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Abstract: 

Background: In a pandemic, it is important for clinicians to stratify patients and decide who receives 
limited medical resources. In this study, we used automated machine learning (autoML) to develop 
and compare between multiple machine learning (ML) models that predict the chance of patient 
survival from COVID-19 infection and identified the best-performing model. In addition, we 
investigated which biomarkers are the most influential in generating an accurate model. We believe an 
ML model such as this could be a useful tool for clinicians stratifying hospitalized SARS-CoV-2 
patients. 

Methods: The data was retrospectively collected from Clinical Looking Glass (CLG) on all patients 
testing positive for COVID-19 through a nasopharyngeal specimen by real-time RT-PCR and admitted 
between 3/1/2020-7/3/2020 (4376 patients) at our institution. We collected 47 biomarkers from each 
patient within 36 hours before or after the index time: RT-PCR positivity, and tracked whether a 
patient survived or not for one month following this time. We utilized the autoML from H2O.ai, an 
open source package for R language. The autoML generated 20 ML models and ranked them by area 
under the precision-recall curve (AUCPR) on the test set. We selected the best model (model_var_47) 
and chose a threshold probability that maximized F2 score to make a binary classifier: dead or alive. 
Subsequently, we ranked the relative importance of variables that generated model_var_47 and chose 
the 10 most influential variables. Next, we reran the autoML with these 10 variables and likewise 
selected the model with the best AUCPR on the test set (model_var_10). Again, threshold probability 
that maximized F2 score for model_var_10 was chosen to make a binary classifier. We calculated and 
compared the sensitivity, specificity, and positive predicate value (PPV) for model_var_10 and 
model_var_47. 

Results: The best model that autoML generated using all 47 variables was the stacked ensemble 
model of all models (AUCPR = 0.836). The most influential variables were: systolic and diastolic 
blood pressure, age, respiratory rate, pulse oximetry, blood urea nitrogen, lactate dehydrogenase, d-
dimer, troponin, and glucose. When the autoML was retrained with these 10 most important variables, 
it did not significantly affect the performance (AUCPR= 0.828). For the binary classifiers, sensitivity, 
specificity, and PPV of model_var_47 was 83.6%, 87.7%, and 69.8% respectively, while for 
model_var_10 they were 90.9%, 71.1%, and 51.8% respectively.   

Conclusions: By using autoML, we developed high-performing models that predict patient mortality 
from COVID-19 infection. In addition, we identified the most important biomarkers correlated with 
mortality. This ML model can be used as a decision supporting tool for medical practitioners to 
efficiently triage COVID-19 infected patients. From our literature review, this will be the largest 
COVID-19 patient cohort to train ML models and the first to utilize autoML. The COVID-19 survival 
calculator based on this study can be found at https://www.tsubomitech.com/. 
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Introduction: 

On January 30th, 2020, the WHO declared a COVID-19 outbreak which began in Wuhan, China. As of 
August 1st, 2020, the CDC reported more than 4.5 million cases and 150,000 deaths from COVID-19 
in the United States alone [1]. New York City (NYC) became the epicenter in the U.S. with the 
highest case number and deaths per capita [2]. At our institution, between 3/1/2020-7/3/2020, we 
admitted 4375 patients who tested positive for COVID-19 and 1088 patients died within 30 days of 
infection (Figure 1). Many regions worldwide are still fighting the first wave of the pandemic, while 
other areas that reopened are seeing a resurgence of new cases. In such an emergent situation, it is 
important for clinicians to triage patients effectively to maximize limited medical resources. In this 
study, we aimed to find the most important prognostic biomarkers and develop a COVID-19 mortality 
risk assessment tool using automated machine learning (autoML).  

 
Figure 1: Patients admitted due to COVID-19 infection (blue line) and patient death (red line) per day 
from March 1st to July 3rd at our institution. 
 
