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Abstract 1 

Virologic testing for SARS-CoV-2 has been central to the COVID-19 pandemic response, but 2 

interpreting changes in incidence and fraction of positive tests towards understanding the 3 

epidemic trajectory is confounded by changes in testing practices. Here, we show that the 4 

distribution of viral loads, in the form of Cycle thresholds (Ct), from positive surveillance samples 5 

at a single point in time can provide accurate estimation of an epidemic’s trajectory, subverting 6 

the need for repeated case count measurements which are frequently obscured by changes in 7 

testing capacity. We identify a relationship between the population-level cross-sectional 8 

distribution of Ct values and the growth rate of the epidemic, demonstrating how the skewness 9 

and median of detectable Ct values change purely as a mathematical epidemiologic rule without 10 

any change in individual level viral load kinetics or testing. Although at the individual level 11 

measurement variation can complicate interpretation of Ct values for clinical use, we show that 12 

population-level properties reflect underlying epidemic dynamics. In support of these theoretical 13 

findings, we observe a strong relationship between the time-varying effective reproductive 14 

number, R(t), and the distribution of Cts among positive surveillance specimens, including median 15 

and skewness, measured in Massachusetts over time. We use the observed relationships to 16 

derive a novel method that allows accurate inference of epidemic growth rate using the distribution 17 

of Ct values observed at a single cross-section in time, which, unlike estimates based on case 18 

counts, is less susceptible to biases from delays in test results and from changing testing 19 

practices. Our findings suggest that instead of discarding individual Ct values from positive 20 

specimens, incorporation of viral loads into public health data streams offers a new approach for 21 

real-time resource allocation and assessment of outbreak mitigation strategies, even where 22 

repeat incidence data is not available. Ct values or similar viral load data should be regularly 23 

reported to public health officials by testing centers and incorporated into monitoring programs.  24 
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Introduction 25 

Tracking trends in the incidence of infection during an epidemic are vital for deciding on 26 

appropriate public health response measures (1–3). This information can help decision-makers 27 

understand the need for and efficacy of non-pharmaceutical interventions, to plan the deployment 28 

of public health resources, and the use of scarce hospital beds and personal protective 29 

equipment. In the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, 30 

estimating the outbreak trajectory and key epidemiological parameters such as the time-varying 31 

effective reproductive number, R(t), has generally been done by using daily observed case 32 

counts, percent of tests positive, or death counts, ideally confirmed by reverse-transcription 33 

quantitative polymerase chain reaction (RT-qPCR) testing. Because of the nonspecific symptoms 34 

and variable incubation periods of COVID-19 (4, 5), the limited and time-varying availability of 35 

testing in many parts of the world, including in the United States, and the delay between infections 36 

and reported tests or confirmed deaths (6), these approaches are limited in their ability to reliably 37 

and promptly detect underlying changes in infection counts (7). In particular, whether changes in 38 

case counts at different times have stemmed from changes in testing or reflect epidemic growth 39 

or decay have been major topics of debate with important economic, health and political 40 

ramifications. 41 

Virologic testing is an important method for determining the infection status of an individual and 42 

the prevalence of infection in a community. RT-qPCR testing is currently the primary approach 43 

for virus detection (8, 9). While these tests have quantitative results in the form of cycle threshold 44 

(Ct) values, which are inversely correlated with log10 viral loads, they are often reported only as 45 

binary results (10, 11). Previous work for other infectious diseases has focused on identifying 46 

correlations between Ct values and clinical severity and transmissibility (12–14). In addition, Ct 47 

values or viral loads may be useful in clinical determinations about the need for isolation and 48 

quarantine for SARS-CoV-2 (11, 15), in determining the phase of an individual’s infection (16, 17) 49 

and predicting disease severity (16, 18). 50 

Using viral loads for clinical and epidemiological purposes requires an understanding of the viral 51 

load kinetics over the course of infection. For SARS-CoV-2, this has not been fully characterized 52 

due to difficulties in quickly identifying and repeatedly testing asymptomatic infections. However, 53 

many salient features of the viral load trajectory have been identified using rhesus macaque 54 

models and longitudinal human studies with repeated sampling after symptom onset (19–25). 55 
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From these properties, assessments of infectiousness over the course of infection (5, 26) and 56 

population-level viral load distributions by time since infection can be reconstructed (27). 57 

While individual viral load kinetic trajectories may potentially be used to diagnose the clinical 58 

course of infection and determine requirements of test sensitivities (27), albeit with caveats from 59 

sampling variability and different testing platforms, population-level viral loads can be used for 60 

epidemiological assessments of an outbreak. Sample surveys with virologic tests provide cross-61 

sectional estimation of the prevalence of infection, and repeated surveys can provide information 62 

on the trends in prevalence and incidence over time (28). Population-level signals in 63 

measurements obtained under the same sampling protocol and using the same instrument will 64 

therefore reflect underlying epidemiological trends. However, a consistently observed but 65 

currently unexplained phenomenon is that, as the epidemic declines, the distribution of observed 66 

Ct values above the limit of detection appears to systematically decline (15, 16). 67 

Previous work has used serologic data to infer unobserved individual-level infection events and 68 

population-level parameters of infectious disease spread. In particular, antibody dynamics have 69 

been used in tools to identify the infecting strain for multi-strain pathogens (29, 30) and to identify 70 

the time since infection for an individual (31, 32). At the population level, repeated sampling of 71 

antibody levels has been used to identify seasonal forcing mechanisms for recurrent epidemics 72 

(33), estimate an average incidence rate (34–37), and identify the force of infection at various 73 

time points (32, 38). Although virologic data may exhibit more heterogeneity than serological data, 74 

they similarly provide single point-in-time observations of underlying within-host infection kinetics. 75 

