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Multiple, hierarchically organized time series are routinely submitted to
the forecaster upon request to provide estimates of their future values, re-
gardless the level occupied in the hierarchy. In this paper, a novel method for
the prediction of hierarchically structured time series will be presented. The
idea is to enhance the quality of the predictions obtained using a technique
of the type forecast reconciliation, by applying this procedure to a set of op-
timally combined predictions, generated by different statistical models. The
goodness of the proposed method will be evaluated using the official time
series related to the number of people tested positive to the SARS-CoV-2 in
each of the Italian regions, between February 24th 2020 and August 31th

2020.

1. Introduction. In many applications, it is often the case that accurate forecasts are
needed for time series showing an inherent hierarchical structure. For example, in economics
the forecaster is routinely asked to provide separate forecasts for the industrial production
index at the most aggregated level as well as for specific (sub–) classes of economic activi-
ties. The estimation of the future demand of domestic tourism usually follows a geographical
proximity criterion, based on which the related time series are organized (and predicted) ac-
cording to homogeneous groups. Sometimes, emergency situations require close monitoring
of the spread of a disease not only at a national but also at a regional level, e.g. in order to
set up more appropriate countermeasures for elderly and chronically ill people. These are
all cases where a single line of hierarchy generates the overall structure of the data which
therefore is referred to as “hierarchical time series”. The present paper is concerned with
the forecast of such data structures. While on one hand it is always possible to disregard the
underlying hierarchical arrangement and thus carry out the prediction exercise considering
each time series singularly, on the other hand, by doing so, it is very unlikely for the result-
ing higher level forecasts to be equal to the sum of the lower level ones. It goes by itself
that such a situation is not acceptable in many instances, e.g. in the field of official statistics
where aggregation consistency is generally a conditio sine qua non and even slight misalign-
ment need to be dealt with. Therefore, many combination techniques have been designed to
preserve the needed adding-up conditions, by accounting for the position occupied in the hi-
erarchy by each and every time series, regardless their level of (dis–)aggregation. However,
this type of approach – usually referred to as forecast reconciliation – is in general dependent
on the statistical model a priori chosen to carry out the forecasting exercise. Undoubtedly,
this choice might negatively impact the quality of the generated forecasts, e.g. by conveying
not negligible amount of uncertainty into the analysis. This is especially true in the case of
real-life data – where problems, such as small sample size, noise and systematic and/or non
systematic errors – might hinder the choice of the “right” statistical model.

Motivated by this, in the present paper a method built upon the forecast reconciliation
procedure devised by Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., and Shang, H.
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L. (2011) will be presented. In more details, it will be formulated a joint hierarchical fore-
casting system, where an additional optimality condition, derived in a multi-model setup of
the type forecast combination, drives the choice of the “best” statistical model generating the
predicted values. A final step, designed to lower the bias of the selected forecasts, is also part
of the procedure. The main novelty of the method is that the forecast combination is applied
directly on forecasts which have already been reconciled. In essence, it is an optimization
procedure articulated in four steps: one performed at a cross-section level (reconciliation),
two at a cross-model level (forecast combination) and the final one on the chosen prediction
vector, for bias adjustment purposes. Surprisingly, to the best of the author’s knowledge, this
is the first attempt of this sort in the case of cross-sectional hierarchical time series.

The rest of the paper is structured as follows: Section 2 is devoted to the literature review
concerning the two statistical methods the proposed procedure is based on, which will be
detailed in the following Section 3. The proposed method, as well as its justification, will
be respectively illustrated in Section 4 and 5. The following Section 6 will be devoted to
an extensive empirical application, carried out using the official Italian data related to the
SARS-CoV-2 positive cases, which will demonstrate the validity of the proposed approach.
Section ??, containing the conclusions and the future directions of this work, will end the
paper.

2. Literature review. As already mentioned, the proposed procedure is based on two
class of methods, usually referred to as forecast reconciliation and forecast combination. The
former serves the purpose of achieving aggregation consistency of individual, aggregation
inconsistent, forecasts whereas the latter will be employed to combine different reconciled
forecasts, each of them generated according to different statistical models.

A rigorous and theoretically sound investigation on forecasts combination dates back to
the late 60s – with the famous seminal paper by Bates, J. M., and Granger, C. W. (1969).
Here, the Authors showed that the combination of forecasts often leads to a better forecast
accuracy and, by doing so, provided an alternative way to the notion that a “best” method
exists and can be identified. Ever since this paper, the integration of a number of forecasts,
independently estimated on a single time series, has attracted a great deal of research interest
and, as a result, a vast literature is today available. Much of it is aimed at presenting empir-
ical applications documenting the appealing features of this approach, which in many cases
can improve even upon the best individual forecast, in terms of forecast risk, forecast error
variance and consistency between in-sample and out-of-sample error distributions, as pointed
out by Barrow, D. K., and Kourentzes, N. (2016). This can happen for a variety of reasons,
many of them related to the fact that the choice of the “right” model, in general, implies the
injection of not negligible amounts of uncertainty into the analysis (Chambers, J. C., Mullick,
S. K., and Smith, D. D. (1971) and Chatfield, C. (1996). In the same line of thinking, many
Authors, see for example Makridakis, S. (1989), Stock, J. H., and Watson, M. W (2001) and
Stock, J. H., and Watson, M. W. (2004), emphasize the dangers related to misspecification

errors, which, on the other hand, can be mitigated by combining the forecasts yielded by a
number of models. In support of this argument, there are a number of studies where it is
shown that it is very unlikely, using a well calibrated portfolio of models, that one of them
consistently dominates the others across the whole prediction window. Such an argument is
consistent with the view that the “true” underlying data generating process is, saved for trivial
or lab controlled cases, way too complicated to be adequately captured by a single model.
This is the position, for example, of Buckland, S. T., Burnham, K. P., and Augustin, N. H.
(1997), according to whom the data can never support, and we can never identify, the “true”
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FOREASTING HIERARCHICAL TIME SERIES 3

model. Therefore, the selection of a statistical model is more realistically the process of iden-
tifying the best approximating one. Once defined models as approximations, the concept of
the identification of the “true” one ceases to be decisive in favor of approaches pursuing, in
the first place, the goal of achieving good forecasting performances.

