategies for each database were developed with the help of a health science librarian and they included MeSH terms and important synonyms (Appendix 1). The databases utilized were Cochrane Library, Latin American and Caribbean Health Sciences
(LILACS), PubMed (including MedLine), PsycINFO, Scopus and Web of Science. A partial grey literature search was also carried out using the System for Information on the Grey Literature in Europe (OpenGrey), ProQuest Dissertations and Theses Database and Google Scholar. The search date was January 13th, 2019 and a search update was conducted on October 5th, 2020. No publication periods and language restrictions were applied. The reference lists from the included studies were also examined for relevant studies.

EndNote® X7 (Thomson Reuters, New York, EUA) and Rayyan software10 programs were used to manage the references. Duplicate identified studies were removed.

Study selection and data collection process

Two reviewers (CM, JPS) independently selected the studies in two phases. First based on the titles and abstracts and in phase-two, based on the full-texts. The third reviewer (MB) made the final decision. The same procedure was applied for the meta-analysis data collection.

The following structured information was collected from each included study in pre-piloted forms: the authors, the year of publication, country, study design and setting, sample size, the participants’ gender, the children’s age, BGT, the measures of assessment of the BGT, main findings and the conclusions.

Risk of bias in individual studies

The Joanna Briggs Institute Critical Appraisal Checklist for Analytical Cross-Sectional Studies11 was used to assess the methodological quality of the individual included studies. The critical appraisal tool is composed of eight questions addressing the sample characteristics, the measurement of exposure, the condition being studied and any confounding factors. The possible answers to the tool’s questions are “yes”, if the study addressed the issue proposed in the question, “no” if the study did not address the issue, “unclear” in the case of unclear or information not completely reported; and “NA” for not
applicable if a specific questions do not suit the issue addressed in the systematic review. The tool assesses the methodological quality of a study to determine extend to which it has addressed the possibility of bias in its design, conduct and analysis. The same two reviewers independently evaluated the included studies and disagreements were solved by consensus. As recommended by the reviewer’s manual, decisions about rating were discussed and agreed upon all reviewers before the critical appraisal begins. The grading system was determined by the authors considering: the studies that presented “yes” for all questions were rated as having good methodological quality therefore low risk of bias, those that presented at least one answer “unclear” was rated as unclear risk of bias, and at least one answer “no” was rated as high risk of bias. The plot was generated with the web app robvis12.

Summary measures and synthesis of the results

The primary outcome was the proportion of the parent’s acceptance of BGT use for pediatric dental visits. Secondary outcomes included the differences in agreement with BGT between the parents of non-SHCN children and the parents of SHCN children and the differences in agreement with BGT between the parents who received an explanation before the presentation of the technique and those who did not. The proportion of the parent’s acceptance with the use of BGT was measured by a dichotomous outcome using the parent’s acceptance with each technique (yes/no) and the continuous outcome using the mean ratings of the parents’ agreement and the differences in means using a Visual Analog Scale (VAS) measured in millimeters (mm).

For data analysis, when the studies presented the mean VAS scores of the parents’ agreement using the rating anchors of zero mm as most accepted and 100 mm as the least accepted behavior technique, the data was transformed by reversing the value from 100 to zero to represent the least accepted and 100 mm to the most accepted. When the studies used
a VAS measured in centimeters, the ratings were converted to mm. When the studies used a Likert scale, the “most acceptable” grade was pooled with the acceptance responses of “yes” for those studies that used “yes” or “no” for acceptance.

In addition, “conscious sedation” and “sedation” were pooled together as sedation, “parents’ separation” was combined with “parents present/absent” and presented as “parental presence/absence”, “protective stabilization” and “physical restraints” were coded as active protective stabilization (APS) and “papoose board” and “passive restraint” were coded as passive protective stabilization (PPS).

Regarding SHCN children, independently of their specific health care needs, the parents’ agreement with BGT for all SHCN children were pooled together.

Studies with sufficient information were included in four different meta-analysis: 1) Proportion of acceptance with BGT separately for the parents of non-SHCN and SHCN children with the aid of MedCalc Statistical Software version 14.8.1 (MedCalc Software, Ostend, Belgium), 2) the mean of the agreement with BGT was measured with VAS for the parents of both non-SHCN children and SHCN children separately, with the aid of the Comprehensive Meta-Analysis Software (Biostat, Englewood, USA). All studies with the parents’ acceptance measured with VAS were included and a separate meta-analysis was performed for each BGT, 3) differences in the means of agreement with BGT measured with VAS among the parents of non-SHCN children were compared with the parents of SHCN children, using the RevMan Software (Review Manager, version 5.3, Cochrane Collaboration, Copenhagen, Denmark), and 4) differences in the means of agreement with BGT measured with VAS among the parents of non-SHCN who received an explanation before the presentation of the technique and those who did not, also measured with RevMan. Since the included studies were selected based on the inclusion and exclusion criteria, there was a potential for effects to be dissimilar, so a random-effects model was applied.
Heterogeneity was assessed using the I^2 test (ratio of true heterogeneity to total observed variation) and a value >50% was considered to be an indicator of substantial heterogeneity between the studies13. The level of significance was set at 5%.

Certainty of the evidence

Two independent reviewers (CM, JPS) assessed the certainty of evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE)14 criteria. Disagreements were resolved by consensus. The overall certainty of evidence is presented with a Summary of Findings (SoF) table, from GRADEpro software (McMaster University, Hamilton, Canada) (Appendix 7). Aspects such as risk of bias, inconsistency, indirectness, imprecision, and publication bias are causes to lower the certainty of the evidence and the presence of a large effect, dose response gradient and controlling of plausible confounders are causes of increasing it in observational studies. Certainty of evidence starts with low in observational studies and can be either upgraded or downgraded.

RESULTS

Study selection

The literature search identified 1633 citations across the six databases. After deduplication, 876 articles remained. An additional 14 studies were identified in the grey literature search, and after the article reference list examination and updated search. The full text of the 81 studies was accessed and 49 were found to meet the inclusion criteria for the review. From these, 41 contained sufficient information to allow for quantitative analysis. The detailed search and selection criteria are presented in Figure 1. The excluded studies with the exclusion rationale have been included in Appendix 2.
All of the 49 studies had cross-sectional designs with the enrollment of 4474 participants; and were published between 1984 and 2019. Most of the studies were conducted in clinics and pediatric hospitals (Table 1).