Here, we use virologic data, which can be obtained sooner after infection than antibody titers, to 76 

provide real-time monitoring of epidemic dynamics, and demonstrate an approach using a single 77 

cross-sectional survey. 78 

In this paper, we show that the changing population distribution of Ct values obtained from positive 79 

SARS-CoV-2 samples can be used to infer epidemic dynamics. Early in the epidemic, infection 80 

numbers are growing rapidly and the average infection is recent; as the epidemic wanes, 81 

however, average time since exposure increases as the rate of new infections decreases—82 

analogous to the average age being lower in a growing vs. declining population of organisms (39). 83 

Importantly, within infected hosts, Ct values change over time: the viral population undergoes 84 

rapid exponential growth after inoculation, succeeded by slower exponential decline as the 85 

infection is cleared and low levels of viral RNA persist. Surveillance sampling of infected 86 

individuals during epidemic growth is therefore more likely to measure individuals who were 87 
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recently infected and therefore in the acute phase of their infection. Conversely, sampling infected 88 

individuals during epidemic decline is more likely to capture individuals in the convalescent phase, 89 

typically sampling lower quantities of viral RNA. We first demonstrate that rate of transmission is 90 

highly correlated with the distribution of detectable Ct values in infected individuals over time using 91 

both simulated and real data from Massachusetts. We then formalize this intuition into a novel 92 

and robust method able to use viral load measurements (i.e., RT-qPCR Ct values or other forms 93 

of virus quantitation) from single cross-sectional virologic test surveys to determine an 94 

instantaneous outbreak trajectory, without need for repeated measures.  95 
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Results 96 

Relationship between observed Ct values and epidemic dynamics 97 

To first demonstrate how the distribution of observed Ct values changes over the course of an 98 

outbreak, we simulate viral load trajectories from infections arising under a deterministic 99 

susceptible-exposed-infectious-recovered (SEIR) model (Fig. 1A). At each day of the outbreak, 100 

Ct values are observed from a random sample of the population using the population-level Ct 101 

distribution model described in Materials and Methods and shown in Fig. S1. Assumed parameter 102 

values for the distribution of Ct values for a given time since infection are the point estimates in 103 

Table S1, capturing individual-level time courses of viral kinetics post infection and the substantial 104 

variation in observations resulting from individual variation and sampling differences. By drawing 105 

simulated samples for testing from across the population at specific time points, these simulations 106 

recreate realistic cross-sectional distributions of detectable viral loads across the course of an 107 

epidemic. 108 

Throughout the course of the outbreak, shown in Fig. 1, there is a strong relationship between 109 

growth rate of new infections at each timepoint, the cross-sectional distribution of time since 110 

infection of RT-qPCR-detectable infections at that time point, and distribution of detectable viral 111 

loads in the simulated SEIR population at that time point. To infer epidemic growth rate, we would 112 

ideally observe the distribution of time since infection of infected individuals, because it is directly 113 

related to the average growth rate when those individuals were infected (Fig. 1A-C). However, 114 

because infections are often unobserved events, we rely on an observable quantity, such as viral 115 

load, as a proxy for the time since infection (Fig. 1D-G). Throughout, we assume that there is a 116 

single infection time for each individual and ignore re-infection, as it appears to be a negligible 117 

portion of infections in the epidemic so far (40). 118 

Since the viral load is related to time since infection for each individual (Fig. 1D), and the average 119 

time since infection varies over the outbreak (Fig. 1C), the distributional properties of the 120 

measured viral loads (i.e., median and skewness) vary with the growth rate of new cases (Fig. 121 

1H, Fig. S2). Across individuals, this relationship holds, even after accounting for significant 122 

individual level variation in peak viral loads and growth/clearance kinetics and errors in quantifying 123 

viral load. This relationship holds for any observation model (i.e., using a different RT-qPCR 124 

instrument or in a different lab); if the distribution of observations is an estimable function of the 125 

distribution of times since infection (which it is), then the expected median and skewness of 126 

observations at a given point in time are predictable from the growth rate. 127 
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Demonstration using simulated data 128 

We used our simulation framework to investigate how properties of the Ct distribution relate to 129 

the effective reproductive number, R(t), if observed in a population similar to Massachusetts, USA. 130 

Here, R(t) is used essentially as a reflection of the growth, or decay, of the epidemic in time. We 131 

find that both the median Ct (which would vary with the individual assay) as well as the skewness 132 

of the Ct distribution (which would be largely test- and lab-agnostic) show a strong correlation with 133 

R(t) (Fig. 2); as R(t) declines, the median Ct of sampled individuals increases and, notably, the 134 

distribution becomes more negatively skewed. An important caveat for this comparison is that 135 

R(t) is the effective reproductive number on that day, whereas Ct values are observed from 136 

infections generated across many days in the past.  137 
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 138 

Figure 1. (A) Simulated per capita incidence, daily growth rate, and average growth rate over the preceding 139 

35 days of detectable infections. Binocular symbols represent observation times used in subsequent plots. 140 

(B) Relationship between growth rate as it varies over the epidemic and the median time since infection. 141 

(C) Distribution of times since infection for observed, detectable infections at 50, 75, 100, 125, and 150 142 

days after the epidemic start (histograms) and daily median (thick green line) and central 50% percentiles 143 

for time since infection. (D) Modeled mean viral kinetics on each day post infection. Labels show mean Ct 144 

value corresponding to the median time since infection at different points along the epidemic curve. (E) 145 