 
Some of the most frequently reported prognostic indicators in COVID-19 patients include gender, C-
reactive protein (CRP), lactic dehydrogenase (LDH), and lymphocyte count. Other inflammatory 
markers also often appear to be elevated, such as ferritin, inteleukin-6, tumour necrosis factor-alpha, 
and interferon gamma [3-5]. For example, Zhou et al were one of the first groups that showed many 
correlations with specific biomarkers that are predictive of morbidity/mortality in 191 patients from 
Wuhan. They found that older patients with d-dimer levels greater than 1ug/mL, and a higher SOFA 
(Sequential Organ Failure Assessment) score were associated with greater odds of in-hospital death 
[6]. However, many papers that have investigated biomarkers are largely focused on Chinese hospitals 
due to the disease’s initial emergence in Wuhan [7-10]. It is essential to understand the clinical 
characteristics for more recent and diverse cases considering that the virus strain may have mutated 
since its first appearance [11]. 

In recent months, several ML models have been proposed to predict COVID-19 mortality as well as 
disease severity. In many such ML studies, researchers are only training on one kind of ML model 
(XGBoost, Random Forest, etc.) and on relatively small datasets with cohorts mainly from China. In 
addition, many studies evaluated their model performance only on area under the curve (AUC) and 



 

without area under the precision recall curve (AUCPR) [3, 12, 13]. AUC should be used if the 
outcome class (dead or alive) is relatively balanced. If the outcome is skewed, as it is in data showing 
that most people survive COVID-19 infection, a model should be evaluated with AUCPR.  

In our study, we used autoML to generate various machine learning models and automated the 
hyperparameter tuning and optimization. With autoML, we generated various ML models to compare 
and choose the best-performing model based on AUCPR. We also used the F2-score to evaluate the 
binary classifier (dead or alive). Unlike the F1-score, which gives equal weight to positive predictive 
value (PPV) and sensitivity, the F2-score gives more weight to sensitivity and penalizes the model 
more for false negatives than false positives. Furthermore, we ranked the variables by importance to 
understand which variables were the most influential in developing the top-performing models. 

While there are many autoML platforms, we chose to use the open source H2O.ai for its diverse ML 
models in their autoML package [14, 15]. In addition, since the package can be downloaded to a local 
device, one does not have to upload patient data to the cloud, reducing the risk of exposing it to a third 
party. The H2O.ai autoML trains and cross-validates on the following ML algorithms: XGBoost, 
GBM (Gradient Boosting Machine) models, fixed grid of GLMs, a Default Random Forest (DRF), 
five pre-specified H2O GBMs, near-default Deep Neural Net, an Extremely Randomized Forest 
(XRT), random grid of XGBoost GBMs, a random grid of H2O GBMs, random grid of Deep Neural 
Nets, and two Stacked Ensembles - one based on all previously trained models, and another based on 
the best model of each family [15].  

Based on our literature review, this will be the largest COVID-19 patient cohort to train a ML model 
and the first to utilize autoML.  



 

Methods: 

Data collection and analysis was approved by the Albert Einstein College of Medicine Institutional 
Review Board. The data was collected using Clinical Looking Glass (CLG), an interactive software 
application developed at Montefiore Medical Center for the evaluation of health care quality, 
effectiveness, and efficiency. The system integrates clinical and administrative datasets allowing non-
statisticians to build temporally sophisticated cohorts and outcomes [16-19]. 

We queried CLG to find all patients who tested positive for COVID-19 through a nasopharyngeal 
specimen by real-time RT-PCR and admitted at our institution from 3/1/2020 - 7/3/2020 (4376 
patients). The admitted patients tested positive within 24 hours before or after admission. The index 
time is when RT-PCR resulted positive for COVID-19.  

We investigated a total of 47 unique biomarkers after conducting literature reviews, and used the 
earliest biomarker values available within 36 hours before or after the index time. The outcome of 
interest was mortality from any cause at one month from index time. We obtained the cycle threshold 
values (Ct-values) from positive nasopharyngeal specimens collected in accordance with CDC 
guidance. Real-time RT-PCR was performed using the Hologic Panther Fusion SARS-CoV-2 assay. 
The variable NLratio is the ratio between neutrophil and lymphocyte count. 