Seven studies evaluated the parents of SHCN children. The children were medically or physically compromised with neuropathological disorders, with intellectual disabilities, with physical or mental disabilities, with physical or congenital disabilities, with mental, intelligence or behavioral deviations and/or systemic chronic diseases with a range of disabilities including Down’s Syndrome and cerebral palsy. They also may have had autism, and a cleft lip and/or palate (Table 1).

Risk of bias within the studies

The assessment of risk of bias is presented in Figure 2. According to Joanna Briggs Critical Appraisal Tool assessment, overall 33 studies were assessed as high risk of bias; five as unclear and only as 11 low risk of bias. A major concern regarding the risk of bias was observed, mainly issues with response rate, representativeness, and confounding.

Synthesis of the results

The pooled analysis results for the primary outcome, namely the proportion of the parent’s agreement with the use of BGT for pediatric dental visits, were as follows:

1) The proportion of agreement with BGT by the parents of non-SHCN, reported based on acceptability/unacceptability, was examined using a separate meta-analysis for each technique. Overall, the analysis included 29 studies (n=2594) that evaluated 16 different BGT techniques. The random-effects model was employed. The proportion of acceptance varied from 84.1% (95%; confidence interval (CI) 75.8 to 90.9) to 21.2% (95% CI 11.0 to 33.7; p<0.001; I² 94.5%) with TSD being found to be the most acceptable and HOM the least accepted (Figure 3 and Table 2). The I² statistics, which refer to the proportion of the observed variance that reflects the differences in the true effects sizes (in log units), varied
from not important at 32.5% (oral premedication) to considerable at 98.1% (modeling). Since $I^2 > 50\%$ was considered to be an indication of high heterogeneity, most of the meta-analysis showed considerable heterogeneity.

The proportion of agreement with BGT by the parents of SHCN children analysis included five studies ($n=748$) with nine BGT techniques analyzed. The most accepted BGT in this analysis was TSD with 89.1% (95% CI 56.1 to 99.7; $p<0.001$; $I^2 95.7\%$) of the parents agreeing and the least accepted was GA with 29.1% (95% CI 11.8 to 50.0; $p=0.001$; $I^2 84.8\%$). HOM was not assessed (Figure 4 and Table 3). The I^2 statistics varied from zero (SE) to 98.5% (VC).

2) The mean of agreement with BGT measured with VAS for parents of non-SHCN children has been presented (Appendix 3). The random-effects model was employed. Distraction was the most accepted BGT with a mean of 94.2 mm (95% CI 93.6 to 94.8; $p=0.423$; $I^2 0\%$) and PPS was the least accepted with the parents showing a mean of 42.2 mm (95% CI 29.4 to 55.0; $p<0.001$; $I^2 99.8\%$) in VAS. The I^2 varied from zero (TSD, PR, distraction, N_2O, SE and GA) to 67.6% (PP/A).

It was not possible to analyze the mean of the agreement with BGT measured with VAS for the parents of SHCN children due to the differences in the way that the data was presented among the studies.

The following meta-analyses show the results of the secondary outcomes:

1) The direct comparison of the acceptance of BGT among the parents of non-SHCN and SHCN children: the analyses were performed using two studies15,17 ($n=245$). The main outcome was the mean parental VAS rated acceptance in mm and the effect size was the standardized difference in mean. The random-effects model was again employed. The results showed that for active protective stabilization, the parents of SHCN children rated an average of 0.47 mm more for acceptance than the parents of non-SHCN children (Standard mean
difference (SMD) 0.47; 95% CI 0.21 to 0.72; p<0.001; I²=0%). There was no significant difference found in the acceptance of HOM (SMD 0.22; 95% CI -0.03 to 0.47; p=0.08; I²=0%), SE (SMD 0.21; 95% CI -0.04 to 0.46; p=0.10; I²=0%) and GA (SMD 0.07; 95% CI -0.18 to 0.32; p=0.57; I²=0%) (Appendix 4).

2) The difference in the means of an agreement with the BGT measured with VAS among the parents of non-SHCN children who received an explanation before the presentation of the technique and those who did not were examined. In the meta-analysis, the ratings from 112 parents from the two studies22,23 were made available. There was a significant difference in mean mm marked in VAS for those who received an explanation prior to judging the BGT for HOM (Mean difference (MD) -18.2; 95% CI -30.2 to -6.2; p=0.003; I²=94%); APS (MD -13.7; 95% CI -22.1 to -5.2; p=0.002; I²=89%) and TSD (MD -9.8; 95% CI -12.7 to -7.0; p<0.001; I²=75%) with zero mm representing the most acceptable. The variable ‘had received an explanation’ did not significantly increase the parents’ agreement with N₂O, GA, PPS, oral premedication and VC. A detailed analysis has been presented in Appendix 5. There was not enough data to analyze the parents of SHCN children.

Results of the individual studies

A synthesis of parental acceptance and the scales used to measure it in the included studies are presented in Table 1. Overall, both parents of non-SHCN and SHCN children accepted communicative techniques and reported negative ratings on restrictive ones. Also, parents that were informed enhanced their level of acceptance of all techniques. Children’s age, parents’ previous experience in the dentist, sex, number of children, ethnicity, parenting style and income showed mixed results regarding parents preferences. While were parents’ age, education level, reason for children’s visit to the dentist, and children’s previous experience did not affect significantly parents’ level of acceptance.
Certainty of the evidence

The certainty of the evidence according to the GRADE\(^{15}\) criteria was judged to be very low (Appendix 6). Major concerns were related to risk of bias (very serious) related to lack of definition of eligibility criteria and confounding factors; inconsistency (very serious) with heterogeneity above 50\% and wide confidence intervals suggesting very low confidence in the estimated effect, and imprecision (serious) with less than 400 observation for continuous measures. Indirectness was not a concern. Publication bias was considered undetected because potential conflict of interest in the included studies was not observed. Furthermore, there was an effort to make a wide search including gray literature.

DISCUSSION

Understanding parental acceptance toward BGT may have implication for planning children’s oral health treatment. In the present systematic review, we found that parents of non-SHCN and SHCN children demonstrated high acceptance of basic behavior guidance. Regarding advanced behavior guidance, the proportion of acceptance was good among parents of SHCN children and low among parents of non-SHCN. Active protective stabilization was more accepted among special parents than among non-SHCN. Overall, explanation about the technique increased parental acceptance, however not for all the techniques. Nevertheless, the high risk of bias of the included studies; the high clinical, methodological and statistical heterogeneity; and the very low certainty of the evidence represent a challenge in interpreting the results.

