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Abstract:
Two control mechanisms are relevant to perform an internal quality assurance: a permissible limit
LSMC applied to single measures of control samples and a retrospective statistical analysis to detect
increased imprecision  and baseline drifts.  A common statistical  metric  is  the  root  mean square
(total)  deviation  (RMSD/RMSTD).  To  focus  on  recent  changes  under  low-frequent  sampling
conditions, the monitored amount of retrospective data is usually very small.  Unfortunately, the
calculated RMSTD of a small data set with n<50 samples has a significant statistical uncertainty
that needs to be considered in adequate limit definitions. In particular, the minimum reasonable
limit  LRMSTD(n),  applied  to  the  RMSTD  of  a  series  of  n  samples,  decreases  from  LSMC (e.g.,
2.33*standard_deviation+bias)  for  n=1  towards  Ltrue_RMSTD for  n→∞ (long-term  statistics). Two
mathematical approaches were derived to reliably estimate an optimal function to adjust LRMSTD(n)
to small sample sizes. 
This knowledge led to the development of a new quality-control method: the Statistical Monitoring
by Adaptive RMSTD Tests (SMART). SMART requires just one mandatory limit (either LSMC or
Ltrue_RMSTD) per analyte. By definition of up to 7 possible alert levels, SMART can early recognize
and evaluate both the significance of a single outlier and establishing critical trends or shifts in
recent SMC data. SMART is intended to efficiently monitor and evaluate small amounts of control
data.
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Abbreviations: 
CI: confidence interval; CIΔ

up: upper limit of the confidence interval of  Δ; Δ: the “true” RMSTD
value determined using large amounts of data;  GPD: Gaussian probability density; IQC: internal
quality control; LSMC:  IQC limit applied to single measures of a control material; LΔ:  IQC limit
dedicated  to  the  true  (long-term)  RMSTD;  MDCI:  multidimensional  confidence  interval;  RA:
retrospective  (statistical)  analysis  of  SMC data;  Rili-BAEK: Guideline  of  the  German Medical
Association on Quality Assurance in Medical Laboratory Examinations; RMSD: root mean square
deviation (empirical standard deviation); RMSTD: root mean square total (or target) deviation with
respect to a known target value; SMART: Statistical Monitoring by Adaptive RMSTD Tests; SMC:
single measurements of a control sample 

1  Introduction

Quality assurance and particularly the internal quality control (IQC) are essential requirements to
monitor measuring processes in industry and health care. The vast amount of related literature can
only be inadequately covered [1-5].  Fortunately,  the homepage of Westgard et  al.  [6] has been
established as  an  informative  hot  spot  with  regard  to  quality  assurance  in  clinical  chemistry  -
demonstrating that it is a versatile and still open topic. 
Regulations concerning the IQC in clinical chemistry prescribe consecutive single measurements of
at  least  one  control  sample  (SMC data).  Each  SMC value  is  compared  to  a  given  maximum
permissible limit (LSMC) to monitor the measuring uncertainty of an operating device as well as the
degradation state of used reagents. A lot of experience already exist to determine LSMC. The main
concepts base on state-of-the-art limits (utilizing performance metrics of the technique), biological
variation, and/or partitioned clinical decision ranges. The LSMC defines an in-control range for SMC
results with regard to the target value of the control sample. The target value is predefined either by
a reference institution or the manufacturer (labeled control sample). For unlabeled control samples a
substitute of the target value can be generated by oneself during an evaluation period and possibly
additional peer-group data. However, a self-evaluated target value restricts the IQC to a quality
monitoring with respect to the state during the evaluation period. Persistent systematic errors of the
device, lot,  and procedure as well as long-term environmental influences are therefore probably
unnoticed. 
Another integral part of IQC is a statistical retrospective analysis (RA) of quantitative SMC data at
the end of an evaluation period, at the ends of consecutive sampling periods, or by an on-the-fly
statistical approach [7-10].  An efficient and widely used statistical metric is the root mean square
(total) deviation (RMS(T)D), where “total” denotes the optional reference to a known target value
instead of the mean. The presented  Statistical Monitoring by Adaptive RMSTD Tests (SMART)
method is  primarily  intended for  the  RMSTD metric.  (The RMSTD is  sometimes  alternatively
denoted  as  the  entire  analytical  measuring  uncertainty.)  Nevertheless,  theoretical  findings  are
provided for both RMSTD and RMSD. 
The RA has to  handle a  trade-off between a suitable  number of  SMC samples  to reliably and
prospectively verify an in-control condition and to focus on most recent data to detect changes in
measuring precision as fast as possible. Particularly in clinical chemistry, the RA has to deal with
commonly  low-frequent  SMC  measures  (1-2  SMC  per  day  and  control  sample)  and  limited
reasonable collection periods due to short reagent lifetimes or other frequent system interventions.
The presented SMART method has been designed to efficiently evaluate even few amounts of SMC
data.
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IQC procedures can be combined in multirule concepts [11]. One of the most prominent methods is
the  “Westgard  Sigma  Rules”  utilizing  the  Sigma  Metric  [12].  A detailed  and  well-structured
explanation is given in [13]. The current, improved version is specifically applicable for procedures
with  different  Sigma Metric.  However,  a  procedure  with  a  Sigma Metric  of  six  has  a  critical
systematic error [13] of 4.35·s (i.e., a high potentially acceptable tolerance). In other words, the
technically achievable precision of the measurement is distinctly higher than necessary compared to
the biological variation, and one could permit a limited variation in accuracy (bias) and/or a certain
level of heteroscedasticity. Further, the usually small sample size (n=20-30) of regular evaluation
periods implies a high risk of significantly underestimated amounts of the parameters mean and
standard deviation due to statistical uncertainty (see [14]). Thus, the 3s entry rule of the Westgard
Sigma Rules (limit range for single SMC values: mean±3·s), which is the sole decision rule for high
Sigma Metrics, appears unnecessarily strict for procedures with a Sigma Metric of six (and even
four). Westgard's multirule concept supports a strictly serial order of decision rules. The SMART
method utilizes limit tests in parallel, enabling the possibility to further verify and categorize an out-
of-control signal. 
Based on a chart of consecutive SMC values, the current standard deviation sn and unsigned bias
(mean inaccuracy) δn can be revealed by 

s n  = √ 1
n−1

⋅∑
i=1

n

(y i−ȳ)
 2   and  δ n =|ȳ−y0| (1)

(yi: measured SMC, y0: target value,  y: mean value, n: sample size of SMC chart). Particularly in
the case of low-frequent sampling, the parameters sn and δn are not strictly separable because: 
(i) The measurement inaccuracy (bias) can vary even within a single chart due to unrecognized
changes in  environmental or operating conditions.  These shifts  contribute to the amount of the
standard deviation. 
(ii) The mean values of arbitrary SMC charts of length n scatter themselves with a dispersion of
s/√n. Thus, the standard deviation affects the possible amount of the mean value of a particular
chart - leading to an arbitrary contribution to the bias of this chart.
It is therefore suitable to solely focus on the entire analytical measuring uncertainty 

RMSTD n = √ 1
n

⋅∑
i=1

n

(y i−y0)
 2 

= √ n−1
n

⋅s n
2
+ δ n

2 . (2)