We used the open source autoML package from H2O.ai for R programming language [14, 15, 20]. For 
the purpose of reproducibility, we excluded deep learning method in this study (discussed more in the 
Discussion section). The autoML is trained on a randomly selected 80% of the dataset (3517 patients, 
training set) with 10-fold cross-validation. We assigned the autoML to generate 20 machine learning 
models and rank them in order of performance by AUCPR on the remaining 20% of the dataset (859 
patients, test set). As mentioned above, we evaluated the models with AUCPR because there are more 
patients in our cohort who survived COVID-19 versus those who died. For convenience, we named 
this best model, generated with 47 variables, “model_var_47.”  

To make a binary classifier—dead or alive within 30 days—we chose a threshold probability that 
maximizes F2 score of the model_var_47. Sensitivity, specificity and PPV were calculated for the 
binary classifier. As mentioned earlier, F2-score was chosen because, unlike the F1 score which gives 
equal weight to precision and sensitivity (or recall), the F2-score gives more weight to sensitivity 
(penalizing the model more for false negatives then false positives). 

In addition, we generated variable importance for the top models and chose the ten variables that had 
the greatest influence in making effective models. Variable importance was determined by calculating 
the relative influence of each variable: whether that variable was selected to split on during the tree 
building process, and how much the squared error (over all trees) improved (decreased) as a result 
[15].  

With the 10 chosen variables, we retained the autoML. Again, we assigned the autoML to generate 20 
machine learning models and rank them in order of AUCPR on the test set. For convenience, we 
named the best model, generated with 10 variables, “model_var_10.” Next, to make a binary classifier, 
we chose a threshold probability that maximizes the F2 score of the model_var_10. Sensitivity, 
specificity, and PPV were calculated for the binary classifier. Comparison was made between 
model_var_45 and model_var10.  

Regarding how autoML handles missing values for each model is explained in the H20.ai 
documentation [15]. 

The workflow of our method is depicted in figure 2. 



 

  
Figure 2: Flowchart summary of our method section.  



 

Results: 

Data summary of cases, survival, and biomarkers are presented in Table 1. 

variable no. variables category n % missing mean sd median 
1 gender   4375         

    Male 2326 0.00       
    Female 2049 0.00       

2 age   4375 0.00 63.20 17.90 65.00 
3 albumin   4060 7.20 3.73 0.55 3.80 
4 systolicBP   4374 0.02 120.00 24.70 122.00 
5 diastolicBP   4374 0.02 67.50 16.60 69.00 
6 cr   4189 4.25 2.02 2.58 1.10 
7 ddimer   2769 36.70 3.97 5.52 1.71 
8 egfr   4173 4.62 63.80 35.90 64.00 
9 eosinophil   4321 1.23 0.04 0.10 0.00 

10 ferritin   2425 44.60 1354.00 2948.00 728.00 
11 fibrinogen   2009 54.10 620.00 202.00 615.00 
12 hgb   4321 1.23 12.60 2.32 12.80 
13 inr   3805 13.00 1.23 0.95 1.10 
14 lymphocyte   4321 1.23 1.36 4.95 1.00 
15 neutrophil   4321 1.23 6.75 4.20 5.70 
16 NLratio   4321 1.23 7.84 8.74 5.67 
17 platelet   4321 1.23 235.00 109.00 215.00 
18 protein   4045 7.54 7.07 0.78 7.10 
19 pulse   4341 0.78 99.40 21.20 99.00 
20 pulseOx   4339 0.82 92.80 8.33 95.00 
21 rr   4341 0.78 21.30 6.11 20.00 
22 temperature   4338 0.85 99.20 1.69 98.80 
23 wbc   4321 1.23 8.87 7.24 7.60 
24 alt   4055 7.31 44.80 116.00 27.00 
25 ast   4145 5.26 0.30 0.56 0.20 
26 bun   4189 4.25 32.50 32.50 20.00 
27 calcium   4296 1.81 8.84 0.76 8.80 
28 chloride   4145 5.26 0.30 0.56 0.20 
29 crp   4145 5.26 0.30 0.56 0.20 
30 interleukin6   4145 5.26 0.30 0.56 0.20 
31 ldh   3230 26.20 455.00 358.00 381.00 
32 mcv   4321 1.23 89.30 7.37 89.50 
33 monocyte   4321 1.23 0.62 1.10 0.50 
34 mpv   4217 3.61 11.00 1.11 10.90 
35 procalcitonin   2128 51.40 2.40 7.68 0.20 
36 rdw   4319 1.28 14.50 2.15 14.00 
37 troponin   3625 17.14 0.06 0.26 0.01 
38 ptt   3392 22.50 35.40 14.60 32.80 