Many practical uses of forecasts combination are discussed in the excellent work of
Clemen, R. T. (1989), where the Author covers a wide spectrum of applications, ranging
from economics, demography and politics to meteorology and outcomes of football games.
In the same spirit is the more recent paper by Mancuso, A. C. B., and Werner, L. (2013),
which presents a classification of 174 articles focusing on forecast combination. In particular,
new applications are reported from different sectors, such as commercial, tourism, urban traf-
fic, betting market and propagation of successful innovations. The analysis of the outcomes
of the M3 forecast competition, discussed in Makridakis, S., and Hibon, M. (2000), goes
in favor of the forecast combination approach, which on average proved to outperform the
methods individually applied. Same conclusion applies to the more recent M4 forecast com-
petition, discussed in Mancuso, A. C. B., and Werner, L. (2020), where 12 out of a group of
17 most accurate methods are based on the combination of forecasts. Other considerations in
favor of this approach are more closely related to the features of the time series under inves-
tigation. For instance, in many real-life cases they are affected by structural breaks, induced
by a variety of factors whose real-time detection is generally difficult to achieve. However,
in a multi–model setup it is not unreasonable to have models showing different degrees of
ability in handling such events. Such a situation can translate into gains in terms of forecast
accuracy, as it has been argued not only since the very beginning, in the above mentioned
paper by Bates and Granger, but also in more recent times, by, among others, Clements, M.
P., and Hendry, D. F. (2002), Sessions, D. N., and Chatterjee, S. (1989) and Makridakis,
S. (1989). All these Authors concur on the premise that, on average, combining the forecasts
yielded by models with different reaction times to a given intervention – and thus requiring
stretches of post-break data of different length – can do a better job than individual models.
For what said, it comes at no surprise that such appealing results might lead to a change in
the perspective many researchers and practitioners look at the forecasting methods, i.e. from
model selection – based on the assumption of the existence of one, “true” data generating
process – to model averaging.

When the data set under investigation show a hierarchical structure, forecast combination
techniques (but this holds true for any univariate forecasting procedure) are insensitive to the
level of aggregation at which they are applied. Consistently, in such cases, the independent
forecasting of the component time series is always possible, even if not advisable, due to the
very likely lack of consistency occurring between the sum of the predictions generated at
one level with those available at the level above. But this is not the whole story: by applying
forecasting procedures at the components level, rather than limit them to the most aggregate
one, it is possible to adequately capture the data covariance structure and thus achieve not
negligible gains in terms of quality of the predictions. This fact has been pointed out, inter
alia, by Fair, R. C., and Shiller, R. J. (1990), Marcellino, M., Stock, J. H., and Watson,
M. W. (2003) and Hubrich, K. (2005). Their conclusions are related to two of the most
traditional approaches, usually referred to as Top-Down and Bottom-Up (see, for example,
Schwarzkopf, A. B., Tersine, R. J., and Morris, J. S. (1988), Lapide, L. (2006) and Athana-
sopoulos, G., Ahmed, R. A., and Hyndman, R. J. (2009)). While the former envisions a
two-step procedure – i.e. the forecasting is first performed at the top level and then, by disag-
gregating these data based on the historical percentage of each data point, within the whole
group – in the latter each and every time series is first individually predicted and then all the
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forecasts are summed up. There is another approach which has gained widespread acceptance
over the years, known as “middle-out”. It can be considered an extension of the top-down ap-
proach, since the forecast is first generated at two separate levels (upper and lower) and then
combined in a proprietary manner to form a composite forecast. It is worth outlining how all
of these methods can be considered sub-optimal insofar they neglect the correlation struc-
ture existing among the series belonging to the same level. Finally, a more recent approach
known as optimal combination, envisions a two-step procedure where first the sequential and
exhaustive forecast of each and every time series is independently performed and then – by
optimally combining the predicted values obtained – are aggregated to achieve consistency
across the hierarchical levels (reconciliation). Theoretically, cross-level coherency can be at-
tained by means of Generalized Least Square (GLS) whose employment, however, turns out
to be unfeasible due to the unidentifiability of the covariance matrix of the reconciliation
errors ( Wickramasuriya, S. L., Athanasopoulos, G., and Hyndman, R. J. (2019)). However,
other methods, e.g. of the type OLS (Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G.,
and Shang, H. L. (2011)) or WLS ( Hyndman, R. J., Lee, A. J., and Wang, E. (2016)) can
be used to circumvent this hurdle.

The method proposed in the present paper is of the type mixed, in the sense that exploits
the approaches related to both forecasts reconciliation and forecasts combination. It is noted
how mixed methods of this sort are not often encountered in literature. Such a situation might
be due to the relatively recent introduction of reconciliation methods capable, unlike more
traditional procedures, of accounting for the correlation structures among the series within
a given hierarchical level, and thus able to deliver better performances. On the other hand,
the need of a unified framework combining these two approaches has been recently brought
up by Di Fonzo, T., and Girolimetto, D. (2020), which discussed an ad hoc, bi-dimensional
(cross-sectional and temporal) procedure built upon a recent proposal by Wickramasuriya,
S. L., Athanasopoulos, G., and Hyndman, R. J. (2019). Their method employs all the sum-
mation constraints arising in the cross-temporal hierarchic structure to reconciliate the base
forecasts, using simple projections in a suitable linear space. On the other hand, the recent
proposal by Spiliotis, E., Petropoulos, F., and Assimakopoulos, V. (2019) envisions a com-
mon framework where both forecast reconciliation and combination of forecasts generated
by multiple models work together. Their method arises from the consideration that base fore-
casts should not be derived from a single method but a combination of methods. In the same
direction goes the early work by Van Erven, T., and Cugliari, J. (2015), where both combi-
nation and reconciliation of the forecasts are applied in a two-step procedure, i.e. “first one
comes up with the best possible forecasts for the time series without worrying about aggrega-
tion consistency and then a reconciliation procedure is used to make the forecasts aggregate
consistent”. As it will be seen, the procedure illustrated in the present paper significantly dif-
fers from the above mentioned ones, in that different base forecasts are generated according
to an arbitrary, pre-specified portfolio of statistical models, so that the combination exercise
is performed on a set of already reconciled forecasts. Finally, while these authors focus on
temporal aggregation this paper considers cross-sectional aggregations.