Simulated RT-qPCR cycle threshold (Ct) value trajectories of 500 individuals randomly sampled from the 146 

epidemic. Swab symbols represent sampling times. (F) Modeled viral kinetics showing median Ct value 147 

(purple line) and 95% quantiles on simulated observations. (G) Distribution of observed, detectable Ct 148 

values at each of the five test days (histograms) and median and central 50% percentiles (thick and thin 149 

lines, respectively) on Ct values observed over time. (H) between growth rate and the skew of the 150 
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observable Ct distribution. All results are based on an SEIR model in a population of 1,000,000 with R0 = 151 

2.5, average latent period of 6.41 days, and average infectious period of 8.79 days, and Ct values were 152 

simulated based on inferred post-infection viral kinetics. In E, for visual simplicity, each individual’s Ct 153 

values are assumed to follow the same post-infection trajectory with only a shift in the mean; this 154 

assumption is not used elsewhere in this paper.  155 
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 156 

Figure 2. (A) Simulated incidence of new infections (red) and corresponding effective reproductive number 157 

over time, R(t) (green). (B) Weekly distribution of positive (detectable) Ct values. The blue line shows the 158 

smoothed median, the dotplot shows a subset of the observed, binned Ct values, and the violin plot shows 159 

densities. (C&D) Relationship between the skewness and median of the observed Ct distribution and the 160 

mean R(t) per week. Blue line and shaded region shows fitted smoothing spline +/- 1 standard error. Only 161 

weeks with more than 10 detectable Ct values are shown. (E) Plotted together, the median and skewness 162 

of the observed Ct distribution display a strong correlation with R(t) (color of point) per week.   163 
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Observation of trends in Ct values from a major tertiary care hospital in Massachusetts 164 

To investigate if our predicted relationship between the distribution of Ct values and R(t) is borne 165 

out in reality, we used fully anonymized Ct values measured from nearly all hospital admissions 166 

into Brigham & Women’s Hospital in Boston, MA, between April 3 and August 31, 2020, and 167 

aligned them with estimates for R(t) based on case counts in Massachusetts. Tests taken prior to 168 

April 3 were restricted to symptomatic patients only, while those after April 15 represented 169 

universal testing of all hospital admission, regardless of symptomatology. The median and 170 

skewness of the Ct distribution both dropped during this period, strikingly similar to our predictions 171 

for the peak and subsequent decline of an epidemic. Although the trend was the same, properties 172 

of the Ct distribution exhibited higher variation across weeks, likely resulting from changes in 173 

transmission intensity (e.g., due to the implementation of and adherence to interventions), small 174 

sample sizes in some weeks, and potential sampling bias. In particular, it is important to note that 175 

sampling was initially biased in early April towards symptomatic individuals, resulting in more 176 

individuals being sampled near the peak of their viral loads (i.e., symptom onset), and therefore 177 

skewing the Ct distribution towards lower values. Indeed, we were able to recreate this positive 178 

skew by simulating observed Ct values with early biased sampling towards symptomatic 179 

individuals (Fig. S3).  Nevertheless, the relationship held. Importantly for monitoring potential, the 180 

relationship demonstrated slight reductions in median Ct (increases in median viral load) and 181 

slightly reduced negative skew as cases, and thus estimated R(t), began to increase again in the 182 

state in July (Fig. 3).  183 
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 184 

Figure 3. (A) Estimates of the effective reproductive number, R(t) (black line and green area), based on 185 

the daily incidence of new cases in Massachusetts (grey bars). We used the EpiNow2 package (see 186 

Materials and Methods), which uses a Bayesian approach to first back-calculate incidence by date of 187 

infection (red line and region) and subsequently infer R(t). Shaded regions show 95% credible intervals and 188 

solid lines show posterior means. (B) Weekly distribution of positive (detectable) Ct values from Brigham & 189 

Women’s Hospital in Boston, MA. The blue line shows the smoothed median, the dotplot shows the 190 

observed, binned Ct values, and the violin plot shows densities. (C&D) Relationship between the skewness 191 

and median of the observed Ct distribution per day against the posterior mean daily R(t). Blue line and 192 

shaded region shows fitted smoothing spline +/- 1 standard error. Only days with more than 10 detectable 193 

Ct values are shown. (E) As in Fig. 2, the median and skewness of the observed Ct distribution can be 194 

combined to demonstrate a strong correlation with R(t) (color of point) per day.  195 
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Epidemic growth rates can be inferred based on cross-sectional viral load data 196 

Next, we derive a method to formally infer the epidemic growth rate given a single cross-section 197 

of observed, detectable Ct values. If the population-level distribution of Ct values on each day 198 

post infection is known, then the distribution of observed Ct values from a largely random sample 199 

of infected individuals will reflect their times since infection, which in turn reflects the growth rate 200 

when those individuals were infected. The likelihood of the observed viral loads can then be 201 

written as a function of the growth rate (Materials and Methods), allowing estimation of the 202 

average growth rate at any time point in the outbreak. In many cases, especially for a novel 203 

infection such as SARS-CoV-2, the population-level dynamics of viral loads and the resulting 204 

distribution of Ct values following infection may not be known with certainty. However, available 205 

data and qualitative understanding can be sufficient to define Bayesian priors for estimating key 206 

viral kinetics parameters. We therefore developed a Bayesian framework to incorporate uncertain 207 

prior distributions on the population-level Ct distribution as well as on the growth rate.  208 

Using the same simulated population as in Fig. 2, we fit the model to cross-sectional samples at 209 

5 day intervals using the Bayesian priors in Table S1. These analyses demonstrate how a 210 

single cross-sectional sample of individuals may be used to estimate properties of the outbreak. 211 