The abbreviation RMSTD can either be considered as the root mean square total deviation or target
deviation, depending on the reliability of the target value y0. (The phrase “total deviation” implies
that y0 is very close to the true value.) As shown in the right-hand term, the RMSTD can also be
expressed as a Pythagorean addition of sn and δn,  where the factor (n-1)/n can be neglected for
sufficiently large n. However, a separate analysis of standard deviation and bias might nevertheless
be useful during fault diagnostics. In addition to the general RMSTD metric, the abbreviation Δ will
be used to indicate the “true” RMSTD value that emerges if the statistical uncertainty becomes
negligible. Thus, the determination of Δ requires a large data set (see [14] for details). 
To indicate out-of-control situations of measuring devices, the IQC usually utilizes at least two
maximum permissible deviation limits: one limit intended for each result of an SMC (LSMC) and one
limit dedicated to the statistical retrospective analysis. This study utilizes the root mean square total
deviation; thus, the statistical limits LRMSTD (for arbitrary n) or LΔ (for very large n) are used here.
However,  since  2008 the  German guideline  on  quality  assurance  in  medical  laboratories  (Rili-
BAEK) [15] only provides one common, maximum permissible limit for both: single SMC and RA.
The limit values in the Rili-BAEK, table B1a-c, column 3 are presented as relative total errors Δrel
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(in per cent). The absolute value of the solely given, maximum permissible total error is given by 

Δ max
 Rili-BAEK

=
Δ

rel
⋅y0 

100 %
(3)

(y0: target value of the control sample). The current values Δmax (as prescribed in the Rili-BAEK) are
empirically determined and can be treated as approximately equivalent to LSMC; however, they are
distinctly too tolerant if considered as LΔ (see below). 
For  all  analytes  not  listed  in  table  B1a-c,  the  self-evaluation  of  internal  laboratory  maximum
deviation limits is required. These limits are obtained by following equation, utilizing the bias and
the t-fold standard deviation obtained during an evaluation period (t is usually set to 3) 

Δ max =√ n−1
n

⋅t 2
⋅s eval

2
+ δ eval

2 (4)

(n: number of SMC values of the evaluation period, seval: standard deviation during evaluation, δeval:
bias during evaluation). The factor t with t>1 becomes necessary to receive a reasonably tolerant
limit for single SMC measures. However, Eq. (4) with t=3 may provide a still too restrictive limit
for SMC (and probably even for RA) in several situations: (i) underestimated seval, δeval due to poor
statistics during evaluation period, (ii) measuring techniques with small imprecision but significant
inaccuracy, and/or (iii) a high Sigma Metric of the method (usable room for extended tolerance). 
As revealed in [16], the implication of the present Rili-BAEK to use the same limit for both the
single SMC value and the RA is clearly problematic. In fact, the limits should optimally differ by a
factor  of  about  two,  where  LSMC>LΔ (see  [16]  and  Chapter  2.1).  This  finding  and  the  given
statements to handle outliers require  a complete  revision of the currently prescribed RA of the
RiliBAEK [15]. Seeking a more powerful approach, the SMART method has been newly developed
and discussed here in detail. SMART is an RMSTD-based method facilitating evaluation of single
SMC results as well as on-the-fly statistical monitoring of recent SMC data. It is sufficient to apply
SMART with only one prescribed maximum permissible limit. Thus, two versions exist, depending
on the use of either LSMC or LΔ as the prescribed limit. 

2  Materials and methods

2.1  The relation between optimal limits for SMC and RA

All limits defined in this article are unsigned values specifying a range around the target value
y0±Lgiven.  The presented SMART method is intended to provide a common approach for the entire
IQC, considering only one prescribed maximum permissible limit. It is based on the finding that an
approximately constant relation exists between the optimal maximum permissible limits for one
SMC value (LSMC) and for the true RMSTD of a (hypothetically) very large retrospective set of
SMC data (LΔ) [16]. Hence, the general parameter λ is defined as the relation factor 

λ =
LSMC

max

LΔ

max
=

κ⋅s max + δmax

√ s max
 2

+ δmax
 2

=
κ+φ

√1+φ
2 

   with  φ =
δ max

s max

, (5)
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(smax:  maximum  permissible  standard  deviation;  δmax:  maximum  permissible  bias;  κ: constant
expansion factor according to the desired confidence level). The sign Δ (true RMSTD) emphasizes
that - assuming a very large considered sample size - there is no remaining statistical uncertainty in
the determination of the RMSTD, standard deviation, and bias. In this case of a very large data set,
the confidence interval (CI) of Δ becomes negligible, and the limit LΔ can be reduced to be almost
equal to the expected exact RMSTD as given by Δ2=s2+δ2. 
The factor λ only depends on the ratio between δmax and smax. This is shown in Eq. (5) by substitution
with the ratio φ=δmax/smax. Fig. 1 illustrates the mathematical relation between λ and φ for 2 common
κ. The factor  κ in Eq. (5) can be chosen according to a one-sided CI, due to a generally distinct
maximum permissible bias, which is often similar or higher than smax.. A value between 1.96 (97.5%
confidence)  and 2.33  (99%) is  convenient  to  avoid  regular  false-positive  outliers.  For  φ-ratios
significantly below 1, a two-sided CI is more realistic, which would change the CI level for κ=2.33
to 98%.
To get a profound idea about the distribution of  φ over almost the entire spectrum of analytes in
clinical chemistry, Fig. 1 shows frequency histograms of φ-ratios based on data of Rili-BAEK 2003
(column 5/6) [17] and the database of desirable limits by Ricos et al. (version 2014) [18,19]. In the
latter  case,  the  considered  data  are  limited  to  entries,  which  are  referenced  by  at  least  two
independent sources according to column 3 [18]. This limitation is based on the assumption that the
finally considered entries represent validated and established techniques to a greater extent. This
“multi-source” data set consists of 150 remaining entries. Except slightly less populated margin
areas, the histogram of the multi-source data is  similar to the full-data histogram (compared in
[16]). 
The Rili-BAEK data of 2003 (last official declaration of separate  δmax and smax permissible limits)
represent curated state-of-the-art limits for 90 common analytes at a technological state 15 years
ago. Although the limit values are outdated, the ratios are assumed to stay approximately valid, due
to limited progress in bias prevention since 2003. Using Eq. (5) the Rili-BAEK data reveal λ values
in the range 2.19±0.25 (for κ=2.33) and 2.0±0.2 (for κ=1.96). 
The desirable maximum bias and standard deviation entries by Ricos et al. (updated 2014) [18,19]
were derived from biological variations (see [20,21]). The 95% confidence intervals of λ based on
the multi-source dataset are 2.23±0.5 (for κ=2.33) and 2.0±0.4 (for κ=1.96). The approach used by
Ricos et al. that utilizes biological variations [20,21] is popular. However, the applied formulas are
not flexible enough to handle the entire spectrum of analytes, ranging from analytes with extremely
small ratios of intra-individual vs. inter-individual biological variation to analytes with dominant
within-subject  variation  (e.g.,  due  to  circadian  rhythms  or  prandial  state).  The  analyte-specific
desirable maximum limits for bias and standard deviation (based on biological variation) are usually
significantly more divergent, compared to curated state-of-the-art limits (see Fig. 1). In particular,
the desirable limit for the bias is often too liberal. Hence, statistics were redone under the restriction
that the bias is not allowed to be more than two times higher than the standard deviation (accepted
ratio φ≤2). This restriction excludes 17 of 150 entries (11.3%). The full ranges of remaining λ's are
then 2.30±0.34 (for  κ=2.33) and 2.05±0.26 (for  κ=1.96). Please mention that a ratio above 2 can
also be circumvented by accepting a more tolerant standard deviation. 
Particularly with regard to the applied state-of-the-art permissible limits, one can finally conclude
that φ values of current measuring procedures are narrow enough to estimate a general λ value for
almost every analyte in clinical chemistry. Taking a rather restrictive significance level that only
allows about 1-2% false-positive outliers, the general λ value is within 