 

39 bmi   4129 5.62 30.30 48.00 28.40 
40 glucose   3736 14.60 188.00 134.00 140.00 
41 direct_bili   4145 5.26 0.30 0.56 0.20 
42 total_bili   4146 5.23 0.60 0.94 0.50 
43 creatine_kinase   3361 23.20 640.00 3098.00 168.00 
44 pro_bnp   2285 47.80 2408.00 4328.00 441.00 
45 potassium   4209 3.79 4.43 0.74 4.30 
46 charlson_score   4375 0.00 2.27 2.34 2.00 
47 ct_value   1097 74.90 27.70 6.20 27.30 

  survival   4375 0.00       
    dead 1088         
    alive 3287         

Table 1: Summary of variables from the cohort. NLratio is the ratio of neutrophil and lymphocyte. The 
ct_value is the cycle threshold from Hologic Panther Fusion SARS-CoV-2 assay. rr: respiratory rate, 
mpv: mean platelet volume, NLratio: neutrophil-lymphocyte ratio.   
 

Model_var_47 Performance: 
The best performing model with 47 variables was Stacked Ensemble of all models with AUCPR = 
0.836. This is our model_var_47. This was followed by Stacked Ensemble of best from each ML 
family (AUCPR = 0.834). After the two Stacked Ensemble models ranked GBM and XGBoost models 
with AUCPR of 0.830 and 0.825, respectively (Table 2).  

rank model_id aucpr auc logloss 
1 StackedEnsemble_AllModels_AutoML_20200816_082220 0.836 0.919 0.300 

2 
StackedEnsemble_BestOfFamily_AutoML_20200816_0822
20 0.834 0.918 0.302 

3 GBM_4_AutoML_20200816_082220 0.830 0.918 0.306 
4 XGBoost_grid__1_AutoML_20200816_082220_model_3 0.825 0.915 0.306 
5 GBM_1_AutoML_20200816_082220 0.820 0.912 0.317 
6 XGBoost_grid__1_AutoML_20200816_082220_model_4 0.819 0.915 0.314 
7 XGBoost_3_AutoML_20200816_082220 0.818 0.913 0.310 
8 GBM_grid__1_AutoML_20200816_082220_model_3 0.817 0.911 0.317 
9 XGBoost_grid__1_AutoML_20200816_082220_model_6 0.817 0.906 0.314 

10 GBM_2_AutoML_20200816_082220 0.817 0.916 0.306 
11 XGBoost_grid__1_AutoML_20200816_082220_model_2 0.813 0.906 0.347 
12 XGBoost_grid__1_AutoML_20200816_082220_model_1 0.813 0.912 0.314 
13 GBM_5_AutoML_20200816_082220 0.812 0.914 0.317 
14 XGBoost_grid__1_AutoML_20200816_082220_model_5 0.809 0.909 0.319 
15 XRT_1_AutoML_20200816_082220 0.807 0.902 0.343 
16 GBM_3_AutoML_20200816_082220 0.807 0.910 0.319 
17 GBM_grid__1_AutoML_20200816_082220_model_2 0.803 0.900 0.338 
18 GBM_grid__1_AutoML_20200816_082220_model_1 0.796 0.902 0.326 
19 DRF_1_AutoML_20200816_082220 0.796 0.892 0.351 
20 XGBoost_2_AutoML_20200816_082220 0.788 0.903 0.328 

Table2: Output of autoML with 47 variables. It is the rank order of models by AUCPR. In addition, it 
is informing AUC and Logloss. 
 
 



 

Max F2-score of our model_var_47 was 0.804 with the threshold probability of 0.215. The binary 
classifier with this threshold had sensitivity, specificity, and PPV of 83.6%, 87.7%, and 69.8%, 
respectively (Table 3).  