Fig. 4A shows the posterior growth rate estimates alongside the true growth rate at each time 212 

point. The credible interval widths reflect the number of detectable Ct values included in each 213 

cross-section, and also uncertainty in the viral kinetics and Ct distribution parameters. Larger 214 

sample sizes than we drew here and stronger accurate priors would help constrain these 215 

estimates. However, with large uncertainties incorporated in this particular version of the 216 

framework, the method was still able to discern if the growth rate was positive or negative, even 217 

if the point estimates were imprecise (Fig. 4B). Fig. 4C and 4D demonstrates how the model is 218 

fitted to the observed Ct distribution and the corresponding time-since-infection distribution for 219 

individuals observed on a particular day.  220 
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 221 

Figure 4. (A) Epidemic growth models independently fit to cross sections at 5-day intervals. The black line 222 

shows infection incidence. The orange line shows the average growth rate over the 35 days preceding each 223 

day. The pointrange plot shows the posterior median and 95% credible intervals (CIs) of the average growth 224 

rate estimated on that day. Points are colored by the number of detectable Ct values used for fitting. (B) 225 

Posterior growth rate estimates against true 35-day average growth rates. Dashed line shows the 1:1 line. 226 

Points and ranges show posterior medians and 95% CIs respectively. (C) Model-predicted Ct distributions 227 

(line and blue shaded region) fitted to the observed Ct distribution (histogram) during epidemic growth, peak 228 

and decline phases. Black line and blue region show posterior median and 95% CIs. (D) Posterior estimates 229 

for the relative time since infection distribution during epidemic growth, peak and decline phases. Light 230 

shaded region shows 95% CIs, dark shaded region shows central 95% CIs, and solid line shows posterior 231 

mean. Note that the x-axis is reversed, such that the left hand side shows older infections and the right 232 

hand side shows more recent infections.  233 
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Discussion 234 

The usefulness of Ct values for public health decision making is currently the subject of much 235 

discussion and debate. One unexplained observation which has been consistently observed in 236 

many locations is that the distribution of observed Ct values has decreased over the course of 237 

the current SARS-CoV-2 pandemic, which has led to questions over whether the virus has lost 238 

some amount of fitness (15, 16, 18). Our results demonstrate instead that this is expected as a 239 

purely epidemiologic phenomenon, without any change in individual-level viral dynamics or testing 240 

practices. We find that properties of the population-level Ct distribution strongly correlate with 241 

estimates for the effective reproductive number in Massachusetts in line with our theoretical 242 

predictions. The method described here uses this phenomenon to estimate a community’s 243 

position in the epidemic curve, as defined by the growth rate, based on a single cross-sectional 244 

survey of virologic test data. We propose a simple method to monitor the skewness and median 245 

of the Ct value distribution to estimate changes in the epidemic trajectory. Despite the challenges 246 

of sampling variability, individual-level differences in viral kinetics, and limitations in comparing 247 

results from different laboratories or instruments, our results demonstrate that Ct values, with all 248 

of their quantitative variability for an individual, can be highly informative of population-level 249 

dynamics. This information is lost when measurements are reduced to binary classifications. 250 

These results are sensitive to the true distribution of observed viral loads each day after infection. 251 

Different swab types, sample types, or instruments may alter the variability in the Ct distribution 252 

(41,42), leading to different relationships between the specific Ct distribution and the epidemic 253 

trajectory. Setting-specific calibrations, for example based on a reference range of Ct values, will 254 

be useful to ensure accuracy. Here, we generated a viral kinetics model based on observed 255 

properties of measured viral loads (proportion detectable over time following symptom onset, 256 

distribution of Ct values from true specimens), and used these results to inform priors on key 257 

parameters when estimating growth rates. The growth rate estimates can therefore be improved 258 

by choosing more precise, accurate priors relevant to the observations used during model fitting. 259 

Results could also be improved if the symptom status of the sampled individuals is known, 260 

allowing the inclusion of viral kinetics parameters specific to symptomatic individuals (16, 43). The 261 

same may be true if demographic features such as age are associated with viral load levels, 262 

although there is limited evidence to suggest this so far (16, 18, 24, 44). The distribution could 263 

also be adjusted to account for any individuals treated with antivirals, such as remdesivir, that 264 

may reduce viral loads (45). A similar approach may also be possible using serologic surveys, as 265 
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an extension of work that has related time since infection to antibody titers for other infectious 266 

diseases (32, 38). 267 

Our results demonstrate that this method can be used to estimate epidemic growth rates based 268 

on  data collected at a single time point, and independent of assumptions about the intensity of 269 

testing. Comparisons of simulated Ct values and observed Ct values with growth rates and R(t) 270 

estimates validate this general approach. Results should be interpreted with caution in cases 271 

where the observed Ct values are not from a population census or a largely random sample. 272 

When testing is based primarily on the presence of symptoms or follow-up of contacts of infected 273 

individuals, people may be more likely to be sampled at specific times since infection and thus 274 

the distribution of observed Cts would not be representative of the population as a whole. This 275 

method may be most useful in settings where representative surveillance samples can be 276 

obtained independent of COVID-19 symptoms—and importantly in cities or municipalities that 277 

wish to evaluate and monitor, in real-time, the role of various epidemic mitigation interventions, 278 

for example by conducting even a single random virologic testing effort as part of surveillance.  279 