λ = 2.15 ±0.35 . (6)

This sufficiently well defined relation between LSMC and LΔ facilitates the explicit definition of only
one limit per analyte (either for SMC or long-term RMSTD) for the entire internal quality control.
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Because of the special shape of  λ(φ), the given range  in Eq. (6) will remain valid even if future
progress  in  clinical  chemistry succeeds to  significantly  reduce  measurement  biases.  If  only the
standard deviation needs to be monitored, λ would be equal to the κ value (two-sided CI).

2.2  Basics of the Statistical Monitoring by Adaptive RMSTD Tests 

The SMART method provides a single formula for both the quality control of single SMC results as
well  as  an  on-the-fly  statistical  monitoring  of  recent  SMC data.  Unfortunately,  the  calculated
RMSTD of small SMC series with n samples has an increased uncertainty (due to poor statistics)
that needs to be considered in adequate limit definitions. In particular, optimal limits depend on n
and exponentially decrease from LSMC (at n=1) to LΔ (for n→∞). Under consideration of the given
factor λ (see Chapter 2.1), it is sufficient to explicitly prescribe just one of the two limits. 
Assuming a reliable method to determine intermediate limits, the general SMART formula 

√ 1
n
⋅∑

i=1

n

(y i−y0)
 2  ≤  L(λ , n)= a (λ , n)⋅Lgiven (7)

utilizes RMSTD tests against variable limits L(λ,n), which depend on λ (a constant) and the varying
sample sizes n of the considered most recent SMC values. Again, the applied limits range from the
higher LSMC (n=1) to the distinctly lower LΔ (n>>1). Thus, a certain limit L(n), used for a series of n
samples, becomes increasingly less tolerant at larger sample series. Intermediate limits L(λ,n) are
expressed by the transition or adaptation function a(λ,n) that modifies a predefined limit Lgiven (see
next  chapters).  The  curvature  of  a(λ,n)  with  regard  to  n  has  been  deeply  investigated  by  two
different mathematical approaches as discussed in Chapter 2.3. 
After each new SMC measure, Eq. (7) is applied several times considering increasing numbers of
previous SMC measures. Thus, the SMART approach performs multiple limit controls, considering
the  new SMC value (n=1) and up to  nmax latest  SMC values  of  the  same control  sample.  The
recommended maximum size of the entire  retrospective window (i.e.,  the maximum number of
recognized, most recent SMC values) is nmax=15. 
Particularly, for each new SMC value, the SMART formula is applied up to 8 times for chart lengths
of, e.g., n={1,3,5,7,9,11,13,15} including the retrospectively accumulated SMC values {y i}, {yi,yi-

1,yi-2}, {yi,yi-1,yi-2,yi-3,yi-4 }, …, {yi,yi-1,...,yi-n-1}. Hence, up to 8 potential violations of the n-dependent
limit levels might be revealed according to Eq. (7). The final evaluation of all 8 limit tests is done
by the definitions of alert levels given in Table 1. Alert levels and an efficient use of SMART during
the initial phase (available data below nmax) are discussed in Chapter 3.3. 
Other variants of SMART settings (the “SMART plan”) are possible. The limit tests do not need to
be equidistantly distributed. Nevertheless, it is strongly recommended to keep the first two tests at
n=1 and n=3. To provide an efficient evaluation of SMART results, the number of applied limit tests
per  SMART run  should  be  at  least  6.  Another  SMART plan  of  practical  interest  might  be  a
monitoring window of 19 most recent SMC values and 7 limit tests. These tests could accordingly
be  done  via  successive  increase  of  the  analyzed  data  by  additional  2-4  retrospective  values
n={1,3,6,9,12,15,19}. 

2.3  The curvature of the adaptation function

The considered data set of an RA is often very small on a statistical point of view. It results from a
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usually small retrospective time window (to ensure sufficient topicality) and/or a small available
count  of  SMC  results  due  to  low-frequent  sampling.  This  has  consequences  for  the  applied
maximum permissible limits of statistical metrics, which are often defined for “sufficiently long”
charts of SMC data (i.e., with limited or no consideration of statistical uncertainties). The minimum
amount of collected SMC data to reliably apply such limits is commonly distinctly underestimated
(see Chapter 3.1). Regarding SMART we thus need to know, how RMSTD limit levels L(n) have to
be  increased  when they are  applied  to  smaller  and smaller  sample  sizes  (due to  the  increased
statistical uncertainty). It is assumed that the limits merge with the limit LSMC at n=1. The functional
dependency  of  L(n)=a(n)·L(n=∞) on  n  is  estimated  by  two  different  mathematical  approaches
outlined in the following chapters. These approaches are fully explained and derived in [14]. 
Both approaches utilize a rather tolerant CI of 95%. The author recommends limits based on a
relatively  narrow CI  like  95% in  combination  with  a  constant  small  addition  to  all  evaluated
parameters.  The addition might be in the order of the difference in maximum amplitudes (at n=2)
between the CI-99% and CI-95% functions.  Please  also  note  that  the final  scale  (i.e.  range  of
amplitudes) of SMART limits is actually only based on λ. 

2.3.1 The maximum error propagation of statistical uncertainties

The statistical limit LRMSTD(n) must be equal or higher than the RMSTD of any possible in-control
SMC data set with n considered values. The maximum expected RMSTD value of a limited data set
can be approximated by the upper limit of the confidence interval (CIΔ

up) of the RMSTD metric. In
our case the CIΔ

up of the closely in-control true RMSTD value. It is therefore beneficial to estimate
the CIΔ

up for small sample sizes n, which will finally provide inference with regard to the curvature
of the adaptation function a(λ,n) of SMART. 
In [14], a rather straightforward approach is presented to determine the true RMSTD value and to
approximate the CIΔ

up of the RMSTD metric. According to [14] the final function of CIΔ
up with

regard to the variable n results in 

CIΔ

up
=

S

√f+ν
2
⋅[ν2

+
f
2 (1 +

χ n−1 ;0.95
2

n−1 )+ ν⋅z  0.95

√n ]    where   ν=
δmean

S
   and   f=

n−1
n

(8)