                           True outcome 
Prediction dead alive predictive 

values 

dead 183 79 0.698473282 
alive 36 562 0.939799331 
sensitivity/specificity 0.835616438 0.87675507   

Table 3: Confusion matrix of model_var_47. To make a binary classifier, we chose a threshold of 
0.215 that maximized F2 score of 0.804. Sensitivity = 83.6%, specificity = 87.7%, positive predictive 
value = 69.8%, negative predictive value = 94.0%.  
 

Variable Importance Ranking: 
Ensemble Models cannot generate a variable importance ranking. However, we can generate the 
variable importance ranking for the XGBoost and GBM models (Table 4). For both models, age and 
vital signs (blood pressure, pulse Ox, and respiratory rate (RR)) ranked high. In addition, biomarkers 
such as BUN, LDH, D-dimer, creatinine (Cr), EGFR, troponin, pro-BNP, glucose, and procalcitonin 
also appeared high in the rank for many models. To have at least one biomarker for cardiac and renal 
function, we chose troponin and BUN to be included in the 10 variables. Glucose was also chosen for 
its high rank and ease of measuring in clinical setting. Therefore, our chosen 10 variables were: 
systolic and diastolic blood pressure, age, pulse Ox, respiratory rate, LDH, BUN, D-dimer, troponin, 
and glucose. 

GBM 
variable 

rank 
variable percentage 

XGBoost 
variable 

rank 
variable percentage 

1 systolicBP 0.20619550 1 diastolicBP 0.16845995 
2 diastolicBP 0.18020420 2 systolicBP 0.12628881 
3 age 0.06377125 3 age 0.05731054 
4 ldh 0.04358992 4 ldh 0.05570152 
5 pulseOx 0.04028093 5 bun 0.05046364 
6 bun 0.03950635 6 pulseOx 0.04370869 
7 rr 0.03162137 7 rr 0.04043592 
8 pro_bnp 0.02138585 8 creatine_kinase 0.02864474 
9 ddimer 0.02002810 9 troponin 0.02262898 

10 hgb 0.01822092 10 ddimer 0.02177544 
11 platelet 0.01822086 11 fibrinogen 0.02019802 
12 troponin 0.01705258 12 glucose 0.01989828 
13 egfr 0.01579635 13 lymphocyte 0.01983247 
14 fibrinogen 0.01534756 14 mcv 0.01852715 
15 mcv 0.01504536 15 platelet 0.01679427 
16 glucose 0.01447782 16 albumin 0.01610019 
17 procalcitonin 0.01410255 17 procalcitonin 0.01601085 
18 ct_value 0.01404684 18 ct_value 0.01584243 
19 temperature 0.01342299 19 NLratio 0.0158033 



 

20 albumin 0.01325396 20 cr 0.01546503 
21 rdw 0.01208765 21 pro_bnp 0.01545869 
22 NLratio 0.01145223 22 hgb 0.01463397 
23 charlson_score 0.01083647 23 calcium 0.01333433 
24 calcium 0.01051022 24 protein 0.01283554 
25 inr 0.01010361 25 bmi 0.01263931 
26 mpv 0.01005920 26 ptt 0.0118435 
27 neutrophil 0.00991232 27 alt 0.01177228 
28 pulse 0.00987715 28 pulse 0.01162602 
29 potassium 0.00952900 29 ferritin 0.01109278 
30 protein 0.00923330 30 inr 0.01093542 
31 ptt 0.00886313 31 rdw 0.00977237 
32 cr 0.00821586 32 charlson_score 0.00928651 
33 ferritin 0.00766533 33 egfr 0.00895472 
34 bmi 0.00759211 34 neutrophil 0.00854143 
35 total_bili 0.00697387 35 wbc 0.00827249 
36 lymphocyte 0.00667885 36 eosinophil 0.00780552 
37 gender 0.00621582 37 temperature 0.0068122 
38 alt 0.00571864 38 monocyte 0.00538332 
39 monocyte 0.00530855 39 potassium 0.00448006 
40 creatine_kinase 0.00510655 40 mpv 0.00431789 
41 eosinophil 0.00502610 41 gender.F 0.003699 
42 wbc 0.00499654 42 ast 0.0029562 
43 chloride 0.00105657 43 chloride 0.00213093 
44 crp 0.00079217 44 total_bili 0.00152531 
45 ast 0.00028383 45 crp 0.000 
46 interleukin6 0.00025372 46 direct_bili 0.000 
47 direct_bili 0.00008004 47 interleukin6 0.000 

Table 4: Side by side comparison of variable importance ranking between best performed GBM and 
XGBoost model. rr: respiratory rate, mpv: mean platelet volume, NLratio: neutrophil-lymphocyte 
ratio. 
 