3. The framework . In this Section, an explanation of the framework within which the
proposed method operates is given. In particular, the hierarchy structure of reference along
with the employed reconciliation method are illustrated. The forecast combination part will
be explained using two real-life examples of portfolios – which will be both used in the
empirical Section – related to the statistical prediction models and the forecast combination
techniques entertained.
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FOREASTING HIERARCHICAL TIME SERIES 5

3.1. Hierarchical cross-sectional reconciliation: the chosen method. This paper focuses
on structures of the type summation constrained, in the sense that the underlying hierarchic
structure of a given m−dimensional time series xt, arises by summing up the bottom-level
series into the higher ones. Figure 1 is an example of such a structure, under the condition
that the constraints xt = xa,t+xb,t, xa,t = xaa,t+xab,t+xac,t and xb,t = xba,t+xbb,t are all
satisfied.

xt

xb,t

xbb,txba,t

xa,t

xac,txab,txaa,t

Fig. 1: A two-level hierarchical structure

Formally, we have that the observed data xt – as well as their estimated future values, de-
fined as xh; h= 1,2, . . . ,H , with H the prediction horizon – lie in the summation-coherent
subspace {U} ; ∀t = 1,2, . . . , T and ∀h = 1,2, . . . ,H . The prediction step subscript h has
been omitted in Figure 1, for the sake of a better readability. In total, this hierarchy con-
tains m = 8 time series, n = 5 of which are the lowest level time series, which therefore
constitute the highest level of disaggregation. The observed series xt ∈ Rm can be broken
down as follows: xt = [uTt ,b

T
t ]
T , where bTt ∈ Rn and uTt ∈ Rm−n respectively contain the

data pertaining to the bottom and upper series. Therefore, according this representation, the
structure of Figure 1 (omitting the subscript t) can be broken down as follows: [uTt ,b

T
t ]
T ≡

[x,xa, xb, xaa, xab, xac, xba, xbb]
T ,uTt ≡ [xa, xb]

T and bTt ≡ [xaa, xab, xac, xba, xbb]
T . The hi-

erarchic structure – satisfying x⊂ {U} – is induced by the summing matrix S of dimension
m× n such that x= Sbt. Formally: x⊂ {U} ⇐⇒ xt = Sbt (the symbol ⇐⇒ replacing
the locution “in and only if”). The S matrix for the hierarchy in Figure 1 is as follows:

S =



1 1 1 1 1
1 1 0 0 0
0 0 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Using the symbols ˜ and ˆ respectively to refer to the case of coherent and base

(generally non coherent) forecasts, the reconciliated forecast h− step ahead can be expressed
as proposed by Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., and Shang, H. L. (2011),
i.e.

x̃(h) =SP x̂(h), (1)

for some appropriately chosen matrix P ∈ Rm×n. Assuming unbiased base forecasts, the
best (in the sense of minimum sum of variances) linear unbiased revised forecasts are given
by Equation 1 with

P = (S′W−1S)−1S′W−1 (2)
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and thus (see Taieb, S. B., Taylor, J. W., andHyndman, R. J. (2017), Theorem 1)

x̃(h) =S(S′W−1S)−1S′W−1x̂(h), (3)

where S is as above defined and x̂(h) and x̃(h); h = 1,2, . . . ,H represent respectively
the set of H predictions independently generated and the ones made coherent. Finally, W is
the positive definite covariance matrix of the base forecast errors, i.e. êt(h) = x̂t(h)−xt(h),
so that W (h) = E[êt(h)− ê′t(h)]. As shown by Wickramasuriya, S. L., Athanasopoulos,
G., and Hyndman, R. J. (2019), matrix W appears in the equation for the estimation of the
error variance of the reconciled forecasts, i.e.

V (h) = V ar[x(T + h)− x̃(h)] =SPW (h)P ′S ′, (4)

whose diagonal elements are the variances of the forecast errors. Their minimization can
thus be performed in terms of the trace of V (h) and given by Equation 2 (therefore, this
method is called Minimum Trace Estimator). Unfortunately, as proved by the same Authors,
W is not identifiable, therefore, in the empirical section, the workaround proposed by them
will be adopted. In essence, it is assumed Wh = k(h)diagŴ1; ∀h and assuming k(h) > 0
and denoting with W1 the forecast errors covariance matrix estimated at horizon h= 1 – i.e.
Ŵ1 =

1
T

∑T
1 ete

′
t – and with K is an unknown constant depending on the time horizon h.

3.2. The Forecast combination methods adopted. As already mentioned, the proposed
method uses a set of combination methods, out of which the winner is selected according to
a suitable loss function. In many empirical studies, it is shown how forecast combinations on
average delivers better performances than methods based on a single forecasting statistical
models. The theoretical validity of this approach is rooted in the assumption that the dimen-
sion of the sample sizes available in real-life applications are usually finite and, as a result,
the correct specification of the “true” underlying data generation process is not attainable.

In what follows it is assumed xt to be the variable of interest and that ft = (f1t, f2t, . . . , fNt)
′

are the N , not perfectly collinear, available forecasts, whose combination is expressed as
f =

∑N
i=1wifit, or, equivalently, f = f ′tw , being w’s the combination weights.

The first method considered in this paper is of the type simple average. Despite its inherent
simplicity (it ignores the correlation structure of the forecast errors) this method has been
adopted given its ability, proved true in many cases, to “dominate more refined combination
schemes aimed at estimating the theoretically optimal combination weights” (Atiya, A. F.
(2020)). The simple average assigns equal weights to all predictors, i.e. wsa = 1

N and thus
the combined forecast is

f = f ′tw
sa.

In the second method chosen, the forecast combination weights wols = (w1,w2, . . . ,wn),
along with the intercept b, are computed using ordinary least squares (OLS) regression
(Granger, C. W., and Ramanathan, R. (1984)), i.e.

f = b+ f ′tw
ols. (5)

The third method applied – of the type Least Absolute Deviation (LAD) – is a modification
of the OLS method, and it is expressed as in Equation 5, replacing the superscript ols with
lad. Since the method of least squares assigns heavy weights on the error terms,the more
robust estimator LAD – suggested by Gauss and Laplace – minimizes the absolute values
and not the squared values of the error term. This features is particularly useful when the
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FOREASTING HIERARCHICAL TIME SERIES 7

error term is generated by distributions having a infinite variance (fat tails) caused by outliers
in the disturbance term.

