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Figure 4 shows the projections obtained from model M2 calibrated using data available on August 

25th 2020. The probability 𝑝𝐼𝐶𝑈 of ICU admission given hospitalisation was estimated at 15.7% 

[13.9%, 17.6%] and the time spent in ICU 𝜏𝐼𝐶𝑈 at 15.0 [13.1, 17.4] days. Our projections have 

been relatively stable since the beginning of July (Figure 4A-D).  

We retrospectively validated our model by comparing model predictions with the results of a 

seroprevalence survey performed between July 15th and July 23rd with the Euroimmun assay 

[15]. Assuming a time-dependent assay sensitivity (0% during incubation, 30.3% up to 10 days 

after symptom onset, 75% between 10 and 20 days after symptom onset, and 93.8% afterwards) 

as per the distributor specification, our model estimated that 17.6% [17.2%, 18.0%] of the 

population was  seropositive for SARS-CoV-2 between July 15th and July 23rd for average 

severity (low severity: 31.8% [31.1%, 32.6%]; high severity: 10.7% [10.5%, 11.0%]) (Figure 4E). 

Estimates for average severity are close to the seroprevalence of 15.4% [9.3%, 24.4%] obtained 

in the serosurvey, indicating that our average severity scenario remains the one that is best 

supported by the data. Projecting forward, we anticipate that 30.6% [29.9%, 31.3%] (low severity: 

51.9% [50.9%, 52.9%]; high severity: 19.3% [18.8%, 19.7%]) of the population in French Guiana 

will have been infected by October 1st 2020 (Figure 4F). 

Discussion 

In this paper, we characterized the epidemic dynamics of SARS-CoV-2 in French Guiana, 

evaluated the impact of control measures that were implemented to contain a large SARS-CoV-

2 epidemic there, and described how mathematical modelling was used during this crisis to 

support policy making and planning. 

The nation-wide lockdown that was implemented across France from March 17th 2020 to May 

11th 2020 likely prevented a surge of SARS-CoV-2 infections in French Guiana during this period. 

However, while a number of control measures remained in place in French Guiana after the 

lockdown, they were insufficient to stop an important epidemic rebound. This epidemic was likely 

facilitated by the proximity of Brazil, a country that has experienced a very important pandemic 

wave [16,17], notably in neighboring Amazonian states. Confronted with an important surge in 

COVID-19 cases, French authorities implemented a set of strong measures including curfews 

and localized lockdowns. During curfews, individuals can go to work and live a relatively normal 

life during the day, but social interactions are limited in the evenings and weekends. This approach 

therefore targets social interactions in the private sphere where social distancing is more likely to 
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be relaxed. While smaller than that of a full lockdown, the economic impact of a curfew remains 

important in particular for the hospitality, catering and recreational sectors, as well as for a large 

part of the undeclared jobs on which the most precarious rely on in French Guiana.  

We estimate that, added to existing measures, these interventions further reduced the basic 

reproduction number by 36% from 1.7 (prior to interventions) to 1.1 (following implementation). 

This change in epidemic dynamics strongly reduced predicted ICU beds needs for the epidemic 

peak from 110 to 32, thereby avoiding saturation of ICUs. The territory was also able to manage 

the influx of patients thanks to an expansion of ICU capacity (from 11 on May 1 2020 to 54 on 

July 22 2020) and the transfer of 7 ICU patients to Martinique and 6 to Guadeloupe, two French 

overseas territories located in the Caribbean.  