Perhaps the parents of SHCN children are more used to physical restraint, especially when their children present with aggressive behavior\(^{16}\). This could be the reason in the results as to why the parents accept protective stabilization and sedation leaving N\(_2\)O and GA as the last choices. Additionally, the parents of uncooperative SHCN children were more open to accepting advanced BGT\(^{20,24}\).
For dental care providers, there is an obligation to offer accurate information to parents about their children's treatment. In the case of need for advanced behavior guidance, dentists should support the decisions on the evidence-based guidelines and systematic reviews. Nevertheless, the potential harm of a more invasive guidance technique such as protective stabilization or GA should be considered along with parents' opinions. A 2-way conversation about risks and benefits of BGT allows parents to express their values and preferences while sharing the choice with the oral care team regarding the best way their children could be treated. Moreover, well-informed parents accept better and are more prone to give consent on BGT use.

Children present multifaceted behavior according to their age range. The present study analysis did not approach parents’ BGT acceptance regarding children’s age because there was not sufficient homogeneous data to perform subgroup analysis among included studies. However, studies showed mixed results suggesting that age did not affect significantly parents’ level of acceptance. In other case younger ages presented greater parents’ acceptability to N2O. Likewise, parents’ previous experience in the dentist, sex, number of children, ethnicity, parenting style, and income showed controversial results while parents’ age, education level, reason for children’s visit to the dentist, and children’s previous experience did not affect significantly parents’ level of acceptance. Unfortunately, there is no reliable anticipatory way dentists can predict which BGT will be more likely to be accepted.

The results, however, allowed to observe that in cases of pain and/or emergency and uncooperative children, parents were more willing to accept advanced techniques. Furthermore, parents of cooperative children did not approve sedation while stressed parents accepted less BGT. Therefore, recommendations would rely on using the technique that can provide the behavior management that is particularly needed to effectively treat the
child. Usually, dentists pay attention to the parent-child relationship; therefore the results of the present review may help dentists to seek for the parent acceptance of the more suitable BGT for that particular family.

Different relationships may be obtained in different countries. Culture and social mores can influence on the parents point of view in the dental visit approach. Each country has state laws and regulations concerning dental practice and BGT are included in these regulatory efforts. For instance, in Nordic European countries, devices for protective stabilization are forbidden. Advanced behavior guidance requires informed consent signed by the parents and kept in the patient record. Even when basic behavior techniques are planned, informed consent is required for alternative methods in case of the necessity to change the BGT.

Although HOM is a technique no longer accepted, it was included in the present systematic review due to the number of the included studies that have assessed it. Indeed parents showed disagreement about the use of HOM. There are growing concerns regarding the ethical boundaries of more restrictive techniques especially if the dentist does not have the scientific knowledge and training to perform it. Even for SHCN children that present limited cooperation, physical restraint is seen as a final option for managing behavior.

This systematic review also investigated hypnosis. The agreement with hypnosis varied from low to moderate. The parents that agreed were more likely to be women, older and younger children. Perhaps parents’ perceptions of the benefits to the child anxiety favor their acceptance of the technique.

There are common issues among the included studies that compromise the present results. Firstly, most of them did not present inclusion criteria, did not present sample size calculation, did not describe the settings and did not address confounding factor such as
participants’ age, socioeconomic characteristics, previous experience with the dentist and with BGT, number of siblings, anxiety, pain and treatment. Secondly, the methodological problems certainly affect solid conclusions. Another limitation is the outcome measurement. The included studies used a range of scales to access parents’ acceptance with a range of methods to present BGT to parents.

The SHCN children were assessed without any differences in their health conditions and the limitations associated with those conditions. It is possible that the parents’ acceptance would be different among the children with a condition such as cerebral palsy, especially because the parents are used to stabilization depending on the level of the disability when compared with the parental preferences for children with systemic chronic diseases. Furthermore, some health disabilities were not assessed such as deafness and blindness.

The present systematic review had a comprehensive search including grey literature with the help of a health science librarian, and presented a high number of include studies, however it is not possible to be sure that all possible eligible studies were included. Also, the effect estimates varied greatly since substantial heterogeneity across studies was observed limiting the confidence in the results. All the mentioned limitation influenced the GRADE assessment, which showed very low-level certainty of the overall evidence.

Based on the issues herein discussed, it is clear that all the pointed limitations affect the present systematic review conclusions and applicability. Yet, dentists should discuss BGT options with parents having in mind that generally basic guidance techniques are well accepted among parents of non-SHCN children as well as among parents of SHCN and probably, for advanced behavior guidance, there will be more resistance among all parents. Moreover, explanation increased parents’ acceptability.

Future research should address the BGT presented in the current AAPD guideline such as positive pre-visit imagery, ask-tell-ask, memory recruiting and the communication
techniques for parents, which involves ask-tell-ask, teach-back and motivational interviewing.

Conclusions

This systematic review and meta-analysis suggests with very low certainty that parents’ attitudes towards BGT are more likely to be accepting of basic behavior guidance with a high level of acceptance and less likely to accept advanced behavior guidance. This was the case for both parents of non-SHCN and SHCN children. Parents were less likely to accept more restrictive measures. Further, there is some evidence that parents’ benefit from education and experience with respect to BGT suggesting that dentists should discuss BGT options with both the parents of non-SHCN and SHCN children. These findings provide potentially helpful direction for dental care providers aimed at improving child health and child- and family-centered dental care.

Acknowledgments: Thanks to Mrs. Maria Gorete Savi for her contribution in the search strategy.
References

34. Razavi S, Purtaji B. Determining the behavior management technique of mothers referred to the department of pediatric dentistry in Qazvin (2007).
35. Chang CT. Ethnic influence on parental preferences towards behavioral management techniques used in pediatric dentistry [10132134]. Ann Arbor: The University of Texas School of Dentistry at Houston; 2016.

54. Acharya S. Parental acceptance of various behaviour management techniques used in pediatric dentistry: A pilot study in Odisha, India. Pesqui Bras Odontopediatria Clin Integr 2017;17(1).