Finally, a modification of the method proposed by Newbold, P., and Granger, C. W. (1974),
built upon an earlier methodology of Bates, J. M., and Granger, C. W. (1969), is our fourth
approach. Let

∑
be the positive definite matrix of the mean squared prediction errors (MSPE)

of ft and g is an N ×1 vector of (1,1, . . . ,1)′ their method relies on a constrained minimiza-
tion of the MSPE under the normalizing condition g′w = 1. The resulting combination of
weights is

wng =

∑−1 g
g′
∑−1 g ,

so that the combined forecast is

f = f ′tw
ng. (6)

However, unlike the original method, the variant employed here follows the proposal by
Hsiao, C., and Wan, S. K. (2014), which does not impose the prior restriction that the matrix∑

is diagonal.

3.3. The entertained statistical models. Before delving into the proposed method, a
quick presentation of the forecasting methods employed in the empirical section is in order.
The first two statistical models considered are of the type ARIMA (Auto Regressive Frac-
tional Moving Average) ( Box, G. E., Jenkins, G. M., and Reinsel, G. (1970)) andARFIMA
(Auto Regressive Fractional Moving Average) (Granger, C. W., and Ramanathan, R. (1984)
and Granger, C. W., and Joyeux, R. (1980)). Being the latter a generalization of the former,
the two models will be presented conjointly.

ARFIMA (Auto Regressive Fractional Moving Average) models are useful in circum-
stances where the underlying stochastic process exhibits hyperbolic decay patterns in their
estimated autocorrelation function. ARFIMA-type processes are usually expressed as fol-
lows:

Φ(B)(1−B)dxt = Θ(B)εt; εt ∼ i.i.d.(0, σ2),

where d is a parameter – assumed to take non-integer values in the difference operator
(1 − B)d, with B identifying the backward operator, that is Bkxt = xt−k. The fractional
differencing operator is defined by the binomial expansion (1 − B)d =

∑∞
0

(
d
i

)
(−B)i.

The process is stationary and invertible if the roots of the autoregressive polynomial of
order p, Φ(B) = 1 − φ1B − φ2B

2, . . . ,−φpBp, and the order q moving-average part,
Θ(B) = 1+ θ1B + θ2B

2 + · · ·+ θqB
q , lie outside the unit circle with |d|< 0.5.

ARFIMA models generalize the ARIMA(p,d,q) representation where the parameter d is
constrained to integer values. This type of model has been designed to capture approximately
parabolic decay patterns of the empirical autocorrelation function. As such, they are suitable
to model persistence structures embedded in the underlying stochastic process of the type
short-memory.

Theta method – the third forecasting model considered – is a powerful class of models
which have been proposed by Assimakopoulos, V., and Nikolopoulos, K. (2000). Define
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with the symbol ∇ the difference operator – i.e. ∇xt = xt − xt−1, xt being the original time
series – this method is the solution of the equation

∇2zt(θ) = θ∇2xt; t= 3,4, . . . , n, (7)

with zt(θ)’s analytical solution reading as following: zt(θ)θxt + (1− θ)(An +Bnt); t=
1,2, . . . , n, where An and Bn are the minimum square coefficient of a linear regression equa-
tion of the series xt against 1n, i.e. the vector of ones of length n. These terms are given by
An =

1
N

∑n
t=1 xt−

n+1
2 Bn andBn = 6

n2−1

[
2
N

∑N
t=1 xtt−

1+n
n

∑N
t=1 xt

]
. Finally, the initial

values z1 and z2 in Equation 7 are estimated by minimization of
∑n

t=1(|xt − zt(θ)|2).

The fourth and last model employed is of the type exponential smoothing, proposed in
1944 by Robert G. Brown, a US Navy operations research analyst ( Gardner Jr, E. S. (2006)).
Specifically, two schemes have been employed here: Additive Holt Error Model ( AEM )
and multiplicative Holt Error Model (MEM ) (as it will be seen, the procedure automatically
will select the “best” one). As for the AEM , let µt = x̂t = lt−1 + bt−1 be the one-step
ahead forecast of the observed time series xt generated by the forecasting equation xt =
lt−1 + bt−1 + εt, being lt a measure of the level of the series, bt an estimate of the slope (or
growth) at time t and εt = xt − µt the one-step-ahead forecast error, referred to the time t.
The level and slope equations for AEM are respectively represented as

lt = lt−1 + bt−1 + αεt

bt = bt−1 + β(lt + lt−1 − bt−1) = bt−1 + αβεt.

By re-expressing the error term εt as εt =
(xt−µt)
µt

(relative errors), the forecast, level and
slope equations for the MAM model are as follows:

lt = (lt−1 + bt−1)(1 + αεt)

bt = bt−1 + β(lt− 1 + bt−1)εt.

In the above two sets of equations α and β are the model parameters to be estimated.

4. The proposed method. Let us indicate with the symbolsR and | · | respectively a suit-
able reconciliation method and the cardinality function (assuming the number of elements in
a given set to be finite, | · | simply returns the number of the elements belonging to that set).
Let the symbol ncol identify the function which, applied to a given matrix, returns its num-
ber of columns and M≡ {µ1, µ2, . . . , µM} and D ≡ {δ1, δ2, . . . , δD} respectively the set of
|M| =M prediction models and the set |D| = D of forecast combination methods enter-
tained, both arbitrarily chosen. Once applied to the time series of interest xt; t= 1,2, . . . , T ,
each model {µj ∈M; j = 1,2, . . .M} generates a set, called FH , made up with M H–step
ahead predictions, i.e.: {FH(µj); j = 1,2, . . .M}. Each of the elements of this set is a base
forecasts, in the sense that it is generated by individually applying a given statistical model
µj to the observed time series without any attempt of reconciliation.