 
Model_var_10 Performance: 
Next, we reran the autoML with the chosen 10 variables and ranked the models in order of AUCPR. 
The GBM model performed the best with AUCPR = 0.828. This is our model_var_10. Table 5 shows 
the output from autoML showing the rank order of models by AUCPR.  

rank model_id aucpr auc logloss 
1 GBM_2_AutoML_20200816_084209 0.828 0.911 0.315 
2 GBM_3_AutoML_20200816_084209 0.818 0.908 0.318 
3 StackedEnsemble_BestOfFamily_AutoML_20200816_084209 0.818 0.915 0.313 
4 StackedEnsemble_AllModels_AutoML_20200816_084209 0.818 0.916 0.311 
5 GBM_grid__1_AutoML_20200816_084209_model_3 0.817 0.912 0.313 
6 XGBoost_grid__1_AutoML_20200816_084209_model_1 0.816 0.912 0.311 
7 GBM_grid__1_AutoML_20200816_084209_model_2 0.814 0.906 0.318 



 

8 XGBoost_grid__1_AutoML_20200816_084209_model_5 0.810 0.910 0.321 
9 XGBoost_grid__1_AutoML_20200816_084209_model_6 0.809 0.909 0.316 

10 XGBoost_grid__1_AutoML_20200816_084209_model_4 0.809 0.907 0.319 
11 XGBoost_3_AutoML_20200816_084209 0.808 0.908 0.317 
12 GBM_4_AutoML_20200816_084209 0.807 0.903 0.323 
13 GBM_1_AutoML_20200816_084209 0.804 0.909 0.317 
14 XGBoost_1_AutoML_20200816_084209 0.803 0.904 0.325 
15 GBM_5_AutoML_20200816_084209 0.801 0.912 0.323 
16 DRF_1_AutoML_20200816_084209 0.798 0.904 0.359 
17 XGBoost_grid__1_AutoML_20200816_084209_model_3 0.796 0.904 0.324 
18 GBM_grid__1_AutoML_20200816_084209_model_1 0.792 0.902 0.330 
19 XRT_1_AutoML_20200816_084209 0.790 0.905 0.362 
20 XGBoost_2_AutoML_20200816_084209 0.787 0.896 0.334 

Table 5: Output of autoML with ran with 10 variables. It is showing the rank order of models by 
AUCPR. In addition, it is informing AUC and Logloss. 
 

Max F2-score of our model_var_10 was 0.790 with the threshold probability of 0.151. The binary 
classifier with this threshold had sensitivity, specificity, and positive predictive value of 90.9%, 
71.1%, and 51.8%. (Table 6). 

                           True outcome 
Prediction dead alive predictive 

values 
dead 199 185 0.518229167 
alive 20 456 0.957983193 
  0.908675799 0.711388456   

Table 6: Confusion matrix of model_var_10. To make a binary classifier, we chose a threshold of 
0.151 that maximized F2 score of 0.790. Sensitivity = 90.9%, specificity = 71.1%, positive predictive 
value = 51.8%, negative predictive value = 95.8%.  
 

Figure 3 shows the comparison of model_var_47 and model_var_10 by AUCPR. 

 



 

 
Figure3: Comparing AUCPR of model_var_47 and model_var_10. 
 

  



 

Discussion: 

Principal Results: 
By using autoML, we were able to generate multiple ML models, automate the optimization of 
hyperparameter tuning, and compare models by their performance. In addition, we were able to extract 
the variables that are most predictive of patient mortality.  