Figure 1 - Flow diagram of literature search and selection criteria.1

- **Identification**
 - COCHRANE: n=87
 - LILACS: n=60
 - PUBMED: n=620
 - PsyINFO: n=84
 - SCOPUS: n=614
 - WEB OF SCIENCE: n=168
 - Records identified through database searching: n=1633
 - Records after duplicates removed: n=876

- **Screening**
 - Records screened from databases: n=67
 - OpenGrey: n=1
 - ProQuest: n=24
 - Google Scholar: n=100
 - Records screened from reference lists: n=2
 - Search update October 05 2020: n=7

- **Eligibility**
 - Full-text articles assessed for eligibility: n=81
 - Full articles excluded with reasons (n=32):
 1) Studies that addressed parents' satisfaction/preferences and/or success rate and treatment costs (n=12)
 2) Lacked data regarding parents' agreement with behavior guidance techniques (n=14)
 3) Secondary studies (n=1)
 4) Did not find complete data (n=2)
 5) Duplicated participants between publications (n=3)

 - Studies included in qualitative synthesis: n=49

- **Included**
 - Studies excluded in quantitative synthesis (n=8)
 - Lacked sufficient quantitative data to permit inclusion in analyses
 - Studies included in quantitative synthesis: n=41

1 Adapted from PRISMA.
Figure 2. Methodological quality assessed by the Joanna Briggs Institute Critical Appraisal tools - Checklist for Analytical Cross-Sectional Studies. The studies that presented “yes” for all questions were rated as having low risk of bias, those that presented at least one answer “unclear” was rated as unclear risk of bias, and at least one answer “no” was rated as high risk of bias. Plot generated with the web app robvis.
Figure 3 - Meta-analysis of proportion (non-special health care needs children)
Figure 4 - Meta-analysis of proportion special health care needs children
Table 1 - Summary of descriptive characteristics of included articles in non-special health care needs children and special health care needs children.

<table>
<thead>
<tr>
<th>Group</th>
<th>Author, year, country</th>
<th>Settings/ Total parents N; Sex (M/F); Children's age (years); Mean; Range</th>
<th>Behavior Guidance Technique (BGT)</th>
<th>Scale (VAS, Likert); Yes/No response; Ranking preference</th>
<th>Main Findings</th>
<th>Main conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video-based research</td>
<td>Abushal and Adenubi 2003</td>
<td>University 133 NI</td>
<td>TSD; PR; HOM; CS; APS; DIS; VC; PP/A; NC; GA.</td>
<td>VAS (4 categories by the authors); Ranking preference</td>
<td>TSD and PR were the most acceptable. The most unacceptable was VC and HOM.</td>
<td>Parents accepted most of the techniques. Explanation enhanced their level of acceptance.</td>
</tr>
<tr>
<td></td>
<td>45, Saudi Arabia</td>
<td>NI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alammouri 2006</td>
<td>University 138 66M 70F NI</td>
<td>TSD; PR; NC; VC; PP/A; DIS; HOM; APS; Hyp; N2O; CS; GA.</td>
<td>Yes/No response.</td>
<td>Parents had positive attitudes to TSD, PR and DIS. Did not accept the HOM, APS, N2O, CS and GA.</td>
<td>The general parental attitudes were positive regarding the BGT.</td>
</tr>
<tr>
<td></td>
<td>38, Jordan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allen et al 1995</td>
<td>University 120 120 F 2-8</td>
<td>TSD; N2O; PPS; VC; HOM; OP; APS; GA.</td>
<td>Likert scale (1-9) and consenting (Yes/No).</td>
<td>Only the oral method produced significantly better consent for individual procedures. All the parents consented to TSD.</td>
<td>Oral information to parents about each technique is most likely to result in parents who feel well informed and who are likely to provide written consent.</td>
</tr>
<tr>
<td></td>
<td>28, USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boka et al 2014</td>
<td>University 229 60 M 129 F 3-12 (7.8)</td>
<td>TSD; N2O.; PPS; VC; HOM; CS; APS; GA; PPA.</td>
<td>VAS (0-10)</td>
<td>TSD was rated higher than any other by all parents. PPA was the second most accepted technique followed by N2O. The least accepted techniques were PPS and GA.</td>
<td>Parents with negative dental experience would prefer GA over any of active or passive restraint, HOM and VC techniques. PPA was a highly acceptable technique.</td>
</tr>
<tr>
<td></td>
<td>46, Greece</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chang 2016</td>
<td>Pediatric Dentistry Clinic 104 30 M 74 F NI</td>
<td>TSD; VC; NC; PR; DIS; PPA; N2O; GA; SE; APS.</td>
<td>VAS (0-100)</td>
<td>PR and TSD were the most acceptable techniques. Decreasing of acceptance DIS, PPA, N2O, NC, SE, VC and APS.</td>
<td>PR and TSD are most accepted by parents, while invasive techniques such as VC and PP/A, are the least accepted.</td>
</tr>
<tr>
<td></td>
<td>35, USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cordero et al 2012</td>
<td>Private practice and University 129 26 M 103 F 3-15</td>
<td>TSD; PR; DIS; APS; PPS; N2O; GA.</td>
<td>Likert scale</td>
<td>89.1% accepted the N2O. And 35.9% accepted the GA. The communicative techniques had more acceptances with TSD (94.6%), PR (97.7%), DIS (92.2%).</td>
<td>There was high rejection of parents to the traditional use of restrictive techniques and greater acceptance of communication techniques.</td>
</tr>
<tr>
<td></td>
<td>27, Colombia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eaton et al 2005</td>
<td>University 46 TSD; N2O.; PPS; VC; HOM; SE;</td>
<td></td>
<td>VAS (0-100)</td>
<td>TSD was rated as the most acceptable technique, followed</td>
<td>All techniques had acceptable ratings except for HOM. GA was</td>
</tr>
<tr>
<td></td>
<td>31, USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Population</td>
<td>Techniques</td>
<td>Acceptance Measure</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Enciso et al 2001<sup>15</sup>, Colombia</td>
<td>University 81</td>
<td>8 M 38 F 38 NI</td>
<td>TSD; DIS; RP; APS; PPS.</td>
<td>Yes/no response.</td>
<td>TSD, PR and DIS were the most acceptable techniques. Restrictive BGT had lower acceptance ratings. Parents compared to those that did not require some type of physical restriction less accepted restrictive techniques.</td>
<td></td>
</tr>
<tr>
<td>Fields et al 1984<sup>14</sup>, USA</td>
<td>University 67</td>
<td>17 M 105 F NI</td>
<td>TSD; MP; VC; PR; HOM; APS; PPS; SE; GA.</td>
<td>Yes/no response (acceptable and unacceptable).</td>
<td>TSD was the most accepted technique followed by PR, VC and MP. GA and SD were rated as acceptable by a majority of parents. VC, MP, PR, and TSD were acceptable. Use of PPS was the lowest rated technique acceptable by parents.</td>
<td></td>
</tr>
<tr>
<td>Havelka et al 1992<sup>26</sup>, USA</td>
<td>Private practices and University 122</td>
<td>17 M 105 F NI</td>
<td>TSD; N2O; PPS; VC; HOM; OP; APS; GA.</td>
<td>VAS (0-100)</td>
<td>Acceptable ratings reported for TSD, VC, N2O, APS, OP, GA, PPS and HOM, (in that order). Techniques judged least acceptable were HOM (the most unacceptable), GA, PPS and OP.</td>
<td></td>
</tr>
<tr>
<td>Jafarzadeh et al 2015<sup>25</sup>, Iran</td>
<td>University 54</td>
<td>18 M 36 F NI</td>
<td>TSD; VC; PPS; PR; HOM; OS; GA.</td>
<td>VAS (0-100) presented as yes/no.</td>
<td>TSD had the highest acceptance, PPS (35%) and HOM (30%) the lowest. Parents reported negative ratings of physical techniques (PPS and HOM) as in past studies. But, advanced pharmaceutical techniques (SE and GA) were reported to have gained higher levels of acceptability.</td>
<td></td>
</tr>
<tr>
<td>Jahanimoghadam et al 2018<sup>27</sup>, Iran</td>
<td>University 60</td>
<td>20 M 40 F 2-15</td>
<td>TSD; VC; HOM; APS; PPA; GA.</td>
<td>VAS (0-100)</td>
<td>TSD and HOM had the highest and lowest mean scores respectively. The most accepted techniques was: TSD, PPA, APS, VC, GA and HOM. Parents rated non-invasive methods more favorably.</td>
<td></td>
</tr>
<tr>
<td>Kupietzky 2006<sup>19</sup>, Israel</td>
<td>Private dental clinic 40</td>
<td>14 M 26 F Mean age 3.7</td>
<td>SE and GA.</td>
<td>VAS and Yes/No responses.</td>
<td>The majority of parents preferred SE over GA. The majority of the parents stated that their perception of GA was not reflected as much as in the video shown. Parents better-accepted SE.</td>
<td></td>
</tr>
<tr>
<td>Kuscu et al 2014<sup>20</sup>, Turkey</td>
<td>University 25</td>
<td>12 M 13 F 5-13 (7.56)</td>
<td>TSD; PR; VC; DIS; NC; PPA; perceived control; gifts.</td>
<td>VAS (0-10)</td>
<td>Perceived control and PR were rated the most effective and NC and PPA the least effective. All the advanced techniques were found to be effective by some parents. Perceived control and positive reinforcement were rated the most effective.</td>
<td></td>
</tr>
<tr>
<td>Lawrence et al</td>
<td>University 71</td>
<td>8 M 38 F 38 NI</td>
<td>TSD; N2O; PPS;</td>
<td>VAS (0-100)</td>
<td>GA was the more unacceptable, Informed parents were</td>
<td></td>
</tr>
</tbody>
</table>
1991, USA