Each of these M elements in F (the M forecast vectors) is individually reconciled
through the reconciliation procedure R, i.e. {R(F(µj); j = 1,2, . . .M)} (the superscript
h is omitted for brevity). At this point, the resulting set {P(µj); j = 1,2, . . .M} of M
model–dependent reconciled forecasts (first optimization) is optimally combined by apply-
ing each method in the set D to any possible combination (without repetition) of order
{k = 1,2, . . . ,M} to the set P (second optimization). The resulting set Z – with cardi-
nality (|D| ∗

∑|P|
k=1

(
M
k

)
) – contains all the possible combinations – ∀k-order – of the model-

dependent reconciled forecasts. The third optimization step is carried out by applying to Z
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FOREASTING HIERARCHICAL TIME SERIES 9

a suitable loss function, here denoted with the symbol L(·). The optimal vector of forecasts
is thus the element z∗ ∈ Z minimizing this function, i.e. z∗ = minL(Z). This optimality
condition is expressed as

z∗ = f(µ∗, δ∗), (8)

being the arguments of f respectively the “best” forecasting model and forecast combination
technique. This last step, by ruling out the less performing combination method(s), has been
introduced in order to reduce the overall uncertainty level of the analysis. In fact, suppose
that the original set D reduces to D′ – being clearly |D′| < |D| – the additional amounts
of undesired fluctuations and noise – which one can reasonably expect as a consequence
of the employment of one (more) under-performing combination method(s) – are avoided.
Finally, the model bias β∗ is empirically estimated using the in–sample residuals generated
by employing the winners techniques µ∗ and δ∗, according to an optimal choice made on a
set of suitable central tendency functions (fourth optimization).

For the sake of clarity, a more schematic description of the method is given below, in the
form of algorithm presented in a step-by-step fashion.

Figure 1 Algorithm of the proposed method

1

Let xt; t ∈ T be the time series
of interest of length T , define a
suitable portfolio of forecasting

models M ≡ {µ1, . . . , µM}

2
Define the portfolio of
forecast combination

methodsD ≡ {δ1, . . . , δD}

3 Define the Recon-
ciliation method R

4
The M H–step ahead
base forecasts x̂H

j,t =

FH(µj);∀j ∈M are generated

5

Reconciliation procedure R is
applied to FH(µj) ∀j, s.t. the

set P of the reconcilied forecasts
of cardinality |P | is generated

6

All the forecast combination pro-
cedures (set D) are exhaustively
applied to all the possible combi-
nations of order {k = 1, . . . , |P |},

so that the set Z with cardi-
nality (|D| ∗

∑|P|
k=1

(|P|
k

)
) of

reconcilied forecasts is built

7

A suitable loss function L(·)
is applied to Z so that the

winner forecast element
z∗ ∈ Z is extracted. In

symbols z∗ = minL(Z)

8

The forecasting model µ∗ and
the combination method δ∗

generating z∗ are extracted and
employed to compute the in

sample estimate of the bias β∗

The novelty of the proposed method is basically captured by steps 5–7 and 8. For the sake
of a more operational comprehension, step 5–7 are now discussed using the matrix notation
whereas step 8 will be detailed in Subsection 4.1. Step 5 indicates that once a number M of
different forecasts, generated by M models, become available for each level of the hierarchy,
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they are reconcilied one at a time through R. In practice, the reconciliation function R,
applied to the given hierarchic structure, generates a sequence of H× 1 vectors of reconciled
predictions pHj , as below schematized.

Figure 2 Illustration of the procedure to obtain the vectors of reconcilied forecasts

µ1 ⊂M FH(µ1) R(FH(µ1)) = pH
1

µj ⊂M Fh(µj) R(Fh(µj)) = ph
j

µM ⊂M Fh(µM ) R(Fh(µM )) = ph
M

Each vector pH,j can be seen as the column of a matrix, say PH,M , containing all the M
model-dependent reconcilied forecasts. In the following step 6, these M (column)-vectors
of predictions are combined according to a number D of different combination methods
(δ1, . . . , δD). In essence, they are sequencially and exhaustively applied to each of the possible
combinations of order {k = 1, . . . ,ncol(P )} of the column vectors of PH,M . Defining the
combination (without repetition) function with Ck and setting, for instance, the combination
order k = k0 <M , the submatrix Pk0

H,M = Ck0(PH,M ) stores all the
(
M
k0

)
combinations of

the forecasts pHj ; j = 1, . . . ,ncol(Pk0
H,M ), called zHj , as illustrated in the Figure below.

Figure 3 Illustration of the procedure to obtain the vectors of model dependent reconcilied forecasts

δ1P
k
H,M = zH1

δjP
k
H,M = zHj

δDPk
H,M = zHncol(P k

H,M )

By looping over all of the combination orders k = 1, . . . ,ncol(PH,M ), the matrix Z con-
taining all the possible combination of the M model dependent reconcilied forecasts is ob-
tained. This matrix is called Z and has dimensions

H ×D ∗ ncol(PH,M ). (9)

Step 7 translate into simply applying a suitable loss function to Z (column-wise), until the
final vector of predictions z∗, verifying the minimum condition minL(Z), is extracted.

4.1. The bias correction procedure (step 8). It is well known that a perfectly unbiased
forecast is a condition not frequently met in many real-life applications. Unfortunately, the
unbiasedness of the forecasts reconciliation method chosen (Equation 2), depends on the
unbiasedness of each and every base forecasts, as proved by Wickramasuriya, S. L., Athana-
sopoulos, G., and Hyndman, R. J. (2019). The proposed method can alleviate this problem
as it is designed to generate a “big” competition set (Z), made up with more “balanced”
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FOREASTING HIERARCHICAL TIME SERIES 11

forecasts (thanks to the forecast combinations techniques applied) and thus more likely to
perform better than methods generating fewer or just one forecast vector.

The bias correction of the forecast values stored in the vector z∗ – obtained in step 7 of
Figure 1 – is performed using an improved version of the simple, yet effective, procedure dis-
cussed in Spiliotis, E., Petropoulos, F., and Assimakopoulos, V. (2019). In more details, the
adopted method translates into a six–step iterative procedure, designed to empirically esti-
mate a set of in-sample tentative biases {β ≡ β1, β2, . . . , βB}, each of them obtained accord-
ing to a predefined, arbitrary set of suitable central tendency functions {a1, a2, . . . , aA ⊂A},
being |β|= |A| (or, equivalently, B =A).