(n: number of considered SMC values,  δmean: mean bias (unsigned difference between the overall
mean and the reference value), S: overall standard deviation, χ2 and z: quantiles of the chi-squared
and normal distributions). The parameters  δmean and S may be evaluated by a big-data multi-chart
analysis of the measuring system as described in [14]. 
It is important to mention that the ratio  ν=δmean/S is not directly comparable to  φ, the ratio of the
maximum permissible single-chart values  δmax and smax given in Eq. (5). The individual biases of
single SMC charts  vary according to device-specific,  operational,  and environmental  conditions
with a scatter parameter Sδ. The procedure, presented in [14], includes SMC data from several SMC
charts. In the overall statistics, the variability between biases of individual charts is thus part of the
overall standard deviation term S. This implicitly included variation of biases can be treated as
normal-distributed. Pure short-term dispersion (imprecision) and the variation of biases are further
sufficiently independent; thus, the overall variance is the sum of both variances S2=S2

imp+S2
δ. The

remaining mean bias δmean is just the difference between the overall mean value and the target value.
If the target value is a pre-evaluated nominal value, δmean is expected to be very small in relation to
S. However, the amount of δmean might be still significant, if the target value was revealed by a more
precise reference method.  In general,  the ratio  ν=δmean/S is  expected to  be clearly non-zero but
distinctly smaller than the ratio φ (defined in Chapter 2.1) 
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0 < ν < φ     or    0 <
δmean

S
<

δmax

smax

. (9)

With regard to common relations between δmax and smax as presented in Fig. 1, a proper value for ν is
approx. 0.6 with an assumed maximum uncertainty of about ±0.5. Further, the decision to apply a
one- or two-sided 95% CI for the parameter z95% also depends on ν. If the amount of δmean is almost
as high as S (or even higher), a one-sided CI is more suitable than a two-sided CI. If one apply a
smooth  transition between two-sided (ν=0,  z=1.96)  and one-sided (ν=1,  z=1.645)  statistics,  the
dependency of CIΔ

up on such ν-z combinations is relatively small, with a broad central maximum at
about  ν=0.3-0.5 [14].  The  combination  of  ν=0.6 and  z95%=1.7  (or  z99%=2.4)  is  considered  as  a
feasible representative choice for all relevant ν-z combinations. 
As already mentioned, a limit function for RMSTD values must be equal (or higher) than the upper
CI limit of Δ. To focus on the curvature of CIΔ

up that only depends on the ratio between δmean and S,
the CIΔ

up function is normalized by its value at infinite n. At n→∞ all statistical uncertainties can be
neglected and CIΔ

up becomes equal to the true RMSTD:  CIΔ
up(∞)=Δ∞=S·√1+ν2  . Thus, the relative

limit function is finally 

L rel
RMSTD

(n)=
CIΔ

up
(n)

CIΔ

up
(∞)

=

ν
2
+

f
2 (1 +

χ n−1; 0.95
2

n−1 ) +
ν⋅z 0.95

√n

√(f + ν
2
)(1 + ν

2
)

(10)

(n:  sample  size;  f=(n-1)/n;  ν=δmean/S;  χ2 and  z:  95%-quantiles  of  the  chi-squared  and  normal
distributions). 
The given mathematical approach is intended to estimate the statistical uncertainty of an RMSTD of
small  series.  However,  the presented model becomes itself  distinctly uncertain for any n below
about 6, due to (i) the pragmatic concept of the degrees of freedom (esp. correction factor f) and (ii)
to the fact that the underlying Taylor-series development is limited to the first degree, thus less
intended for large uncertainties. Therefore, an alternative mathematical approach is introduced in
the next chapter to further prove the revealed curvature. 

2.3.2  The Multidimensional Confidence Interval

To further validate the curvature of the adjustment of SMART limits with respect to small sample
sizes,  a  second approach  has  been  derived.  This  alternative  theory  extends  the  CI  of  a  single
measure to a common CI of a series of n measures, while keeping the overall confidence level
constant (at, e.g., 95%). It will be denoted as the Multi-Dimensional Confidence Interval (MDCI).
The  approach  requires  two  general  assumptions:  (i)  the  total  measuring  uncertainty  is  purely
normal-distributed  around  a  constant  mean  and  (ii)  all  consecutively  measured  results  are
uncorrelated (i.e., independent measures). The MDCI finally leads to the upper limit function L° of
the root mean square metric. Due to (i) the MDCI theory neglects the uncertainty and variability of
a bias; thus, it only covers the RMSD (resp. empirical standard deviation) metric. 
The MDCI theory originates from the calculation of the two-sided CI of a normal-distributed and
standardized variable by integration of the Gaussian probability density (GPD) function. Applying
the known statistical parameters S (overall standard deviation) and δmean (mean bias), revealed by a
sufficiently large evaluation set of SMC values (see [14]), each measured SMC value can directly
be standardized without loss of information. The MDCI theory is therefore simplified to realizations
of the standard Gaussian distribution (RMSD(n→∞)=1). 
The combined probability of n independent events (occuring sequentially or in-concert/multivariate)
is  the product  of  the single-event  probabilities  P(1,2,...,n)=p1·p2·...·pn.  If  the  single  p-values  are
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extended to integrals over one-dimensional GPD distributions, the combined probability P leads to
an  n-dimensional  GPD  distribution.  Thus,  the  total  probability  of  a  particular  sequence  of  n
standardized control measures can be expressed by this  n-dimensional  GPD distribution,  where
each dimension represents one control measure of the SMC sample series. Any n-dimensional GPD
distribution is rotationally invariant around zero, and can therefore be expressed as a radial function.
Here, we are only interested in isolevel/equipotential spherical hypersurfaces within the spanned
space. This is for example the spherical partitioning surface of a certain common confidence limit
(z) represented by a constant radius. To obtain the (two-sided) 95% confidence limit z95(n), the
normalized radial density function has to be integrated from 0 to z95(n) 

P = 0.95 =
2

(1−
n
2 )

Γ( n
2 )

⋅ ∫
0

z95( n)

r (n−1)
⋅exp(− 1

2
r 2)⋅dr (11)

(n: sample size or dimension; r: radius of the spherical hypersurface; Γ: Gamma function). Thus, the
radial  integration limit  z95(n) covers 95% of the hypervolume spanned by the multidimensional
GPD distribution. This slightly more advanced theory has been fully explained in [14], including a
complete derivation and validation of Eq. (11). 
Obviously, z95 is 1.96 at n=1. For higher n, the limit z95(n) increases according to Eq. (11) and
slowly  converges  towards  the  square  root  function  of  n.  According  to  [14],  the  limit  z95(n)
represents  the  Pythagorean addition  of  a  series  of  single confidence limits  ensuring  a  constant
overall  significance  level  of  5%.  The  limit  can  therefore  be  utilized  to  obtain  the  maximum
acceptable RMSD (95% confidence) of a sequence of n realizations. To obtain such a function of
adequate upper RMSD limits L°(n) of n standardized values, z95(n) can directly be implemented
into Eq. (2) (with y0=0) leading to 

LRMSD
ο

(n)= √ 1
n
∑
i=1

n

(y i
ο
)

 2 
=

z 95(n)

√ n
(12)

(° denotes the RMSD limit of N(0,1)-distributed samples). L°(n) goes from 1.96 (n=1) to 1 (for
n→∞) as drawn in Fig. 2A. The curvature of L°(n) is assumed to be directly comparable (except a
different scale) to the adaptation function a(λ,n) of SMART as defined in Eqs. (7) and (13). The
radial limit zp(n) is also equivalent to the square root of χ2

p(n). Relevant metrics (Γ(n/2) and pairs of
z(n), L°(n) for the 3 two-sided CI's 95%, 97,5%, and 99%) for all n≤40 are provided in [14]. 