In agreement with a seroprevalence study [15], we find that the infection attack rate of SARS-

CoV-2 in French Guiana is currently one of the highest in France, likely higher than that estimated 

for Grand Est (7.7%-10.2% between May 4th and June 22nd) and Île-de-France (Paris area) 

(9.1%-10.9% between May 4th and June 22nd), the two regions of metropolitan France that have 

been the most affected by the first pandemic wave [18]. This may seem surprising since the 

impact of the epidemic on hospitalisations and deaths was substantially lower in French Guiana 

(183 hospitalisations by July 1st and 13 deaths per 100,000 inhabitants by July 18th) than in 

Grand Est (276 hospitalisations by May 25th and 60 deaths per 100,000 inhabitants by June 11th) 

and Île-de-France (280 hospitalisations by May 25th and 56 deaths per 100,000 inhabitants by 

June 11th). This apparent discrepancy was anticipated by our model and can be explained 

because the population of French Guiana is substantially younger than that of metropolitan 

France (Figure 1). This shows that it is essential to account for the age structure of a population 

to properly evaluate the impact of SARS-CoV-2 on its healthcare system. In an older population, 

it is likely that pressure on the healthcare system would have occurred earlier in the epidemic, 

leading to earlier implementation of control measures and lower seroprevalence. Improvements 

in patient management thanks for example to anticoagulation, steroid and ventilation may have 

also contributed to averting deaths [19,20]. 

Major methodological developments have been made in the last few years to strengthen epidemic 

forecasting, with seasonal influenza or dengue constituting good case studies [21,22]. In a typical 

seasonal influenza epidemic, measures to reduce transmission in the general population are 

limited. As a consequence, once the epidemic has started, we expect that it will follow its natural 

course and that its trajectory can be forecasted if we have a good understanding of its key drivers 
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(e.g. impact of the climate, population immunity, school holidays and circulating influenza 

subtype). In contrast, for SARS-CoV-2, unprecedented control measures are being implemented 

to limit spread; in addition, individuals are likely to naturally modify their behaviours (e.g. to reduce 

their contacts) as the pandemic progresses in their community [23]. A simple international 

comparison shows how the control measures and behaviours that are adopted can radically 

change the course of the pandemic from scenarios of near-suppression in South Korea and New 

Zealand to much less favorable ones in Brazil and the US. In addition, both control measures and 

individual behaviours may quickly change with the epidemiological situation, in a way that may be 

hard to anticipate. All these elements explain why it is much more challenging to forecast the 

trajectory of the SARS-CoV-2 pandemic wave than that of, for example, a seasonal influenza 

epidemic. Given these difficulties, we prefer to talk about scenario analysis rather than forecasts.  

French Guiana constitutes an interesting case study where a combination of strict interventions 

including curfews and localized lockdown substantially reduced SARS-CoV-2 transmission. We 

need to build on these local experiences to progressively determine the optimal set of 

interventions required to contain SARS-CoV-2 pandemic waves.    
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Methods  

We used a deterministic mathematical model to describe the transmission of SARS-CoV-2 and 

subsequent disease progression in the population of French Guiana. The compartmental 

structure of the model closely followed our previous work [2]: upon infection, susceptible 

individuals enter a first latent compartment where they are not infectious, while a second exposed 

compartment is used to capture individuals who are infectious but not yet symptomatic. Once 

infected, individuals can develop severe disease and require hospital and/or ICU care. We used 

two versions of the model. A first version explicitly accounted for the age structure in the 

population. To describe contact patterns in the population of French Guiana, we used a contact 

matrix from Suriname [24], a neighboring territory with similar population structure. We adjusted 

the contact matrix for age-groups 0-9y, 10-19y, 20-29y, 30-39y, 40-49y, 50-59y, 60-69y, 70y+ 

accounting for the population structure of French Guiana. In order to accelerate computation and 

shorten the turnaround time of our analyses, we developed a second version of the model in 

which we no longer explicitly included the population age structure in the model. We instead relied 

on a single severity parameter, the average probability of hospitalization given infection 𝑝𝐻. 

Assuming that the probability of infection is proportional to the daily number of contacts within 

each age group (𝐶𝑖 for age-group i) [2], this severity parameter can be estimated from the age-

specific probability of hospitalization upon infection (𝑝𝐻
𝑖 for age-group i) and the age distribution 

of the target population as follows: 

𝑝𝐻 =
∑𝐴𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 𝑖 𝑃𝐻

𝑖  ⋅  𝐶𝑖   ⋅  𝑛𝑖 

∑𝐴𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 𝑖 𝐶𝑖   ⋅  𝑛𝑖 
 where 𝑛𝑖 is the number of individuals aged i in the 

target population. Throughout this analysis, we considered young people to be half as infectious 

as adults. Results obtained with the full age-structured model under our final assumptions closely 

matched those obtained with the simpler version (Figure S4). 