Recalling that xt is the observed time series, let us denote with x̂∗t = f(µ∗, δ∗) its one-
step-ahead predictions – obtained according to the optimal forecasting model and prediction
combination method (see Equation 8) – and with εt|βj the vector of residuals between these
two series conditional to a given central tendency function, i.e. εt|βj = xt − x̂∗t |βj(αj). In
what follows, the term αj is omitted as it is understood the dependency relationship between
bias and central tendency function, i.e. bias = βj(αj). The set β is thus generated by itera-
tively and exhaustively applying each function in A to the bias adjusting equations which,
once expressed in terms of residuals, read as follows:

βjεt = xt − x̂∗t |βj ; j = 1,2, . . . ,B, (10)

βjηt =
xt
x̂∗t |βj

; j = 1,2, . . . ,B. (11)

Equations 10 – 11 differ only for that the one-step ahead predictions are respectively adjusted
additively and multiplicatively. Finally, by applying a suitable loss function, E(·) to each of
the vectors βjεt and βjηt, the optimal bias estimation is its minimzer, i.e.

β∗ =min
E

(βjεt;
βj η); j = 1,2, . . . ,B. (12)

Once the final bias is computed, it can be readily applied in a forward looking fashion, i.e.

ayt,H = z∗,H + β∗(xt − z∗t ) (13)

or
myt,H = z∗,H ∗ β∗

xt
z∗t
, (14)

according to whether the winner central tendency function is applied in an additive (Equation
13 ) or multiplicative fashion (Equation 14). The generilzed notations for the first term in
Equations 4.1 and 4.1 is

uyt,H , (15)

which represent the final predictor. In such an approach, the future and the past are assumed
to be affected by the same amount of bias. Such an assumption, under stationaity of the
observed time series and a “sufficient” sample size, might not be considered unreasonable.

In the case of {β ≡ β1} with β1 the mean function, Equations 13–14 are respectively as
follows:

ayt,H = z∗t,H +
1

T

T∑
t=1

(xt − z∗t )
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or

myt,H = z∗t,H ∗
1

T

T∑
t=1

xt
z∗t
,

and thus equivalent (saved for the notation) to the procedure discussed in Spiliotis, E.,
Petropoulos, F., and Assimakopoulos, V. (2019) (Equations 3–4), page 21.

In the empirical application of Section 6, the central tendency functions applied are: mean,
median and root mean square, respectively denoted by the lowercase Greek letters π, τ and
ξ. Their mathematical representations is as follows:

π(·) = 1

T

T∑
t=1

xt, τ(·) = 1

2
x(b T+1)/2c+ x⌈

(T+1)/2
⌉, ξ(·) = 1

T

√√√√ T∑
t=1

x2t . (16)

In the case of the median (τ(·)) x is an ordered list of T values, and the symbols b·c
⌈
·
⌉

denote the floor and ceiling functions, respectively.

5. Justification of the method. The effectiveness of the proposed method is, in general,
conditioned to the choices of the statistical prediction models and the forecast combination
techniques included in the sets M and D, as well as to the selection of the most suitable cen-
tral tendency functions (the set A). A careful building of those sets (our multidimensional
search space), is a prerequisite for the proposed method to properly perform. Its final dimen-
sions are as in Expression 9 plus twice the number of central density functions considered,
used in both additive and multiplicative fashion, i.e.

H × [2 ∗ |A|+D ∗ ncol(PH,M )] .

The point of strength of the method is thus related to the availability of a potentially large
number of multiple choices, all of them derived in a multiple combination set-up (in terms
of statistical prediction model, forecast combination and bias correction), so that the selected
forecast vector are the minimizer of a bi-dimensional loss function (L,E). In addition, the
method is very flexible, as it can work with all the methods deemed suitable for the problem at
hand, being the only limit the computational time. This is certainly an issue, which, however,
can be easily circumvented thanks to the structure of the method itself, which is naturally
prone to be parallelized.

According to the bias–variance decomposition approach, the mean square error (MSE)
can be decomposed into a bias β and a variance (V ) terms, i.e.

MSE = β2 + V (17)

In what follows, the advantages related to the proposed method will be illustrated in terms of
Equation 17. Firstly, it is noted how, in general, simpler models tend to produce large biases
and small variances whereas complex models behave in the opposite way. The proposed
method is designed to overcome such an issue not only because it can employ a combination
of several models with different levels of complexity but also because it selects the “best”
combination technique (stored in the set D) according to the data set under investigation.
This last feature is clearly a plus, since there is not such combination techniques able to
perform optimally in any circumstances. For example, Palm, F. C., and Zellner, A. (1992)
found that there are cases where a simple average combination may be more robust than
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FOREASTING HIERARCHICAL TIME SERIES 13

weighted average combinations. Therefore, by iteratively testing many different techniques,
one is more likely to find the most suitable (if not the “optimal”) one.

Bias-wise, the advantages of this method are related to its self-balancing and self-adjusting
features, the former being induced by the bias compensation phenomenon, more likely to
occur in a multi-model set up, whereas the latter relies on the bias correction procedure,
given in Section 4.1. In particular, its effectiveness in bias reduction is related to the fact that
the self-adjustment procedure uses a vector of forecast which, by design, has already been
controlled for bias. To see this, let us express the generic forecast combination x̃Ht as

x̃Ht =

M∑
i=1

wiFH(µi),

with wi = f(δ̃) the combination weights generated by the combination method δ̃ and
FH(µj); j = 1, . . . ,M are base forecasts generated by the M statistical models entertained
(see Figure 1 step 1 and 4). Assuming 0≤ wj ≤ 1,

∑M
i=1wi = 1 and the vector of “future”

observations of length H to be known, the total amount of bias of the combined forecast is
given by

β = E(x̃Ht −xHt )

=

M∑
i=1

wi[Ex̃
H
t,i −ExHt ]

=

M∑
i=1

wiβi, (18)

where the subscript i is used to refer to a specific model, in terms of generated bias (βi) and
forecast ( x̃Ht,i). The right term of Equation 18 shows that the bias of the forecast combina-
tion is the weighted average of the biases of the base forecasts and thus, provided that their
magnitude is comparable, one can reasonably expect an overall bias reduction due to cancel-
lation effects. Such a phenomenon is not rare, since – in general – it is not common for all
the biases to show the same sign. Since the bias-correcting method – discussed in Section
4.1 – is applied on an already optimally combined vector of forecasts z∗t = xt(δ

∗, µ∗), a less
pronounced bias can be expected in the final predictions, given by

uyt,H = z∗t,H +β∗(xt − z∗t ), (19)

where β∗ is as in Equation 12.