80
21 M
59 F
NI

followed by OP and PPS. The techniques better accepted were TSD, N2O and VC, respectively.
significantly more accepting of behavior guidance techniques than the uninformed parents but both groups were positive about the techniques.

Leon et al 2010, Spain

University
50
16 M
34 F
3-13

The most acceptable technique was TSD, while the least accepted was the HOM. Decreasing order of acceptance, by VC, APS, N2O, OP and PPS and last HOM.
The techniques were well accepted with the exception of HOM and the PPS.
The socioeconomic and gender of parents influenced level of acceptance of techniques.

Martinez Mier et al 2019, USA

Community centers and University
136
28 M
108 F
Under 18

Comparisons among study groups showed that acceptance was statistically different between Hispanic and non-Hispanic white participants for GA and PPS where Hispanic parents are more accepting of PPS but less accepting of GA. Statistical differences exist between non-Hispanic black and Hispanic parents for APS and GA where Hispanic parents are less accepting of both techniques. No differences existed between non-Hispanic white and non-Hispanic black parents.
Significant differences were not found for N2O, TSD, and VC.
Differences in acceptance of behavior management techniques exist between Hispanic, non-Hispanic white, and non-Hispanic black parents, which suggest that practitioners should take into account cultural differences when electing to use them.

Muhammad et al 2011, Kwait

University
118
54 M
64 F
6-13 (8.8)

PR (100%), effective communication, TSD, DIS, M and NC were considered as the most approved techniques. Hyp and PP/A were moderately approved.
VC, N2O, SE, APS, GA (5.9%), HOM (5.1%) technique and CS (4.2%) were the least approved techniques.
Most parents preferred the nonpharmacological techniques (PR, TSD, NC, DIS, Mo) to pharmacological techniques.
Techniques employing drugs and restraint were considered least acceptable.