2.4  SMART utilizing the limit of the expected long-term RMSTD

The  “true”  RMSTD,  which  emerges  by  a  drastically  extended  sample  size  (n>>100),  can  be
revealed  rather  precisely  by  Eq.  (2)  and the  simple  evaluation  method described in  [14].  This
method evaluates the necessary parameters s and δ (together with a post-processing of data) with
high precision by a Gaussian fit of the overall histogram of multiple long SMC charts. Thus, the
maximum permissible statistical limit LΔ for a (hypothetically) very long SMC chart can be set
rather strict.  Only a small  additional  amount  (i.e.,  permissible  bonus) is  sufficient  to  provide a
robust  definition  of  the  general  LΔ limit  per  analyte.  Such  a  moderate  bonus  facilitates  some
tolerance for heteroscedasticity or baseline drifts. This SMART variant, which adapts the given LΔ

to small SMC charts, is recommended due to the high reliability of large-scale statistics used to
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determine LΔ.
As further discussed in Chapter 3.1, the given mathematical analyses to approximate the expected
curvature of a(λ,n) lead to the following final equation of this SMART variant that refers to LΔ 

√ 1
n
⋅∑

i=1

n

(y i−y0)
 2  ≤ a (λ , n)⋅L Δ     with

a (λ , n)= 1 + (λ−1)⋅n−0.45 . (13)

The adaptation function a(λ,n) modifies the long-term limit LΔ with regard to smaller and smaller
sample sizes n. It implicitly goes towards the higher limit LSMC at n=1. A proper general value for
the  constant  λ can  be  obtained  from Eq.  (6).  To be  valid  for  (almost)  all  analytes  in  clinical
chemistry, a λ value near the upper limit of the given uncertainty range of λ is recommended (i.e., λ
closely below 2.5). 

2.5  SMART utilizing the limit dedicated for single measures (LSMC)

The SMART method can alternatively be provided with sole regard to the maximum permissible
limit  LSMC intended for single measurements of control samples. Such limits  are often the only
statutorily  prescribed  information  in  guidelines.  For  example,  the  limits  given  in  the  German
guideline (Rili-BAEK, table B1a-c column 3, in relative values [15]) can be considered as sole LSMC

data [16]. In contrast to the determination of LΔ, the definition of LSMC is usually done empirically at
a certain significance level and/or related to a fraction of the biological variation of the analyte
[20,21]. The determination of LSMC might also base on Eq. (4), where seval and δeval could be revealed
by a Gaussian fit of the overall histogram of evaluation data. However, Eq. (4) yields too strict
limits  in  special  cases  (small  imprecision  but  distinct  inaccuracy).  Depending  on the  technical
precision of the examined measuring process in relation to the medical needs (quantified by, e.g.,
the Sigma Metric [13]), a small addition could be permitted to its LSMC. 
Running SMART, the applied limits  decrease with higher considered sample sizes n from LSMC

(n=1) towards LΔ (n>>1). Here, LΔ is implicitly given by the constant λ according to Eq. (6). The
preliminary suggestion in [16] to apply a natural exponential function for a(n) was based on the
assumption that the uncertainty of the RMSTD at a sample size n=15 has already reached a value
near  the  long-term  level  with  just  a  small  remaining  slope.  However,  one  of  the  main  new
conclusions, presented in Chapter 3.1, reveals that the remaining offset  and slope are still  very
significant at n=15 compared to n→∞. The curvature of a natural exponential function appears now
to  be  distinctly  too  steep  in  the  range n=1-15 with  the  clear  risk  to  cause  false-positive  limit
overruns at higher sample sizes. 
The newly revealed  functional  dependency of  a(λ,n)  is  strongly  justified  by the  two presented
mathematical approaches (Chapter 2.3). The final equation of SMART utilizing LSMC and dedicated
to the range n=1-15 is given by 

√ 1
n
⋅∑

i=1

n

(y i−y0)
 2  ≤  

a (λ , n )

λ
⋅LSMC     with

a (λ , n)= 1 + (λ−1)⋅n−0.45 . (14)

The choice of λ depends on how tolerant the given limit LSMC has been defined. Assuming a rather
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restrictive value of LSMC,  λ should be chosen near its lower boundary given in Eq. (6) to prevent
false-positive results for (almost) all kinds of analytes (i.e., λ=1.8). 

3  Results and discussion

3.1  The uncertainty of the RMSTD due to small sample sizes

In  Chapter  2.3  and [14],  two mathematical  approaches  were  derived  to  quantify  the  increased
statistical uncertainty of RMSTD results at relatively small sample sizes. The quantification of this
uncertainty is important to optimally adapt the applied IQC limits for RMSTD results of short SMC
charts (especially for n<<50).  The derived approaches are denoted as CIΔ

up (Chapter 2.3.1) and
MDCI (Chapter 2.3.2). The first approach refers to the entire RMSTD (inclusive bias); however, it
lacks precision below about n<6. The second approach (MDCI) represents a more fundamental
theory,  but  it  neglects  a  systematic  bias  with  respect  to  a  target  value  (just  RMSD).  In  the
comparable  case  of  zero  bias  (ν=0 in  Eq.  (10))  and  a  CI  of  95%,  the  final  functions  of  both
approaches are in very good agreement as demonstrated in [14].

The  most  important  conclusion  regards  to  the  functions  of  optimal  RMSD/RMSTD  limits
depending  on  the  considered  sample  size.  Figure  2  summarizes  the  revealed  curves  of  both
mathematical approaches, which are (2A,2C) the standardized RMSD limit L°(n) of MDCI utilizing
Eq. (12) and (2B,2C) the relative RMSTD limit (Lrel

RMSTD) of CIΔ
up utilizing Eq. (10). The graphs 2A

and 2B represent  a  relatively  moderate  increase of  the  limits  by using a  CI of  95%, which is
recommended in combination with a small constant addition to the prescribed value of the IQC
limit LSMC or LΔ. The limit functions in 2C provide more tolerance due to a CI of 99%. Please note
that - along with the different CI’s - the type of error propagation of the  CIΔ

up approach has also
been changed from maximum error propagation (CI-95%) to Gaussian error propagation (CI-99%).
The  alternative  equation  of  Lrel

RMSTD based  on Gaussian  error  propagation  can  be  found in  the
appendix of [14]. In this study, Lrel

RMSTD has always been applied with the reference set  ν=0.6 and
z95%=1.7 / z99%=2.4, suitable for common analytes in clinical chemistry (see Chapter 2.3.1 and [14]).
In Fig. 2B and 2C the intrinsic uncertainty of the CIΔ

up approach with regard to the concept of the
degrees of freedom of the χ2-term (discussed in [14]) is visualized by an upper and lower boundary
(gray corridor) flanking the expected shape of Lrel

RMSTD. The upper boundary utilizes the given Eq.
(10), where the lower boundary represents Eq. (10) with a substitution of the term χ(n-1)

