Abstract
In order to design actionable SARS-CoV-2 strategies, we extended the SEIRS model to support stratified isolation levels for healthy <60 and vulnerable individuals. At first, we forced isolation levels to be uniform, showing that daily deaths curves of all metropolitan areas in the analysis can be fitted using homogeneous Ro=3.3. In the process, we established the possibility that an extremely short infectiousness period of 2 days coupled with 5 days exposure may be responsible for the multiple deaths valleys observed during the weeks following lockdowns. Regardless of the infectiousness period, we realized that is possible to infer non-uniform isolation levels for healthy <60 and vulnerable by forcing the model to match the <60 to >60 age serology ratio reported in seroprevalence studies. Since the serology ratio is more robust than absolute values, we argue immunity level estimations made in this way (Madrid 43%; Catalonia 24%; Brussels 73%; and Stockholm 65%) are closer to reality. In locations where we didn’t find reliable serology, we performed immunity estimations assuming Spain’s serology ratio (Paris: 24%; London: 34%). We predict that, with the exception of Brussels, no location can return to normal life without having a second wave (albeit in Stockholm a smaller one). For locations far from the herd immunity threshold (HIT) we searched what isolation values allow to return to normal life in 90 days minimizing final deaths, shockingly all found isolations for healthy <60 were negative (i.e. coronavirus parties minimize final deaths). Then, assuming an ideal 1-day long vaccination campaign with a 77% efficacy vaccine, we compared predicted final deaths of those 90-day strategies for all possible vaccination dates with a 180-day long vaccine waiting strategy that imposes 0.40 mandatory isolation to healthy <60 and results in 0.65 isolation to vulnerable. We found that 180-day of mandatory isolations to healthy <60 (i.e. schools and workplaces closed) produces more final deaths if the vaccination date is later than (Madrid: March 7 2021; Catalonia: Dec 26 2020; Paris: Jan 12 2021; London: Jan 25 2021). We conclude that our 2-stratum SEIRS model is suitable to predict SARS-CoV-2 epidemic behavior and can be used to minimize covid-19 disease and isolations related damages.
Competing Interest Statement
All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous three years;, no other relationships or activities that could appear to have influenced the submitted work; Levan Djaparidze reports that he is the copyright holder of the model published in www.sars2seir.com.
Funding Statement
No funding or finantial contributions to declare.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Non needed.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data is available in the main text or the supplementary materials.