This method has a number of limitations. While the Bayesian framework incorporates the 280 

uncertainty in viral load distributions into inference on the growth rate, parametric assumptions 281 

and reasonably strong priors on these distributions aid in identifiability. If these parametric 282 

assumptions are violated, inference may not be reliable. This method may also overstate 283 

uncertainty in the viral load distributions if results from different machines or protocols are used 284 

to inform the prior. A more precise understanding of the viral load kinetics, and modeling those 285 

kinetics in a way that accounts for the epidemiologic and technical setting of the measurements, 286 

will help improve this approach and determine whether Ct distribution parameters from different 287 

settings are comparable. Because of this, quantitative measures from RT-qPCR should be 288 

reported regularly for SARS-CoV-2 cases and early assessment of pathogen load kinetics should 289 

be a priority for future emerging infections. The use of a control procedure in the measurements, 290 

like using the ratio of detected viral RNA to detected human RNA, could also improve the reliability 291 

and comparability of Ct measures. 292 

Future research will evaluate how to incorporate these results into an overall inferential framework 293 

for real-time monitoring of epidemic trajectories. In particular, we are currently adapting the 294 

framework to combine multiple cross-sectional datasets, include the proportion of negative viral 295 

tests in the likelihood, and to use more flexible parametric assumptions for epidemic growth. By 296 

using Ct values to determine the growth rate of incident cases and using virologic positivity rates 297 
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to assess prevalence of infection, as well as potentially incorporating measured covariates and 298 

symptom status, a richer picture of the path and likely future of an outbreak can be realized from 299 

one or more virologic surveys.  300 

The Ct value is a measurement with magnitude, which provides information on underlying viral 301 

dynamics. Although there are challenges to relying on single Ct values for individual-level decision 302 

making, the aggregation of many such measurements from a population contains substantial 303 

information. These results demonstrate how population-level distributions of Ct values can 304 

provide information on important epidemiologic questions of interest, even from a single cross-305 

sectional survey. Better epidemic planning and more targeted epidemiological measures can then 306 

be implemented based on this survey, or use of Ct values can be combined with repeated 307 

sampling to maximize the use of available evidence. 308 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.08.20204222doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.08.20204222
http://creativecommons.org/licenses/by-nc/4.0/


 

1 

Materials and Methods 309 

Model for Population-Level Ct Distribution 310 

We fit a model for the distribution of viral loads at a given day after infection, 𝑎. Denote this density 311 

by 𝑝𝑎(𝑥), where x is the viral load. We denote by 𝜙𝑎 the probability that an individual will have a 312 

detectable viral load a days after infection. 313 

This model is fit based on several key features of the viral load kinetics that have been determined 314 

for SARS-CoV-2 infection. In symptomatic cases, detectable viral loads occur prior to the onset 315 

of symptoms and generally decline after symptom onset (19, 46, 47). Since infectiousness 316 

appears to peak before symptom onset, viral load likely does as well (26). Challenge studies in 317 

rhesus macaques indicate that viral load peaks around 2 days after infection (22, 23). Combined 318 

with evidence of an incubation period in humans of around 5 days (5), these observations suggest 319 

rapid exponential rise to a peak viral load during the incubation period and a high viral load upon 320 

symptom onset of approximately 6–9 log10 copies RNA per mL (19, 25). However, most existing 321 

viral load time series begin after symptom onset, and it is therefore difficult to corroborate 322 

assumptions for the pre-symptomatic period. Waning of viral loads occurs following symptom 323 

onsets, with a majority of patients undetectable around 24 days after onset (19, 20, 24, 25). At 324 

any point in the infection, there is a considerable amount of person-to-person variation in viral 325 

loads (19, 25), including a possible difference by symptom status (20, 48). This may also reflect 326 

protocols used to test the samples and the site and method of sample collection (25). 327 

We develop a parametric model for the population-level distribution of Ct values. The measured 328 

Ct value a days after infection follows a Gumbel distribution with a mean that depends on a and 329 

a fixed standard deviation SD. The mean log-viral load at day a follows a two-hinge function that 330 

is at the true zero value of VLzero for 𝑎 ≤  𝑡𝑠ℎ𝑖𝑓𝑡 , rises linearly to a peak log-viral load of VLpeak at 331 

𝑎 =  𝑡𝑝𝑒𝑎𝑘, wanes linearly to a log-viral load of VLswitch at 𝑎 =  𝑡𝑠𝑤𝑖𝑡𝑐ℎ , and then wanes at a slower 332 

linear rate until it reaches the limit of detection (LOD), a log-viral load of VLLOD at 𝑎 =  𝑡𝐿𝑂𝐷. That 333 

is, the mean log-viral load is given by: 334 

𝑉𝐿𝑚𝑒𝑎𝑛(𝑎) = 𝑉𝐿𝑧𝑒𝑟𝑜 + 𝐼𝑎>𝑡𝑠ℎ𝑖𝑓𝑡

𝑉𝐿𝑝𝑒𝑎𝑘 − 𝑉𝐿𝑧𝑒𝑟𝑜

𝑡𝑝𝑒𝑎𝑘 − 𝑡𝑠ℎ𝑖𝑓𝑡
(𝑎 − 𝑡𝑠ℎ𝑖𝑓𝑡) + 𝐼𝑎>𝑡𝑝𝑒𝑎𝑘

𝑉𝐿𝑠𝑤𝑖𝑡𝑐ℎ − 𝑉𝐿𝑝𝑒𝑎𝑘

𝑡𝑠𝑤𝑖𝑡𝑐ℎ − 𝑡𝑝𝑒𝑎𝑘
(𝑎 − 𝑡𝑝𝑒𝑎𝑘)335 

+ 𝐼𝑎>𝑡𝑠𝑤𝑖𝑡𝑐ℎ

𝑉𝐿𝐿𝑂𝐷 − 𝑉𝐿𝑠𝑤𝑖𝑡𝑐ℎ

𝑡𝐿𝑂𝐷 − 𝑡𝑠𝑤𝑖𝑡𝑐ℎ

(𝑎−𝑡𝑠𝑤𝑖𝑡𝑐ℎ). 336 
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The log-viral load is converted to a Ct value by: 𝐶𝑡𝑚𝑒𝑎𝑛(𝑎) = 𝐶𝑡𝐿𝑂𝐷 − 𝑙𝑜𝑔2(10) (𝑉𝐿𝑚𝑒𝑎𝑛(𝑎) −337 