The proposed method can also help keep low the variance of the forecasts in an amount
inversely proportional to the correlation coefficients computed between the competing fore-
casts and proportional to the reduction in the standard errors induced by the reconciliation
procedure adopted R. To see this, denoting with σ2i the variance of the individual forecast i
and with γi,j the correlation coefficient computed on a generic pair (i, j) of forecasts, we use
the following inequality (derived in Atiya, A. F. (2020)), i.e.

V ≤
N∑
i=1

wiσ
2
i − 2

N∑
i=1

N∑
j=i+1

wiwj(1− γi,j)σiσj , (20)

where V is the variance of the combination of forecasts. Inequality 20 states that V tends to be
considerably less than the average of the individual forecasts in an amount depending on 1

γi,j
,
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meaning that less correlated forecasts are beneficial in terms of variance reduction. Such a
situation is more likely to occur in procedures which, as the one proposed, grant a “sufficient”
number of predictions. However, there is another point in favor of the proposed method on
this matter. In fact, recalling that the different combinations of the forecasts are performed
on already reconciled vectors of predictions zHt – according to the adopted procedureR – by
virtue of Equation 4 their variances obey to the following inequality:

V ar(zHt ) < V ar(xHt );∀z ∈Z. (21)

Therefore, the overall level of variance in Equation 20 decreases of an amount inversely
proportional to V ar(zHt ).

6. Empirical study. In this section the goodness of the proposed method will be evalu-
ated using the official time series related to the number of people tested positive to the SARS-
CoV-2 in each of the Italian regions, between February 24th 2020 and October 7th 2020. The
whole data set – issued by the Italian National Institute of Health – are publicly and freely
available at the web address https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni.
The data, sampled at a daily frequency, are stored in a matrix called O (see Table 1) of
dimension 227 × 21, where 21 are the Italian regions. From a strictly administrative point
of view, the number of the Italian regions amounts to 20, however, for one of them, called
Trentino Alto Adige, the data are split according to its two main towns: Trento and Bolzano.
As reported in the same Table 1, the proposed procedure is trained on a portion of the data
matrix, called Otrain, of dimensions 197×21 and time span February 24th – September 7th,
whereas the test part is carried out on a set, called Otest, whose dimensions are H = 30× 21
(the time span is from September 8th to October 7th). Finally, 30 days ahead “real-life” es-
timates – in the sense that they are related to future values which are unknown at the time
of their computations – for the time window October 8th – November 7th will be stored in
the matrix Ofore. Since the proposed procedure combines a number of models (µ’s), com-

TABLE 1
The employed data set and its portions defined according to the different purposes served

Symbol Start date End Date Sample size
O February 24th October 7th 227
Otrain February 24th September 7th 197
Otest September 8th October 7th 30
Ofore October 8th November 7th 30

bination methods (δ’s) and central tendency functions (E ′s), for each of those, conventional
symbols are respectively given in Tables 2, 3 and 4. Consistently with the convention in-
troduced in Equation 15, in Table 4 the superscript u is used to indicate the type of bias
considered, i.e. additive (u= a) or multiplicative (u=m). Finally, to efficiently keep track
of the outcomes of the method, in Table 5 the whole set of model combinations employed
– respectively of class k = 4,3,2 – are provided. Since we have four different combination
methods, each of the 11 model combination (reported in Table 5) are performed four times,
which yields a total of 44 method-dependent combinations. One of them, for example, is the
forecasts combination generated by combining an ARFIMA and an ETS models using the
method Ordinary Least Square. This information is conveniently conveyed by the symbol
OLS–AE.
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FOREASTING HIERARCHICAL TIME SERIES 15

TABLE 2
Symbols employed to identify the statistical

models
Model (µ) Symbol
ARFIMA A
ETS E
THETA T
ARIMA B

TABLE 3
Symbols employed to identify the central tendency

functions

Method (δ) Symbol
Ordinary Least Square OLS
Least Absolute Deviation LAD
Newbold and Granger NG
Simple Average SA

TABLE 4
Symbols employed to identify the statistical

models
Central tendency function Symbol
Mean uπ
Median uτ
RMS uξ

TABLE 5
Combinations of models of class K = 4,3,2

attempted for each of the four model-dependent
reconcilied forecasts

Number K Model combination
1 4 A–E–T–B
2 A–B–E
3 3 A–B–T
4 A–E–T
5 B–E–T
6 A–B
7 A–E
8 2 A–T
9 B–E
10 B–T
11 E–T

Recalling that with uyt,H the final predictions yielded by the proposed method are de-
noted (see Equation 15), the loss function employed (L) is the Root Mean Square Error

(RMSE), given by
√

1
T

∑30
h=1(xt,H − uyt,H)2. The same function is adopted in–sample to

select the best 3–tuple (µ∗, δ∗,E∗), i.e.
√

1
T

∑227
t=1(xt − uyt)2 and to evaluate the method’s

performance in the test set Otest. Finally, the out of sample estimate of the bias, in the se-
quel denoted by the symbol βout, has been computed on the set Otest, using the formula
1
T

∑T
t=1 (xt − uyt,H).