In order to capture trends in the epidemic trajectory following the strengthening of control 

measures in French Guiana, we modified the structure of our model for the analyses we 

performed at the beginning of July 2020: while our initial model (M1) had a single change point 

for the transmission rate, our final model (M2) had two change points for this parameter. Table 

S1 summarizes the models’ key parameters. 
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The simulations were seeded on April 21st 2020 with an initial number of infectious individuals - 

split into the exposed and infectious compartments proportionally to the time spent in each 

compartment - that was estimated jointly with the parameters in Table S1. 

We fitted our models to daily hospitalization count data extracted from the SI-VIC database, which 

stores data on COVID-19 patients hospitalized in public and private hospitals in metropolitan 

France and overseas French territories. The data were corrected for reporting delays as 

previously described [2].  

The model parameters were estimated via Markov Chain Monte Carlo (MCMC) sampling 

assuming a Poisson observation process and using uniform, non-informative, priors. We relied 

on the Deviance Information Criterion (DIC) for model comparison and selection [25], with smaller 

DIC values indicating stronger support for the model.  
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Figure 1: A. Map of French Guiana. B. Population pyramids for Metropolitan France and French 

Guiana. C. Age-specific probability of hospitalization given infection 𝑝𝐻
𝐴𝑔𝑒 in Metropolitan France 

(%). D. Average probability of hospitalization given infection 𝑝𝐻 in Metropolitan France and French 

Guiana (%). E. Daily hospital admissions in French Guiana and timeline of interventions.  
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Figure 2: Analyses made on June 18th 2020 describing a worst-case scenario with no 

change in transmission rates and the impact of a short-term lockdown. A. and B. Projections 

for the number of ICU and general ward beds required under different severity scenarios (baseline 

in red, low severity in green, high severity in blue). Solid lines indicate model posterior means 

while color areas indicate 95% credible intervals. C. and D. Projections for the average number 

of ICU and general ward beds required under different territory-wide lockdown scenarios (black 

represents our baseline model, red represents lockdowns starting on June 27th, blue represents 

lockdowns starting on July 4th, solid lines correspond to lockdowns lasting for 10 days, while 

dashed lines correspond to lockdowns lasting for 15 days). In all panels, black dots indicate data 

used to calibrate the models, while empty circles denote data not available at the time of the 

analyses. The dashed line in all panels indicates the date of the analyses (June 18th). 
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Figure 3: Analyses made on July 2nd 2020 evaluating the impact of control measures 

implemented in French Guiana on transmission and healthcare demand.  A. Estimated 

reproduction number through time. B. to D. Projections for the number of daily hospital 

admissions (B) and ICU (C) and general ward (D) beds. Solid lines indicate model posterior 

means while color areas indicate 95% credible intervals. Red is used for model M1 (one change 

point for the transmission rate), while blue is used for model M2 (two change points for the 

transmission rate). In all panels black dots indicate data used to calibrate the models, while empty 

circles denote data not available at the time of the analyses. The dashed line panels B-D indicates 

the date of the analyses (July 2nd). 
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Figure 4: Analyses made on August 25th 2020.  A. to D. Projections for the number of daily 

ICU (A) and hospital admissions (B), ICU (C) and general ward (D) beds. (E). Projections for the 

seroprevalence measured with the Euroimmun assay. Solid lines indicate model posterior means 

while color areas indicate 95% credible intervals. The black dot indicates the seroprevalence 

estimated in [15] between 15-23 July 2020 (dashed lines). (F). Projections for the proportion 

infected. Solid lines indicate model posterior means while color areas indicate 95% credible 

intervals. In panels A to D, darker red colors correspond to older projections while lighter yellow 

colors correspond to more recent ones (from July 1st to August 26th). Black dots indicate actual 

data.  
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