The model_var_47 and model_var_10 both predict mortality with high performance using clinical 
measurements collected early within a patient’s hospital admission. When the autoML was retrained 
with the 10 chosen variables, it did not significantly affect the performance of the model. This 
suggests that these biomarkers are essential in gauging patient’s severity from the infection. Our 
models use commonly available laboratory results and do not require imaging results or advanced 
testing. We believe an early and convenient risk assessment of patient mortality can allow physicians 
to triage and prioritize resources in a highly congested medical system. 

Of the models generated by autoML, Stacked Ensemble performed the best with all 47 variables and 
GBM model performed the best with the 10 chosen variables. Deep learning was eliminated in this 
study for the purpose of reproducibility. However, when autoML ran with deep learning, it did not 
perform as well as GBM or XGBoost models. Deep learning’s performance was at best AUCPR of 
0.807 on the test set.  

For both GBM and XGBoost, age and vital signs had significant influence in predicting patient 
mortality. LDH came at the top as the most reliable inflammatory marker. Cardiac (troponin and pro-
BNP) and renal (Cr and EGFR) markers were influential, supporting studies from [21] and [22]. D-
dimer ranked high in many models, which supports studies that found COVID-19 can promote 
coagulopathy [23, 24]. Glucose also ranked relatively high in our models supporting the findings that 
fasting blood glucose, regardless of previous diagnosis of diabetes or not, can be affected from 
COVID-19 infection [25]. Other variables that often came up within top 15 in importance ranking 
were, creatine kinase, fibrinogen, hemoglobin, and platelet. Regarding Ct-value, because it is not 
standardized across RT-PCR platforms, results can not be compared across different assays. In this 
study, we only used one platform (the Hologic Panther Fusion) and therefore there were more missing 
values (74% missing). It requires larger dataset to find if magnitude of a Ct-value have clinical 
implications.  

Some variables, especially in the lower rank, seem to be contributing to the model but it is not clear 
how they are clinically influenced from COVID-19 infection. For example, MCV and calcium level 
(rank 15 and 24 in GBM model) appear to affect the model, but because ML models are a non-linear 
combination of variables, it is difficult to understand how they are contributing and if there is clinical 
significance. Further investigation is needed on how these biomarkers are altered in COVID-19 
infected patients. However, it is interesting to note that ML models can identify these alterations.   

Limitations: 
We recognize there are limitations to our study. Fibrinogen, procalcitonin, and Ct-values were missing 
in more than 50% of our cohort. H2O.ai has internal imputation method to fill in these missing values 
[15]. Our cohort was limited to patients severe enough to be admitted, and findings may not generalize 
to all COVID-19 infected patients. Finally, the nature of training ML models involves randomization. 
In this study, we presented one representative autoML run. To check for consistency, we tested 
multiple random splitting between training and test set and retrained the autoML each time. We found 
that Stacked Ensemble models usually perform the best, followed by GBM and XGBoost. The overall 
performance of each model was minimally altered from the randomization process. Variable ranking 
shifted slightly with each autoML run, especially in the lower-ranking variables. However, the 10 
most important biomarkers we chose consistently ranked at the top.  



 

Future Work: 
We are working towards additional goals to make the model more robust and user friendly for 
clinicians. First, we are in process of gathering data from other institutions and countries to make our 
model more generalizable. We imagine that institutions with many COVID-19 patients can develop 
their own ML models specialized for their population; institutions with minimal COVID-19 cases can 
use a more generalized model trained from a metadata. Second, we are working to implement 
reinforcement learning into our model. Reinforcement learning will allow us to update the model in 
real time as we accumulate more data. This will make the model responsive to a rapidly changing 
environment. Lastly, we are working to open the black box of ML models to understand how they are 
making such highly accurate decisions. For example, we would like to know: what is the cut-off value 
for each variable to be considered important? How are variables related to each other? Deciphering the 
black box of ML models is a research field of its own. However, it will allow us to use the models 
more practically, and possibly provide insight into the mechanism of disease of COVID-19 infection 
[26].  

Conclusion: 
We generated high-performing ML models that predicts mortality of COVID-19 infected patients 
using autoML. We also identified important variables that are strongly associated with patient 
outcomes. This is a proof of concept that autoML is an efficient, effective, and informative method to 
generate ML models and gain insight into the disease process. A model such as this may help 
clinicians triage patients in the current pandemic. 
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