6.1. Performances of the method. The performance of the method are summarized in
Appendix A and in Table 6. In particular, in Appendix A the observations belonging to the
test set Otest (black line) and the related estimates uyt,H (red line) are depicted. The first
three columns of Table 6 respectively indicate the name of the Italian regions, the winner
combination (µ∗, δ∗) and the related RMSE values (L∗). The best central tendency function
(E∗), the selected bias corrector( β∗) and the estimated out-of- sample bias ( βout) are given in
columns four, five, six. In the last two columns the RMSE values (L) relative to each of the
forecasting models (reported in Table 2) taken separately, are recorded. The accuracy of the
proposed method seems to be very good as, in almost all the cases, the winner combinations
deliver better predictions than all the statistical models singularly considered and, in many
cases, outperform them. This is the case, for example, of the Campania and Calabria regions.
Here (see Table 6), the recorded RMSE is respectively equal to 34.7 and 63.5, far below the
values obtained using the best statistical models, i.e. Theta and ETS, which respectively
scored L = 143.6 and 265.1. In addition, the proposed procedure shows always from very
low to negligible in-sample amounts of bias. The most selected central tendency functions is
aτ and aπ, whereas it is noted that the RMS function (uξ) has never been chosen. Regarding
the out-of-sample bias, if on one hand, as expected, it is always βout > β∗, on the other hand
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it can be said that the magnitude of the values assumed by βout can be deemed acceptable.
This is especially true if one considers the length of the prediction window (H = 30 days)
compared with the available data set. In particular, six regions (Valle d’Aosta, Trento, Molise,
Lazio, Abruzzo, Calabria) show interesting values for the out of sample bias, being βout < 10.
The worse performances of the method refers to the region of Sardegna, where the consistent
underestimations of the true values lead to a recorded bias of around 504. This fact can be
explained by looking at the irregular, bumpy shape of this time series, reported in Appendix 2
(Sardegna), which might have introduced distortions in the model estimators. In Appendix B,
the graphical results of a pure out-of-sample application of each of the winner combinations
are reported. In more details, the region-specific winner combinations (µ∗, δ∗) are applied
to the whole set O , so that the H = 30 days–ahead resulting forecasts – stored in the set
Ofore – are the pure forecasts for the period October 8th – November 7th. In Appendix B,
the regional time series in O (true observations) are plotted in black whereas the predictions
are in red color. The analysis of these Figures suggest a slower acceleration in the growth
of positive cases in some of the north regions (e.g. Lombardia, Trento, Liguria) whereas the
center and south regions might face a strong increase of positives. This seems likely to happen
in the Campania, Basilicata and Molise regions. The number of positive for Italy, predicted
for the end of the pure forecast period (November 7th), is about of 115,854.
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Table 6: Performances of the method for each of the Italian regions. Outcomes of the winner
models and of the single statistical models. Refer to the text for details

Region Winner combination L∗ E∗ β∗ βout Single models L

Piemonte LAD−BET 135.6 aτ ≈ 0 54.09

ARFIMA 1050.8
ETS 1065.8
θ 1271.8

ARIMA 683.6

Val d’Aosta SA−BT 8.6 aτ ≈ 0 -2.25

ARFIMA 60.7
ETS 177.5
θ 30.5

ARIMA 29.5

Lombardia SA−ET 172.6 mτ 1.0 70.83

ARFIMA 3184.0
ETS 911.7
θ 966.1

ARIMA 1713.8

Bolzano OLS −ET 223.2 aπ ≈ 0 190.9

ARFIMA 468.9
ETS 227.6
θ 271.2

ARIMA 248.8

Trento NG−BE 29.4 aτ -.13 8.95

ARFIMA 113.7
ETS 30.0
θ 238.2

ARIMA 211.5

Veneto NG−BE 58.5 aπ 0.55 49.01

ARFIMA 620.1
ETS 95.5
θ 259.9

ARIMA 49.6

Friuli Venezia Giulia SA−BE 65.9 aπ 0.70 18.08

ARFIMA 475.4
ETS 140.6
θ 763.5

ARIMA 155.6

Liguria LAD−ET 124.2 aτ ≈ 0 -28.13

ARFIMA 4123.8
ETS 126.8
θ 1057.7

ARIMA 241.9

Emilia Romagna LAD−BT 296.7 aτ ≈ 0 -160.01

ARFIMA 2203.4
ETS 343.5
θ 724.5

ARIMA 274.9

Toscana LAD−AB 259.6 aτ ≈ 0 149.8

ARFIMA 3417.7
ETS 1202.4
θ 2485.9

ARIMA 310.0

Umbria OLS −AB 133.3 aπ ≈ 0 104.54

ARFIMA 701.9
ETS 254.5
θ 344.4

ARIMA 168.1
Continued on next page
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Continued from previous page
Region model L∗ E∗ β∗ α∗ Single models L

Marche SA−BET 211.0 mτ 1.01 136.65

ARFIMA 2191.6
ETS 320
θ 1185.7

ARIMA 355.5

Lazio SA−ET 45.9 aτ 0.13 7.43

ARFIMA 522.2
ETS 153.5
θ 180.7

ARIMA 64.7

Abruzzo LAD−BET 40.0 aτ ≈ 0 6.97

ARFIMA 740.2
ETS 70.3
θ 294.6

ARIMA 40.7

Molise SA−AB 39.2 aπ −.05 -5.8

ARFIMA 250.9
ETS 1229.0
θ 147.0

ARIMA 265.1

Campania SA−BT 34.7 aτ .05 -30.52

ARFIMA 480.7
ETS 359.8
θ 143.6

ARIMA 201.3

Puglia LAD−BET 419.4 aτ ≈ 0 -249.58

ARFIMA 1991.5
ETS 680.6
θ 2507.5

ARIMA 674.1

Basilicata LAD−AB 75.2 aτ ≈ 0 -54.68

ARFIMA 117.5
ETS 1453.5
θ 37.0

ARIMA 417.7

Calabria OLS −AETB 63.5 aπ ≈ 0 4.13

ARFIMA 2124.9
ETS 265.1
θ 1109.9

ARIMA 302.1

Sicilia SA−BET 70.7 mπ 0.39 57.68

ARFIMA 1436.8
ETS 333.0
θ 715.7

ARIMA 195.2

Sardegna NG−AB 581.9 mπ -0.05 504.75

ARFIMA 983.7
ETS 998.9
θ 1204.6

ARIMA 605.4
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7. Conclusions and future directions. The present paper provides sufficient evidences
that reconciliation serves the double purpose of generating coherent forecast with improved
accuracy, under a four dimensional optimization constraint. In fact, the proposed method is
designed to handle the increased amount of uncertainty surrounding the forecasting, as one
carries out the prediction exercise at a progressively more disaggregated levels.

8. Data availability. The data that support the findings of this study are openly avail-
able in the section “COVID-19/dati-regioni/” at the https://github.com/pcm-dpc/
COVID-19/tree/master/dati-regioni.

9. Disclaimer. The views and opinions expressed in this article are those of the author
and do not necessarily reflect the official policy or position of the Italian National Institute of
Statistics.
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10. Appendix A.

Fig. 5: Goodness of fit of the out-of-sample predictions (the black and red lines refer respectively to the actual
data (the set Otest) and the related predictions. Prediction window H = 30 days
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11. Appendix B.

Fig. 6: Out of sample pure forecasts. The Black lines refer to the actual data (the set O) where the predictions
for the horizon H = 3O days (the set Ofore) are in red
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