2/(n-1) by
χn

2/n. 
The curves in Fig. 2 are fitted separately with the same fit function of the type F(n)=1+C·n─0.45 with
a best-matching scaling parameter C. All fits in Fig. 2 (red lines) clearly show that the curvatures of
the two different mathematical approaches are very similar. Only the amplitudes differ by up to
20%  (at  CI-95%),  which  can  be  dedicated  to  different  basic  assumptions.  SMART  uses  an
alternative (independent) concept for scaling under consideration of the parameter  λ (see Chapter
2.1). Thus, only the curvatures of the limit functions are relevant in this study. Nevertheless, the
recommended range for λ (1.8-2.5) agrees well with the (partially extrapolated) amplitudes at n=1
and CI-95% of both mathematical approaches.  Fig. 2 confirms that the type of the fit  function
F(n)=1+C·n─0.45 is very convincing. The exponent (-0.45) can be defined rather precisely. Curvatures
with exponents outside the range (-0.46,-0.43) are clearly less matching. An additional feature of
this fit function is the ensured, correct long-term limit of one. The function has been finally applied
as template for the adaptation function a(λ,n) of the SMART method (see Chapters 2.4 and 2.5). The
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fit function was optimized for the range n≤20. If an extended monitoring window of the SMART
method  is  intended  (i.e.,  distinctly  higher  than  nmax=20),  one  might  re-optimize  the  adaptation
function a(λ,n) by refitting Eqs. (10) and (12) with a variable exponent and over the extended range
of  n.  Although,  the  best  fit  to  an  extended  MDCI-95% function  (n=50)  remains  very  similar:
1+0.986·n─0.452 with an R2=0.9981. (In the case of MDCI-99%, the best fit is 1+1.5855·n─0.479 with
R2=0.9997).  The  convincing  consensus  among  both  mathematical  approaches  and  the  well-
matching fit function provide a very reliable basis for the presented SMART method. 

The second conclusion regards to the remaining distinct amount of statistical  uncertainty in the
determination of root mean square metrics based on sample sizes up to about n=50. This uncertainty
needs to be considered in limit definitions applied to limited retrospective IQC data. At n=2 the
uncertainty (or error) in RMSTD determination can reach about 100% of the true RMSTD value
that is exactly obtainable by very large n only. The (hypothetical) large-scale limit LΔ can be chosen
close to this true RMSTD value. The findings also confirm the assumption that the upper limits of
RMSD/RMSTD results must increase at fewer n and finally culminate in the limit for single control
measures LSMC at n=1. According to Chapter 2.1, the ratio LSMC / LΔ of the maximally diverging
limits is defined in this study by λ, which lies in the range 1.8-2.5.  The fit function F(n) and the
equivalent adaptation function a(λ,n) of SMART have been utilized to draw the course of optimal
intermediate limits between LSMC and LΔ. 
The curvature of a(λ,n) or F(n) directly provides the relative amount of the statistical uncertainty at
any n by about 

a (λ , n)−a (λ ,∞)

a (λ ,1)−a (λ ,∞)
⋅100% = n−0.45

⋅100 % , (15)

where  a(λ,∞)=1.  Thus,  30% of  the  decrease  of  the  adaptation  function  a(λ,n)  from  λ  (at  n=1)
towards  1  (for  n→∞)  still  remains  at  n=15.  In  other  words,  the  effective  range  between  the
maximally diverging applied SMART limits (for n=1 resp. n=15) is just 70% of the entire value of
λ. Nevertheless, a monitoring window of n=15 seems to be an optimal trade-off to ensure a fast
response  to  suspicious  IQC states.  If  a  larger  monitoring  window of  SMART is  preferred,  the
remaining statistical uncertainties at n=20 and n=30 would be 26% and 21.6%, respectively. 

3.2  Final remarks on the SMART method

The novel SMART method is especially intended to monitor a limited available number of control
measures.  However,  the  monitored  window  of  most  recent  control  measures  should  not  be
significantly less than 15 values. During the initial phase, SMART can nevertheless be applied to a
smaller data set without modification. The method is most efficient utilizing control samples with
known target values. However, a feasible target value could also be self-determined during a pre-
analytical evaluation period. 
Although the underlying mathematical approaches (Chapter 2.3) may appear complex, the SMART
method alone is straightforward.  At each application, the SMART method evaluates up to 8 limit
tests of the RMSTD values of retrospective SMC charts with increasing considered numbers of
recent control measures. The applied limits of the RMSTD results become more and more strict,
facilitated by the increasing statistical  significance of longer sample series. The limits converge
from  the  tolerant  LSMC towards  the  stricter  LΔ.  Thus,  SMART  can  even  quickly  respond  to
suspicious shifts or trends of recent SMC values that are still within the  ±LSMC limit around the
target value. 
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One  of  the  main  advantages  of  SMART emerges  from  the  feature  that  only  one  prescribed
maximum permissible limit  per analyte is sufficient to realize the entire IQC - including a fast
detection of critical baseline trends as well as single critical outliers. This prescribed limit is either
LSMC or LΔ, whereas the undefined co-limit is implicitly considered by  λ. Hence, the only other
necessary parameter is  λ, which lies within the range 1.8-2.5 for (almost) all present analytes in
clinical chemistry (see Chapter 2.1). Please mention that a suitable choice of λ depends on the
preferred variant of SMART. A value of λ near the lower boundary (λ=1.8) is recommended for
SMART utilizing LSMC and near the upper boundary (λ=2.5) for SMART utilizing LΔ, respectively. 
The design of the method provides a nuanced interpretation of outliers by alert levels. Thus, the
applied prescribed limit for an analyte can be chosen rather strict. It is, however, reasonable to grant
a  small addition  (“bonus”)  to  further  account  for  some  tolerance  in  the  IQC  procedure  (i.e.,
permissible  heteroscedasticity  and  baseline  drift).  The  Sigma  Metric  [13]  of  the  particular
measuring procedure may facilitate the decision on the quantity of this addition. 
As explained in Chapter 2.2, the recommended number of limit tests is 8 for a monitoring window
of  n=15 recent  SMC values.  This  SMART plan  would  simultaneously  evaluate  8 retrospective
sample series with sizes of n={1,3,5,7,9,11,13,15} (applied after each new SMC measure). In the
case  of  just  6  tests,  recommended  sample  sizes  of  RMSTD  tests  would  be  n={1,3,6,9,12,15}
accordingly.  In  principle,  a  default  number  between  6  and  8  limit  tests  appears  optimal.  Test
frequencies outside this range may require modifications of the definitions of alert levels given in
the next chapter. SMART plans, which utilize a retrospective monitoring window of more than 20
SMC values and at least 8 limit tests, should benefit from the optional scoring scheme introduced in
Chapter 3.4. 
SMART is highly recommended as the new default IQC procedure of the German Rili-BAEK. A
change would solve all of the distinct issues of the present mandatory IQC version as discussed in
[16]. Further, the current concept of an RA, which is solely applied at the ends of consecutive data-
collection periods  of  1-3 months,  would become obsolete.  It  would be replaced by the sliding
monitoring window of SMART. 