𝑉𝐿𝐿𝑂𝐷) where the limit of detection on the Ct scale is CtLOD = 40 and on the viral load scale is 338 

VLLOD = 3. The Ct value at 𝑎 days after infection, 𝐶𝑡(𝑎), is then distributed according to 𝑝𝑎(𝐶𝑡), a 339 

Gumbel distribution with mean 𝐶𝑡𝑚𝑒𝑎𝑛(𝑎) and variance 𝑆𝐷2. This model captures the shape of 340 

the observed mean viral load over time and the features described above. However, it 341 

overestimates the proportion of infections that will be detectable three weeks or more after 342 

infection. To account for this, each day after tswitch, we add an additional probability, paddl, that an 343 

individual will clear the virus and become undetectable for that day forward, in addition to the 344 

probability that the Ct value rises above the limit of detection. So the probability of being 345 

detectable on day 𝑎 ≤ 𝑡𝑠𝑤𝑖𝑡𝑐ℎ  is 𝜙𝑎 = 𝑃[𝐶𝑡(𝑎) ≤ 𝐶𝑡𝐿𝑂𝐷] and the probability of being detectable on 346 

day 𝑎 > 𝑡𝑠𝑤𝑖𝑡𝑐ℎ is 𝜙𝑎 = 𝑃[𝐶𝑡(𝑎) ≤ 𝐶𝑡𝐿𝑂𝐷](1 − 𝑝𝑎𝑑𝑑𝑙)𝑎−𝑡𝑠𝑤𝑖𝑡𝑐ℎ. 347 

We used a least-squares optimization framework to obtain parameter point estimates that gave 348 

rise to viral kinetics with the following constraints: the proportion of individuals that are detectable 349 

on each day post symptom onset declines in line with existing data (49), and the lower 99th 350 

percentile of possible Ct values is in line with the lowest observed Ct value in our Brigham & 351 

Women’s Hospital dataset. We used these point estimates to derive informative priors on key 352 

model parameters, as described in Table S1. The resulting distribution of Ct values and 353 

detectable proportions at each day 𝑎 after infection are shown in Fig. S1. These parameters are 354 

used as fixed parameters for the schematic (Fig. 1). 355 

Likelihood for Parametric Model of Outbreak Trajectory 356 

Given a known population-level Ct distribution for each day after infection and a known 357 

detectable probability, 𝑝𝑎(𝑥)and 𝜙𝑎, respectively, we can determine the likelihood of the 358 

probability of infection 𝑎 days prior to the test day, 𝜋𝑎, for all 𝑎 with a positive probability of 359 

detectable viral load, given the observed detectable viral loads 𝑥1, . . . , 𝑥𝑛. Let {𝐴𝑚𝑖𝑛 , . . . , 𝐴𝑚𝑎𝑥 } 360 

denote the days with a positive probability of detectable viral load, so that an individual with a 361 

detectable viral load must have been infected between 𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 days prior to testing. We 362 

further assume that each individual’s viral load is independent of the viral load of other 363 

individuals in the sample, conditional on the probability of infection for each day. 364 

𝑃(𝑋𝑖 = 𝑥𝑖|𝜋𝐴𝑚𝑖𝑛
, . . . , 𝜋𝐴𝑚𝑎𝑥

)  = ∑𝐴𝑚𝑎𝑥
𝑎=𝐴𝑚𝑖𝑛

𝑝𝑎(𝑥𝑖) 𝜋𝑎

∑
𝐴𝑚𝑎𝑥
𝑐=𝐴𝑚𝑖𝑛

𝜙𝑐𝜋𝑐

. 365 

Thus, the likelihood and log-likelihood, respectively, are given by: 366 
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𝐿(𝜋𝐴𝑚𝑖𝑛
, . . . , 𝜋𝐴𝑚𝑎𝑥

|𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛)  =  ∏𝑛
𝑖=1 ∑𝐴𝑚𝑎𝑥

𝑎=𝐴𝑚𝑖𝑛

𝑝𝑎(𝑥𝑖) 𝜋𝑎

∑
𝐴𝑚𝑎𝑥
𝑐=𝐴𝑚𝑖𝑛

𝜙𝑐𝜋𝑐

, and 367 

𝑙(𝜋𝐴𝑚𝑖𝑛
, . . . , 𝜋𝐴𝑚𝑎𝑥

|𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛)  = ∑𝑛
𝑖=1 {𝑙𝑜𝑔 [∑𝐴𝑚𝑎𝑥

𝑎=𝐴𝑚𝑖𝑛
𝑝𝑎(𝑥𝑖) 𝜋𝑎] − 368 

𝑙𝑜𝑔 [∑𝐴𝑚𝑎𝑥
𝑐=𝐴𝑚𝑖𝑛

𝜙𝑐𝜋𝑐]} . 369 

 370 

Assume that the outbreak, over the days prior to testing, is experiencing exponential growth or 371 

decline of the daily probability of infection. Then for each day 𝑎 ∈ {𝐴𝑚𝑖𝑛 , . . . , 𝐴𝑚𝑎𝑥 }, 𝜋𝑎 =372 