Murphy et al 1984, USA

University
67
NI

Parents favored TSD, PR, MP and VC, in this order. Physical restraint by the dentist and assistant were significantly more favorable than HOM and SE. The least acceptable techniques were GA and PPS.
Techniques not requiring restriction were rated as more acceptable. Techniques employing drugs and restraint were less acceptable.
<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Sample Size</th>
<th>Gender</th>
<th>Technique(s)</th>
<th>Acceptance/Scale</th>
<th>Results/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paryab et al 2014</td>
<td>Iran</td>
<td>90</td>
<td>90 F</td>
<td>APS; PPS; HOM; OP; GA.</td>
<td>Likert scale.</td>
<td>The technique most accepted was APS by assistant or mother (82.2%), followed by OP (54.4%), HOM (53.3%), GA (38.9%) and PPS (37.8%). None of the presentation methods had a significant preference over the others in selecting the BGT.</td>
</tr>
<tr>
<td>Patel et al 2016</td>
<td>USA</td>
<td>105</td>
<td>20 M</td>
<td>PPS; APS; SE; GA.</td>
<td>VAS (0-100)</td>
<td>The techniques more accepted were SE, follow by GA, APS and passive immobilization. Advanced pharmacologic techniques (SE and GA) were rated as the most acceptable. Passive immobilization was rated as the least acceptable technique.</td>
</tr>
<tr>
<td>Razavi and Purtaji 2007</td>
<td>Iran</td>
<td>50</td>
<td>50F</td>
<td>GA; PP/A; HOM; VC.</td>
<td>Yes/No acceptance.</td>
<td>Acceptance ratios were as follows: PP/A 100%; VC 92%; HOM 50% and GA 30%. PP/A was the most acceptable and GA the least.</td>
</tr>
<tr>
<td>Scott and Garcia-Godoy 1998</td>
<td>USA</td>
<td>32</td>
<td>6 M</td>
<td>TSD; VC; N2O; OP; GA; APS; HOM; PPS.</td>
<td>VAS (0-99)</td>
<td>HOM was rated unacceptable by 63% of the parents with previous explanation and 81% without. TSD was the technique better accepted in both groups. An informed parent is more likely to show greater acceptance of a technique. HOM and PPS showed a statistically greater degree of nonacceptance. Parents would rather have the child subjected to GA than HOM.</td>
</tr>
<tr>
<td>Simões et al 2016</td>
<td>Brazil</td>
<td>38</td>
<td>7 M</td>
<td>TSD; VC; PR; PPA; HOM; APS; PPS; SE.</td>
<td>Always, sometimes, never.</td>
<td>TSD and PR were the most acceptable techniques before and after explanation. Acceptance of the HOM technique rose from 34.2% to 68.5% after explanation. Non-restrictive techniques had high acceptance rates both before and after the explanations, while restrictive techniques had low rates of acceptance. After receiving explanations of BGT, parents are more likely to accept the use of certain techniques.</td>
</tr>
<tr>
<td>Taran et al 2018</td>
<td>Turkey</td>
<td>146</td>
<td>17 M</td>
<td>TSD; VC; PR; PPA; PPS, SE; GA.</td>
<td>Applicable, if really needed, or not applicable.</td>
<td>Acceptance ratios were as follows: PR 91.5%; TSD 80.3%; PPA 45.1%; VC 36.6%; SE 33.8%; GA 25.4% and PPS 16.9%. Parental preferences for BGT may be related to parenting styles and parental dental anxiety.</td>
</tr>
<tr>
<td>Wilson et al 1991</td>
<td>USA</td>
<td>60</td>
<td>17 M</td>
<td>TSD; VC; HOM; APS; PPS; N2O; OP; GA.</td>
<td>VAS (0-100)</td>
<td>TSD was most acceptable technique, follow by VC; N2O; APS; GA; OP; PPS and HOM (in group) and TSD; APS; VC; N2O; GA; PPS; OP and HOM (individually). Small groups of parents viewing techniques tend to rate them as less acceptable than parents viewing the same techniques individually.</td>
</tr>
<tr>
<td>Alkandari et al 2016</td>
<td>Kuwait</td>
<td>381</td>
<td>179 M</td>
<td>N2O and GA.</td>
<td>Yes/No acceptance.</td>
<td>66% of parents accept the N2O. Similar percentage of them would prefer N2O (64%) over GA (36%). Parents are accepting nitrous oxide sedation as a BGT for their children.</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Participants</td>
<td>Technique</td>
<td>Acceptance</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Acharya 2017</td>
<td>India</td>
<td>197 F, 1-15 (5.9)</td>
<td>VC; TSD; PR; APS; HOM; N2O; GA; OP; Mo; MP.</td>
<td>VAS (0-100) presented in ranking.</td>
<td>The most acceptable technique was TSD (86%), followed by PP/A (76%). The least acceptable were HOM, voice control and APS.</td>
<td></td>
</tr>
<tr>
<td>Al Zoubi et al 2019</td>
<td>Germany</td>
<td>32 M, 3-6</td>
<td>PPS; APS; N2O; GA.</td>
<td>Likert scale</td>
<td>In normal treatment, N2O (52.6%) followed by APS (39.3%), GA (28%) and PPS (19.9%). In emergency situations, N2O (68.2%), followed by GA (62.8%), APS (54%) and PPR (37.8%)(p<0.001). Parents in Germany are more willing to accept advanced BGT in emergency situations, in comparison to normal treatment.</td>
<td></td>
</tr>
<tr>
<td>Betancur et al 2006</td>
<td>Colombia</td>
<td>50 NI, 4-12 (8)</td>
<td>N2O.</td>
<td>12 questions (4 options – extremely positive; positive; negative; extremely negative).</td>
<td>66% consider the technique appropriate, 84% accepted, just 2% consider not acceptable. There was a high perception and acceptance of the technique by both parents and children.</td>
<td></td>
</tr>
<tr>
<td>Bhandari et al 2018</td>
<td>India</td>
<td>320 NI, 2-5</td>
<td>SE.</td>
<td>Conscious sedation safety (yes/no).</td>
<td>Parents acceptance: with high school 15%; graduate 90%; postgraduate 93%; not completed high school 61%. Most of parents (40%) were graduates. Parents feel sedation is safe in the dental office.</td>
<td></td>
</tr>
<tr>
<td>Brill 2002</td>
<td>USA</td>
<td>NI, 42, 1-6</td>
<td>APS.</td>
<td>Happy/neutral or Unhappy.</td>
<td>95% of parents were happy/neutral to the APS. And 92% of parents answered that the use of APS was very/moderately successful. Parents accept the use of passive restraint even when they feel high levels of stress while watching their child held in such devices.</td>
<td></td>
</tr>
<tr>
<td>Chen 2010</td>
<td>China</td>
<td>U, 299</td>
<td>GA.</td>
<td>VAS (0-100)</td>
<td>Acceptance rate of GA was positively related to the monthly income and negatively related to the evaluated score of child cooperation degree. There was no correlation in GA acceptance rate and the age of the child, age of the parents, educational level and the frequency of dental visit for the child. The major factors for mother to accept GA were income level and the level of children's cooperation.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Sample Size</td>
<td>Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen 2008<sup>26</sup>, China</td>
<td>U 285 U</td>
<td>TSD; VC; GA; SE; APS.</td>
<td>VAS (0-100)</td>
<td>Decreasing the acceptance rates for the following in order was: TSD, VC, SE, and APS. Females accepted more TSD and males accepted more APS, and this difference was significant. No techniques were found to be totally acceptable by all parents.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankel 1991<sup>27</sup>, USA</td>
<td>Pediatric dental practice 59 F 0-5 or more (3.1)</td>
<td>PPS.</td>
<td>Questions yes/no and Likert scale.</td>
<td>62% reported that the use of PPS was very helpful and necessary. 86% did not think that just seating the child in the dental chair and holding him/her would have been successful. The mothers had positive attitudes toward the use of PPS after experiencing its use with their children.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuccio et al 2003<sup>28</sup>, Brazil</td>
<td>University 49</td>
<td>TSD; VC; PR; HOM; SE; GA; APS; PPS.</td>
<td>Three options determined by author (always; usually; never).</td>
<td>Non-restrictive techniques were accepted always by 91%, TSD was the most accepted by 98%, followed by PR 91.8%. Restrictive techniques were accepted always by 29% of parents. Non-restrictive techniques were the most accepted by parents (TSD; VC; PR) and the restrictive and SE/GA was rated as most unacceptable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamolmatayakul and Nakaw 2002<sup>29</sup>, Thailand</td>
<td>University 185</td>
<td>TSD; PR; DIS; PP/A; VC; HOM; PPS; SE; GA.</td>
<td>Likert scale (total acceptance, acceptance, neutral, not accepted, and totally unacceptable).</td>
<td>TSD was accepted by all parents followed by PR (94%) and DIS (83%). PPS was accepted by 49%. The least acceptable were GA (62%), HOM (58%), VC (56%), and SE (55%). Parents better accepted non-restrictive techniques compared to restrictive methods.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peretz and Zadik 1999<sup>30</sup>, Israel</td>
<td>University 104</td>
<td>VC; APS; PPS; SE.</td>
<td>Total unacceptance, partial acceptance, acceptance.</td>
<td>VC was totally accepted by most parents (53%), APS was accepted partially by 64% of parents, PPS was totally unacceptable by 44% and SE was partial accepted by 53% of parents. Detailed explanations and witnessing children during dental treatment may raise parents’ tolerance level toward aggressive guidance techniques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peretz et al 2013<sup>31</sup>, Israel</td>
<td>University and private clinics 90</td>
<td>TSD, Mo, PR, VC, APS, Hyp. SE (nitrous oxide and oxygen alone or combined with pharmacological sedation).</td>
<td>Total unacceptance, dislike, apply only if really needed, acceptance.</td>
<td>The most accepted technique was PR (81.1%) followed by TSD (76.7%). The least accepted techniques were restraint (1.1%) and VC (7.8%). SE was unacceptable to 15.6%. Parents preferred more positive approaches and guidance techniques that involve demonstrations geared for the child’s level of understanding. Restraint and voice control were more strongly rejected than sedation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subramaniam et al 2017<sup>32</sup>, India</td>
<td>University 60</td>
<td>N2O and SE.</td>
<td>Good, poor.</td>
<td>Good parental acceptance was observed for both routes of administration. Parental acceptance for both routes was good.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The parent acceptance was good in 96.67% in Group N2O and 100% for Group SE.