3.3  The alert levels of SMART

The basic idea behind the definition of alert levels is that a moderate outlier usually breaks just one
limit, whereas one distinct outlier breaks multiple SMART limits at once. Particularly, the newest
SMC value  will  be considered  in  each of  the  applied  limit  tests;  hence,  it  might  solely  cause
multiple  limit  overruns  during one call  of  SMART.  The extended monitoring  of  SMC data  by
multiple limit tests thus  allows a nuanced interpretation of outliers. In fact, sparse and moderate
overruns of limits are indeed “welcome” as early indicators, and the SMART limits can be defined
rather strict. 
Moreover, SMART can detect and evaluate a sequence of recent SMC measures that are still below
the LSMC limit - but finally fail to meet one or more of the stricter subsequent limits. Nevertheless,
the first limit test (LSMC), just applied to the current measure, is generally most important, and it has
to be more prominently assessed than all other limit tests. 
At the end of each call of SMART, the results of all limit tests are processed to reveal the present
alert state of the IQC. These alert states range from pre-failure warnings till critical alerts. Table 1
provides a suitable maximum number of 7 distinguishable state levels for an IQC using just one
control material.  These gradual levels can be used to specifically define preventive actions and
detailed instructions for operators. 
If  two  control  samples  are  used  and  analyzed  simultaneously,  even  more  robust  IQC  state
evaluations of the monitored system are possible. Table 2 provides level definitions and suggested
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instructions for an IQC with two control samples and 6-8 limit tests. 

If an alert level of 4 or higher was reached (and the causing problem has been solved), a restart of
SMART by rejecting of all previous SMC data becomes necessary. During the new initial phase one
might treat the missing retrospective SMC values within the monitoring window (default nmax=15)
as being equal to the target value. To ensure an efficient IQC even at the very beginning, it is highly
recommended to start SMART with a predefined series of nmax-1 repeats of a better suited value
ydummy instead. An adequate value of ydummy is simply the sum of the target value and the strictest
limit, which is LΔ, thus ydummy=y0+LΔ or ydummy=y0+LSMC/λ. 

How to deal with outliers? Outliers are important state indicators and statistical elements. They
should never be ignored even if the SMC measure was directly repeated. Anyway, if an outlier has
clearly been dedicated to an apparent exceptional mistake or a compromised control sample; this
particular outlier should be rejected. Further, in response to an outlier, the number of permitted
direct retries of an SMC has to be strictly limited to avoid repeated measures until a putatively
acceptable result is achieved. If nothing has really been changed on the system (except cleaning or
recalibration), just one direct repeat of an SMC is maximally permissible. 
The optimal number of limit tests, the alert levels, and the suggested instructions were defined by
theoretical thinking. Own practical experience during long-term application may lead to further
optimizations of these settings. 

3.4  An optional score for extended monitoring windows

In cases of monitoring windows considering more than about 20 most recent SMC values (N=nmax,
N>20), it might become beneficial to additionally account for the recentness of a failed limit test.
This can be achieved by a weighting of limit tests in terms of topicality of the evaluated data. A
suitable weight wn is equal to the inverse square root of n, which is the sample size of a particular
RMSTD-limit test (with considered retrospective SMC values 1,...,n). The number of limit tests per
application of SMART should be at least 8. 
The weights  of  failed  limit  tests  yield  a  score.  The score  consists  of  two numbers  due  to  the
extraordinarily  prominent  single-value  limit  test  for  n=1.  The  first  (Sn=1)  is  an  integer,  which
defaults to zero but increases by 1 for a failed test at n=1. The second score (Sn>1) is the normalized
sum of the weights of all failed limit tests (except the first one at n=1):

Score = Sn=1∣Sn>1   with  Sn=1 ∈ { 0,1}   and  Sn>1=

∑
n=2

N

w n

∑
n=2

N
1

√ n

wn=
1

√ n
  for √ 1

n
∑
i=1

n

(y i−y0)
2
>Ln

SMART    ; else  wn=0 (16)

The score is also applicable and recommended for the parallel use of two control samples. Here, the
first  score  can  reach two.  Regarding Sn>1,  the  weights  of  each  control  sample  are  summed up
separately; though, the weights of one control sample are considered to be negative (Sn>1 with minus
sign). Table 3 provides suggested definitions of alert levels based on the scoring scheme for one of
the smallest SMART plans suitable for scoring. 
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4  Conclusion

The study quantitatively revealed that a significant statistical uncertainty in the determination of
RMSTD or RMSD metrics must be considered, if the sample size (n) is below about 50. Thus,
applied  statistical  IQC  limits  need  to  be  adapted  according  to  the  size  of  monitored  data.  A
transition curve of optimal IQC limits is given, which connects the maximum permissible limit for
single measures (n=1) with the RMSTD limit yielded by large-scale statistics (n→∞). 
The findings led to the development of the novel SMART method intended for small monitoring
windows. The method manages the entire IQC with only one mandatory limit statement per analyte.
SMART can distinguish between up to 7 alert levels due to multiple limit tests. If a retrospective
monitoring window of more than 20 values is preferred, an optional weighting of failed single tests
can be applied to further improve the topicality of potential critical alert levels. 

Research Funding: This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.
Competing interests: The author  declares  no potential  conflicts  of  interest  with respect  to the
research, conclusions, authorship, and/or publication of this article.

References

[1] S.  Lester,  K.E.  Harr,  M.  Rishniw,  P.  Pion,  Current  quality  assurance  concepts  and
considerations for quality control of in-clinic biochemistry testing, J. Am. Vet. Med. Assoc.
242 (2013) 182-192. https://doi.org/10.2460/javma.242.2.182.

[2] D.C. Montgomery, Introduction to statistical quality control. seventh ed., Wiley Press, New
York, 2012.

[3] A. Snoussi, M. el Ghourabi, M. Limam, On SPC for short run autocorrelated data. Commun.
Stat. - Simul. Comput. 34 (2005) 219-234. https://doi.org/10.1081/SAC-200047110.

[4] W.H. Woodall, D.C. Montgomery, Research issues and ideas in statistical process control, J.
Qual. Technol. 31 (1999) 376-386. https://doi.org/10.1080/00224065.1999.11979944.

[5] R.J. Howarth, Quality control charting for the analytical laboratory part 1: univariate methods,
Analyst 120 (1995) 1851-1873. https://doi.org/10.1039/an9952001851.

[6] Westgard  Homepage,  CLIA  statements,  https://www.westgard.com/clia-a-quality.htm
(accessed March 2020).

[7] T. Wang, S. Huang. An adaptive multivariate CUSUM control chart for signaling a range of
location  shifts,  Commun.  Stat.  -  Theory  Methods  45  (2016)  4673-4691.
https://doi.org/10.1080/03610926.2014.927494.

[8] M. Riaz,  N. Abbas,  R.J.M.M. Does,  Improving the performance of CUSUM charts,  Qual.
Reliab. Engng. Int. 27 (2011) 415-424. https://doi.org/10.1002/qre.1124.

[9] J.O. Westgard, T. Groth, T. Aronsson, C.-H. de Verdier, Combined Shewart-CUSUM control
chart for improved quality control in clinical chemistry, Clin. Chem. 23 (1977) 1881-1887.

[10] A.S.  Neubauer,  The  EWMA control  chart:  properties  and  comparison  with  other  quality-
control  procedures  by  computer  simulation,  Clin.  Chem.  43  (1997)  594-601.
https://doi.org/10.1093/clinchem/43.4.594.