 
𝑒−𝛽𝑎

∑
𝐴𝑚𝑎𝑥
𝑑=𝐴𝑚𝑖𝑛

𝑒−𝛽𝑑
. Note that 𝛽 >  0 implies a growing outbreak, 𝛽 <  0 a waning outbreak, and 𝛽 =  0 373 

a flat outbreak with a constant probability of infection across the days prior to testing. Then the 374 

likelihood and log-likelihood for 𝛽 given the observed viral loads are: 375 

𝑃(𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛|𝛽)  =  ∏

𝑛

𝑖=1

∑

𝐴𝑚𝑎𝑥

𝑎=𝐴𝑚𝑖𝑛

𝑝𝑎(𝑥𝑖) 𝑒−𝛽𝑎

∑𝐴𝑚𝑎𝑥
𝑐=𝐴𝑚𝑖𝑛

𝜙𝑐𝑒−𝛽𝑐
 376 

𝑙(𝛽|𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛)  = ∑

𝑛

𝑖=1

{𝑙𝑜𝑔 [ ∑

𝐴𝑚𝑎𝑥

𝑎=𝐴𝑚𝑖𝑛

𝑝𝑎(𝑥𝑖) 𝑒−𝛽𝑎] − 𝑙𝑜𝑔 [ ∑

𝐴𝑚𝑎𝑥

𝑐=𝐴𝑚𝑖𝑛

𝜙𝑐𝑒−𝛽𝑐]} 377 

More flexible parametric models can be used, including assuming piecewise exponential growth 378 

or that the probability of infection on each day follows some other function. In these cases, the 379 

parametric model for 𝜋𝑎 is simply used in place of 𝑒−𝛽𝑎 in this likelihood and log-likelihood. 380 

Additionally, nonparametric estimation can be performed by maximizing the likelihood in terms 381 

of 𝜋𝑎 directly for 𝑎 ∈ {𝐴𝑚𝑖𝑛 , . . . , 𝐴𝑚𝑎𝑥 }. This approach, however, will likely give very high 382 

variance unless there is a large sample size and the viral distribution has a small variance 383 

compared to the trend in the mean over time. 384 

Bayesian Framework for Estimation and Inference 385 

To incorporate uncertainty in the distribution of viral loads on each day after infection, we 386 

construct a Bayesian framework for estimation and inference. A prior distribution is specified for 387 

𝛽(or the set of parameters used in the likelihood) as well as for the viral load distributions, 𝑝𝑎(𝑥). 388 

The prior for the viral load distributions can be specified in many ways, but we here 389 
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parameterize these distributions by a mean and standard deviation for each day 𝑎 and assume 390 

a normal distribution with those parameters, so the prior is specified on the mean and standard 391 

deviation. This prior can be based on existing studies of viral load kinetics after infection and 392 

can also take into account specific properties of the sample collection procedure, PCR 393 

protocols, and machine used to analyze the samples, if known. Estimation and inference can 394 

then proceed on the posterior distribution. 395 

The prior distributions used here are listed in Table S1. The prior distribution for 𝛽 is taken to be 396 

normal with mean 0 and standard deviation 0.1. Note that 𝛽 = 0.4 corresponds to a doubling 397 

time of 1.73 days, so value of 𝛽 above 0.4 or below -0.4 would be highly unusual for SARS-398 

CoV-2. 399 

To assess the outbreak trajectory, interest lies in the marginal posterior distribution of 𝛽. A 400 

larger positive value of 𝛽indicates a faster-growing outbreak and a more negative value of 401 

𝛽indicates a faster-waning outbreak. The posterior distribution of the 𝑝𝑎(𝑥) parameters are 402 

nuisance parameters for this goal, but may provide useful information for the prior distributions 403 

of 𝑝𝑎(𝑥) in future studies in similar settings. 404 

Simulated Data 405 

For Fig. 1, outbreaks are simulated according to a deterministic SEIR model with a population of 406 

1,000,000 people, R0=2.5, average latent period of 6.41 days, and average infectiousness period 407 

of 8.79 days. The latent and infectiousness periods are based on the best fit SEIR models for the 408 

observed prevalences in Massachusetts nursing home data (not shown) and align fairly well with 409 

the viral load kinetics implied by the Ct distribution model and with parameters reported elsewhere 410 

(5, 50).  411 

For Figs. 2 and 4, outbreaks are simulated according to a stochastic SEIR model with a population 412 

of 6,900,000 people, an initial seed of 100 infected individuals, R0=2, average latent period of 413 

6.41 days, and average infectiousness period of 8.79 days as above. We used the odin R package 414 

for simulation (https://cran.r-project.org/web/packages/odin/index.html). To simulate cross-415 

sectional sampling, we assumed that 20% of the population was randomly sampled once during 416 

the outbreak, which led to approximately 4,000 individuals being sampled and tested per day. 417 

Each infected individual is then assigned an observed Ct value on the day of sampling using the 418 

viral kinetics model described in Model for Population-Level Ct Distribution, with added 419 

observation error drawn from a Gumbel distribution with a standard deviation of 6. Fig. S3 is 420 
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generated in the same way, but with additional samples taken from symptomatic individuals. We 421 

assumed that 35% of infections became symptomatic, and that symptomatic individuals had a 422 

10% probability of being detected. Detected, symptomatic individuals were observed with some 423 

delay post symptom onset drawn from a discretized gamma distribution with shape and rate 424 

parameters of 5 and 2 respectively (mean and standard deviation of 2.5 and 1 days respectively). 425 

Brigham & Women’s Hospital data, Boston, Massachusetts 426 

Data comes from nasopharyngeal specimens processed on a Hologic Panther Fusion SARS-427 