Parents accepted the necessity of passive restraint for dental treatment.

Special health care needs children

<table>
<thead>
<tr>
<th>Study</th>
<th>Institution</th>
<th>Sample Description</th>
<th>Techniques</th>
<th>Acceptance Measure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsuchihashi et al 2012</td>
<td>University</td>
<td>50 F 3-5 (4.3)</td>
<td>Restraint technique</td>
<td>Yes/no/ambivalent.</td>
<td>94% of mothers thought that decisions to use restriction were appropriate. 26% mothers feel bad for the child (before) and 13% (after).</td>
</tr>
<tr>
<td>Venkataraghavan et al 2016</td>
<td>University</td>
<td>51 2-4</td>
<td>TSD; PR; PPA; VC; HOM; APS; N2O; GA.</td>
<td>Most acceptable/least acceptable.</td>
<td>The most preferred technique was TSD followed by PR and least preferred was GA followed by physical restraint.</td>
</tr>
</tbody>
</table>

Video-based research

<table>
<thead>
<tr>
<th>Study</th>
<th>Institution</th>
<th>Sample Description</th>
<th>Techniques</th>
<th>Acceptance Measure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elango 2009</td>
<td>Dental College and Hospital 204 Group A (non-special) 53 M 49 F Group B (special) 42 M 60 F 2-15</td>
<td>TSD; PR; Mo; VC; HOM; APS; SE; GA; MP; CE.</td>
<td>VAS (0-100)</td>
<td>Group B parents were less accepting than Group A for APS, HOM and GA.</td>
<td>Contingent escape and live modeling were the first ranked technique by both parents. Least accepted technique by both the parental groups was VC and HOM.</td>
</tr>
</tbody>
</table>

Institutionalized children with intellectual disabilities

<table>
<thead>
<tr>
<th>Study</th>
<th>Institution</th>
<th>Sample Description</th>
<th>Techniques</th>
<th>Acceptance Measure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oliveira et al 2007</td>
<td>Institutionalized children with intellectual disabilities 209 0-15</td>
<td>APS; PPS; SE; GA.</td>
<td>Accept/Do Not Accept</td>
<td>SE was the most accepted technique with 58.9%, followed by PPS (55.9%), APS (50.7%) and GA with 22.9%.</td>
<td>The restraint methods most accepted by parents who had children with intellectual disabilities were APS, PPS; SE. The most rejected was GA.</td>
</tr>
</tbody>
</table>

Non-video-based research

<table>
<thead>
<tr>
<th>Study</th>
<th>Institution</th>
<th>Sample Description</th>
<th>Techniques</th>
<th>Acceptance Measure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandes et al 1995</td>
<td>University</td>
<td>80 (40 with disabled child and 40 without disabled child) 74 M 6 F NI</td>
<td>HOM; GA; PPS; SE.</td>
<td>VAS (0-100)</td>
<td>The SE was the most accepted followed by HOM. GA was better accepted than PPS on invasive procedures, but for checking/cleaning the PPS was better accepted than GA.</td>
</tr>
</tbody>
</table>

Brazil

<table>
<thead>
<tr>
<th>Study</th>
<th>Institution</th>
<th>Sample Description</th>
<th>Techniques</th>
<th>Acceptance Measure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castro et al 2016</td>
<td>University</td>
<td>83 (data of only)</td>
<td>TSD; DIS; PR; NC; N2O; APS;</td>
<td>Accept; accept with restrictions;</td>
<td>TSD; DIS; NC; PR were considerate totally accepted. Communicative guidance and protective stabilization were the</td>
</tr>
<tr>
<td>Study</td>
<td>Year, Location</td>
<td>Sample Size</td>
<td>Age Range</td>
<td>Techniques Used</td>
<td>Acceptance</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>De Castro et al 2013</td>
<td>Brazil</td>
<td>80</td>
<td>4-8 (no special needs)</td>
<td>TSD; VC; PR; DIS; N2O, GA, APS by parents; PPS.</td>
<td>Parents of children with disabilities showed a statistically significant difference related to acceptance for a protective stabilization with a restrictive device. For both groups, the GA was the least accepted.</td>
</tr>
<tr>
<td>Marshall et al 2008</td>
<td>USA</td>
<td>85</td>
<td>0-19 (9.6)</td>
<td>TSD; VC; PR; NC; DIS; PPA; N2O; SE; GA; APS.</td>
<td>All the techniques were rated as acceptable by ≥54% of parents. The most acceptable in declining order were PR; TSD; DIS.</td>
</tr>
<tr>
<td>Ramos et al 2005</td>
<td>Brazil</td>
<td>400</td>
<td>4-10</td>
<td>TSD; VC; APS; HOM.</td>
<td>The levels of acceptance of the techniques were 98% (TSD), 96% (VC), 81% (APS), and 85% (HOM).</td>
</tr>
</tbody>
</table>