15 / 22

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.08.20209288doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.08.20209288
http://creativecommons.org/licenses/by-nc/4.0/


[11] J.O.  Westgard,  Rules  and  multirules,  http://www.westgard.com/westgard-rules-and-
multirules.htm (accessed Mar 2020).

[12] S.  Westgard,  H.  Bayat,  J.O.  Westgard,  Analytical  sigma  metrics:  a  review  of  six  sigma
implementation  tools  for  medical  laboratories,  Biochem.  Med.  (Zagreb)  28 (2018) 1-12.
https://doi.org/10.11613/BM.2018.020502.

[13] Six  sigma-based  quality  control,  Learning  guide,  Abbott  Diagnostics,
https://www.corelaboratory.abbott/sal/learningGuide/
ADD-00058819_Six_Sigma_Learning_Guide.pdf (accessed Mar 2020).

[14] C. Beier, Impact of small sample sizes to the internal quality control: statistical uncertainties in
the determination of root mean square deviations with respect to the sample mean (RMSD)
or to a target value (RMSTD), medRxiv (submission expected in Oct 2020).

[15] Revision  of  the  “Guideline  of  the  German  Medical  Association  on  Quality  Assurance  in
Medical Laboratory Examinations – Rili-BAEK” (unauthorized translation), J. Lab. Med. 39
(2015) 26-69. https://doi.org/10.1515/labmed-2014-0046.

[16] C. Beier, Recommended changes of the current version of the German Rili-BAEK, J. Lab.
Med. 43 (2019) 225-233. https://doi.org/10.1515/labmed-2019-0097.

[17] Richtlinie  der  Bundesärztekammer  zur  Qualitätssicherung  labormedizinischer
Untersuchungen, Dt. Aerzteblatt 100 (2003) A3335-A3338.

[18] Desirable  Biological  Variation  Database  specifications,
https://www.westgard.com/biodatabase1.htm (accessed Jan 2019).

[19] EFLM, https://biologicalvariation.eu/bv_specifications/measurand (accessed May 2019).
[20] S.S. Biswas, M. Bindra, V. Jain, P. Gokhale, Evaluation of imprecision, bias and total error of

clinical  chemistry  analysers,  Ind.  J.  Clin.  Biochem.  30  (2015)  104-108.
https://doi.org/10.1007/s12291-014-0448-y.

[21] C.G. Fraser, Biological variation: from principles to practice, AACC Press, Washington DC,
2001, 1-151.

16 / 22

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.08.20209288doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.08.20209288
http://creativecommons.org/licenses/by-nc/4.0/


Table 1:  Alert levels of SMART

Level Indication Description

0 In control No violation of limits

1 Trend warning Up to two limit violations except at n=1

2 Suspicious measure Outlier at n=1 but no other limit violation

3 Problematic measure Outlier at n=1 and one further violation

4 Statistically out-of-control More than two limit violations except at n=1

5 Fully out-of-control Outlier at n=1 and at least two further violations

6 Deprecate lot/device Exceeding a given maximum permissible number of level-4 
or level-5 events within last, e.g., 100 days of operation
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Table 2:  Level definitions and suggested instructions for an IQC with two simultaneously used control samples (CS)

Level Condition Suggested instructions

0 No violations of limits Proceed

1 Only  one  CS with  an  outlier  at  n=1 and no other
violations (single warning)

Visual inspections of devices, utilities, and CS

1 Up to two limit violations except at n=1 of one or
both CS (trend warning)

Exchange of CS and probably other expendable items; extended backup storage of
measured patient samples (if reasonable)

2 Only one CS with an outlier at n=1 and up to one
other violation in each CS

Educated  visual  and  logged  inspections;  new CS aliquot;  repeat  of  SMC;  further
actions might be analyt-specific according to medical relevance, etc.

3 Both CS with an outlier at n=1 and up to one further
violation in each CS

Educated  visual  and  logged  inspections;  cleaning;  recalibration;  new CS aliquots;
repeat of both SMC

4 Both CS with more than two limit violations each;
but no outliers at n=1

Detailed inspection including dis-/reassembly and cleaning of units; exchange of CS
and  reagents;  replacement  of  exchangeable  items  or  preventive  maintenance;
recalibration and repeat of both SMC; (inspection of all utility devices; contact lot
manufacturer)

5 An outlier  at n=1 in combination with at least  two
further limit violations of one or both CS

Detailed inspection including dis-/reassembly and cleaning of units; exchange of CS
and  reagents;  replacement  of  exchangeable  units  or  preventive  maintenance;
recalibration and repeat of both SMC; (inspection of all utility devices; contact lot
manufacturer)

6 Exceeding a predefined maximum number of level-4
or level-5 events within, e.g., 100 days of operation

Reportable incident; re-evaluation of all performance metrics of the device/method
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Table 3:  Definitions of alert levels for two concurrently used control samples utilizing the optional
scoring  scheme.  The  dedicated  SMART  plan  is:  nmax=21  with  8  limit  tests  at
n={1,3,6,9,12,15,18,21}. 

Level S(n=1) S(n>1)

0 0 0

1 1 0

1 0 [-0.3,0.3]

2 1 [-0.24,0.24]

3 2 [-0.24,0.24]

4 0 <-0.3 or >0.3

5 1 or 2 <-0.24 or >0.24

6 see Table 2 see Table 2

The suggested ranges are approximately consistent with the “condition” statements given in Table
2. The value 0.24 is slightly below the normalized weight of the second test (n=3), whereas 0.3 has
been  set  to  be  slightly  smaller  than  the  normalized  sum  of  the  three  smallest  test  weights
(for n={15,18,21}).
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Figure 1:  Common relations between maximum permissible bias δmax and standard deviation smax in
clinical chemistry are utilized to approximate a general value of  λ. (A) Frequency histograms of
ratios  φ=δmax/smax of  medical  analytes  taken  from  Ricos  et  al.  2014  (light  gray,  150  entries,
mean=1.1) and the German Rili-BAEK 2003 (dark gray, 90 entries, mean=1.34) (see Chapter 2.1).
Histogram sampling and statistics were done in log10 space. (B) Functional relations between λ and
φ for 2 different κ according to Eq. (5). Related one-sided CI’s are given in parenthesis. The ratios φ
are presented on a log10 scale. 
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Figure 2:  The graphs show the relative increase of the statistical uncertainty to determine a reliable
value of RMSTD/RMSD based on small sample sizes n.  All presented functions converge to 1 at
n→∞. (A) The graph is related to the MDCI theory at a confidence interval of 95% (black line).
(B,C) The black functions represent the statistical uncertainty of the RMSTD metric given by the
CIΔ

up approach with  ν=0.6. The CIΔ
up approach becomes itself inherently uncertain at very small
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sample sizes n<6, indicated by gray corridors and explained in [14] and Chapter 3.1. Further, a
value for n=1 is not defined by the CIΔ

up approach. Thus, the dashed lines mark extrapolations by
multi-parametric fits of the boundaries of the corridors. The corridors in (B) and (C) differ in the
related confidence interval and the type of error propagation: (B) 95%, maximum error propagation;
(C) 99%, Gaussian error propagation (see Chapter 3.1). Graph (C) also includes the MDCI function
at CI-99% indicated by green dots. A best-matching function with same curvature (n─0.45) is aligned
to all graphs (red lines). This type of function is used in the SMART method. 
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