CoV-2 assay for patients at the Brigham & Women’s Hospital in Boston, MA. Testing during the 428 

first two weeks in April 2020 were restricted to patients with symptoms consistent with COVID-19 429 

and who needed hospital admission. Following April 15, testing criteria were expanded to include 430 

all hospital admissions regardless of symptoms and asymptomatic ER patients who were not 431 

admitted. The results were from individuals entering the hospital for non-COVID procedures and 432 

thus represent less biased surveillance specimens. Daily data is aggregated by week. Daily 433 

confirmed case counts for Massachusetts were obtained from the NYT github page 434 

(https://github.com/nytimes/covid-19-data) (51).  435 

Estimating the effective reproductive number, R(t) 436 

We used the EpiNow2 R package for all R(t) estimates 437 

(https://github.com/epiforecasts/EpiNow2). The package estimates the time-varying reproduction 438 

number using the MCMC package Stan (https://cran.r-439 

project.org/web/packages/rstan/index.html), incorporating best practices in R(t) estimation as 440 

described by Gostic et al. (52–54). The package takes a time series of confirmed case counts as 441 

input, and returns posterior distribution estimates on the daily effective reproductive number. 442 

EpiNow2 simultaneously infers R(t) and infection incidence using a method based on the Cori 443 

method. We assumed that the confirmation delay distribution was log normally distributed with a 444 

mean of 3 (on the linear scale) and standard deviation of 0.5 (on the log scale) days. We assumed 445 

that the generation interval and incubation period were uncertain, using the default values 446 

provided by the EpiNow2 package. The mean and standard deviation of the generation interval 447 

were assumed to be 3.64 and 3.07 days respectively, with standard deviations for Bayesian priors 448 

on these parameters of 0.711 and 0.770 respectively. The incubation period was assumed to be 449 

log-normally distributed, with mean and standard deviation (both on the log scale) of 1.621 and 450 

0.418 respectively, with standard deviations for Bayesian priors on these parameters of 0.064 451 
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and 0.0691 respectively. We used a smoothing window of 7 days and ran 4 chains each for 4000 452 

iterations with 1000 iterations of warm up.  453 
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Supplementary Figures and Tables 

Table S1. Parameters in the viral load and cycle threshold (Ct) value distribution. Point estimates shown 

are used in the simulations for Figs. 1, 4, S1, and S2. Bayesian priors are used in Fig. 4. 

Parameter Description Prior 

distribution 

Point estimate 

(mean) 

Standard 

deviation 

𝛽 Exponential growth rate Normal 0 0.10 

tshift Time (in days) from infection to start of 

growth of viral load 

Fixed 2.00 NA 

tpeak Time (in days) from infection to peak viral 

load 

Fixed 4.00 NA 

tswitch Time (in days) from infection to start of 

reduced waning viral load rate and 

additional probability of becoming 

undetectable 

Normal 16.0 1.00 

tLOD Time (in days) from tswitch until the mean 

viral load is equal to the limit of detection 

(VLLOD) 

Normal 30.0 1.50 

VLzero Mean viral load (in log10 copies RNA per 

mL) for a ≤ tshift 

Fixed −3.00 NA 

VLpeak Mean peak viral load (in log10 copies RNA 

per mL) at a = tpeak 

Normal 9.00 1.00 

VLswitch Mean viral load (in log10 copies RNA per 

mL) at a = tswitch 

Normal 3.70 0.125 

SD Standard deviation (for Gumbel Normal 6.00 0.50 
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distribution) of cycle threshold (Ct) values 

around mean at any day a 

paddl Probability of becoming permanently 

undetectable each day for a > tswitch 

Beta 0.12 0.05 

CtLOD Limit of detection for Ct values Fixed 40.0 NA 

VLLOD Limit of detection for viral loads (in log10 

copies RNA per mL) 

Fixed 3.00 NA 
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Figure S1. (A) Mean cycle threshold (Ct) value, mean viral load, and distribution of Ct values for detectable 

infections by time since infection. (B) Proportion of infections that are detectable by time since infection for 

the population-level Ct distribution. The proportion of infections that are detectable is indicated by the color 

of the violin plot and the proportion detectable line. The dashed line indicates the limit of detection (Ct value 

of 40 or viral load of 3).  
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Figure S2. Relationship between time since infection and detectable cycle threshold (Ct) distribution and 

growth rate. The median and skew of the time since infection distribution are directly related to growth rate. 

Although the time since infection distribution (blue lines indicate median, top, and skew, bottom, of time-

since-infection) is not observed directly, Ct values can be used as a proxy observation model. The solid 

green line shows the observation model assumed for Fig. 1, whereas the faint green line shows how a 

relationship would still exist for an alternative observation model, the two differing, for example, by different 

tests in different labs. The test days shown in Fig. 1 are indicated by points. All results are based on an 

SEIR model in a population of 1,000,000 with R0 = 2.5, average latent period of 6.41 days, and average 

infectious period of 8.79 days, and Ct values are distributed according to the population-level Ct value 

distribution.  
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Figure S3. Weekly distribution of positive (detectable) Ct values as in Fig. 2, but up to day 125 sampled 

individuals are a combination of randomly sampled cross-sections and individuals sampled in the days 

immediately after symptom onset, assuming that 35% of infections become symptomatic. The blue line 

shows the smoothed median from only cross-sectionally sampled individuals, whereas the purple line 

shows the smoothed median from combined cross-sectional and symptomatic sampled individuals. The 

violin plot shows densities of all sampled individuals. For these simulations, all symptomatic individuals had 

a 10% probability of being detected up to day 125. For detected individuals, we added a delay between 

symptom onset and sampling time drawn from a discretized gamma distribution with a mean of 2.5 days 

and standard deviation of 1 day. 
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