Legend: Active protective stabilization (APS); Behavior guidance technique (BGT); Contingent escape (CE); Distraction (DIS); Female (F); General anesthesia (GA); Hand over mouth (HOM); Hypnosis (Hyp); Male (M); Modelling (Mo); Mouth props (MP); Nitrous oxide/oxygen inhalation (N2O); Nonverbal communication (NC); Not informed (NI); Oral premedication (OP); Parental present/absence (PP/A); Passive protective stabilization (PPS); Positive reinforcement (PR); Sedation (SE); Tell-show-do (TSD); Unknown (U); Voice control (VC).
Table 2 - Proportion meta-analysis of agreement with BGT by the parents of non-SHCN children

<table>
<thead>
<tr>
<th>Behavior Guidance Technique</th>
<th>Total of studies</th>
<th>Total of sample</th>
<th>Proportion</th>
<th>CI 95%</th>
<th>p-value</th>
<th>I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tell-show-do</td>
<td>15</td>
<td>1346</td>
<td>84.1%</td>
<td>75.8-90.9</td>
<td><0.001</td>
<td>93.3</td>
</tr>
<tr>
<td>Positive Reinforcement</td>
<td>13</td>
<td>1188</td>
<td>82.1%</td>
<td>73.3-89.3</td>
<td><0.001</td>
<td>92.4</td>
</tr>
<tr>
<td>Distraction</td>
<td>7</td>
<td>748</td>
<td>73.1%</td>
<td>49.9-90.9</td>
<td><0.001</td>
<td>97.7</td>
</tr>
<tr>
<td>Modeling</td>
<td>6</td>
<td>474</td>
<td>67.6%</td>
<td>34.8-92.8</td>
<td><0.001</td>
<td>98.1</td>
</tr>
<tr>
<td>Nitrous oxide/oxygen inhalation</td>
<td>9</td>
<td>1062</td>
<td>59.1%</td>
<td>38.5-78.2</td>
<td><0.001</td>
<td>97.6</td>
</tr>
<tr>
<td>Mouth prop</td>
<td>2</td>
<td>117</td>
<td>54.9%</td>
<td>30.8-77.8</td>
<td>0.006</td>
<td>86.4</td>
</tr>
<tr>
<td>Oral premedication</td>
<td>4</td>
<td>194</td>
<td>50.1%</td>
<td>41.5-58.6</td>
<td>0.227</td>
<td>32.5</td>
</tr>
<tr>
<td>Nonverbal communication</td>
<td>3</td>
<td>313</td>
<td>49.4%</td>
<td>15.3-83.9</td>
<td><0.001</td>
<td>95.7</td>
</tr>
<tr>
<td>Parental presence/absence</td>
<td>7</td>
<td>732</td>
<td>49.2%</td>
<td>26.3-72.3</td>
<td><0.001</td>
<td>97.6</td>
</tr>
<tr>
<td>Voice control</td>
<td>13</td>
<td>1082</td>
<td>40.2%</td>
<td>24.4-57.2</td>
<td><0.001</td>
<td>96.8</td>
</tr>
<tr>
<td>Active protective stabilization</td>
<td>17</td>
<td>1333</td>
<td>38.7%</td>
<td>25.0-53.3</td>
<td><0.001</td>
<td>96.6</td>
</tr>
<tr>
<td>Sedation</td>
<td>11</td>
<td>1313</td>
<td>33.7%</td>
<td>18.1-51.9</td>
<td><0.001</td>
<td>97.7</td>
</tr>
<tr>
<td>Hypnosis</td>
<td>3</td>
<td>346</td>
<td>32.5%</td>
<td>7.12-65.5</td>
<td><0.001</td>
<td>97.5</td>
</tr>
<tr>
<td>General Anesthesia</td>
<td>15</td>
<td>1681</td>
<td>27.4%</td>
<td>16.8-39.4</td>
<td><0.001</td>
<td>96.3</td>
</tr>
<tr>
<td>Passive protective stabilization</td>
<td>12</td>
<td>1129</td>
<td>25.7%</td>
<td>17.8-34.4</td>
<td><0.001</td>
<td>90.4</td>
</tr>
<tr>
<td>Hand over mouth</td>
<td>11</td>
<td>896</td>
<td>21.2%</td>
<td>11.0-33.7</td>
<td><0.001</td>
<td>94.5</td>
</tr>
</tbody>
</table>
Table 3 - Proportion meta-analysis of agreement with BGT by the parents of SHCN children

<table>
<thead>
<tr>
<th>Behavior Guidance Technique</th>
<th>Total of studies</th>
<th>Total of sample</th>
<th>Proportion</th>
<th>CI 95%</th>
<th>p-value</th>
<th>I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tell-show-do</td>
<td>3</td>
<td>454</td>
<td>89.1%</td>
<td>56.1-99.7</td>
<td><0.001</td>
<td>95.7</td>
</tr>
<tr>
<td>Distraction</td>
<td>2</td>
<td>54</td>
<td>83.4%</td>
<td>32.5-98.4</td>
<td><0.001</td>
<td>92.6</td>
</tr>
<tr>
<td>Positive reinforcement</td>
<td>2</td>
<td>54</td>
<td>81.6%</td>
<td>25.9-97.7</td>
<td><0.001</td>
<td>93.8</td>
</tr>
<tr>
<td>Voice control</td>
<td>2</td>
<td>440</td>
<td>73.8%</td>
<td>12.5-98.1</td>
<td><0.001</td>
<td>98.5</td>
</tr>
<tr>
<td>Active protective stabilization</td>
<td>5</td>
<td>748</td>
<td>63.8%</td>
<td>43.9-81.5</td>
<td><0.001</td>
<td>95.7</td>
</tr>
<tr>
<td>Sedation</td>
<td>2</td>
<td>223</td>
<td>58.6%</td>
<td>52.1-65.0</td>
<td>0.871</td>
<td>0</td>
</tr>
<tr>
<td>Passive protective stabilization</td>
<td>3</td>
<td>334</td>
<td>47.2%</td>
<td>33.0-61.6</td>
<td>0.003</td>
<td>82.6</td>
</tr>
<tr>
<td>Nitrous oxide/oxygen inhalation</td>
<td>2</td>
<td>54</td>
<td>40.0%</td>
<td>5.9-81.2</td>
<td>0.003</td>
<td>88.6</td>
</tr>
<tr>
<td>General Anesthesia</td>
<td>3</td>
<td>263</td>
<td>29.0%</td>
<td>11.8-50.0</td>
<td>0.001</td>
<td>84.8</td>
</tr>
</tbody>
</table>