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ABSTRACT 

Background: Patients with severe COVID-19 have overwhelmed healthcare systems 

worldwide. We hypothesized that Machine Learning (ML) models could be used to predict 

risks at different stages of management (at diagnosis, hospital admission and ICU admission) 

and thereby provide insights into drivers and prognostic markers of disease progression and 

death. 

 

Methods: From a cohort of approx. 2.6 million citizens in the two regions of Denmark, 

SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 

cases had at least one positive test and were subjected to further analysis. A cohort of SARS-

CoV-2 positive cases from the United Kingdom Biobank was used for external validation.  

 

Findings: The ML models predicted the risk of death (Receiver Operation Characteristics – 

Area Under the Curve, ROC-AUC) of 0.904 at diagnosis, 0.818, at hospital admission and 

0.723 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted 

risks of hospital and ICU admission and use of mechanical ventilation. We identified some 

common risk factors, including age, body mass index (BMI) and hypertension as driving 

factors, although the top risk features shifted towards markers of shock and organ 

dysfunction in ICU patients.  The external validation indicated fair predictive performance 

for mortality prediction, but suboptimal performance for predicting ICU admission.  

 

Interpretation: ML may be used to identify drivers of progression to more severe disease 

and for prognostication patients in patients with COVID-19. Prognostic features included 
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age, BMI and hypertension, although markers of shock and organ dysfunction became more 

important in more severe cases.  

We provide access to an online risk calculator based on these findings.  

 

Funding: The study was funded by grants from the Novo Nordisk Foundation to MS 

(#NNF20SA0062879 and #NNF19OC0055183) and MN (#NNF20SA0062879). 

The foundation took no part in project design, data handling and manuscript preparation.  

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.06.20207209doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20207209


 

INTRODUCTION 

The COVID-19 pandemic has put severe strains on hospital systems around the world. As of 

October 1st, 2020, the World Health Organization (WHO) estimated that more than 34 

million patients are affected worldwide, and that the pandemic is the direct cause of more 

than 1 million deaths - a number that will likely rise as the pandemic progress.  

The unknown clinical features coupled with the speed of viral spreading creates an 

unfortunate situation where health care providers are lacking important diagnostic adjuncts 

such as accurate prediction models and data-driven insights into the drivers of disease 

progression.  

Several studies have now proposed prediction models based on a variety of clinical features. 

The majority of these are, however, trained and validated on national datasets from hospital 

admitted COVID-19 patients. While these may be of value locally, whether the classification 

ability transfers to other healthcare systems is questionable. As such, a recent review of 

Machine Learning (ML) models1, aimed at risk prediction in SARS-CoV-2 positive patients, 

found that the majority of studies were constructed on Chinese data with a high risk of bias as 

assessed by the Prediction model Risk of Bias Assessment tool (PROBAST)2. Furthermore, 

models often utilize data from hospital admitted SARS-CoV-2 positive patients only, which 

may skew results due to the lack of data from patients with milder disease trajectories.  

Finally, models are often developed for predictions at hospital admission, providing little 

insight into the effects of in-hospital management. This, in turn, hinders identification of 

optimal biomarkers and prognostic features of adverse outcomes, as these may change as the 

patient advance through the trajectory of the disease.  

The objective of this study is to construct and validate an ML model for SARS-CoV-2 

adverse outcome risk prediction on a European dataset from Denmark, with external 
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validation in a United Kingdom (UK) dataset. Secondly, we seek to use the constructed 

models for identification of disease risk factors, including comorbidities, biomarkers and vital 

signs as the patient moves through the disease trajectory. As such, we seek to identify 

important clinical predictors of adverse outcomes at four timepoints or timeframes, based on 

accumulating available data: On diagnoses, on hospital admission (where applicable) and 

immediately before and after admission to the intensive care unit (ICU9), where applicable. 

Finally, we sought to create an online prediction tool to support rapid risk assessment upon 

COVID-19 diagnosis based on the most relevant data points.  

We hypothesized that ML can be leveraged to provide accurate outcome predictions for 

COVID-19 patients, and that including accumulating datapoints from available sources from 

Electronic Health Record (EHR) repositories in a combined model improves risk prediction 

as well as identification of relevant disease drivers at specific time points.  

 

METHODS 

The study was approved by the relevant legal and ethics boards. These included the Danish 

Patient Safety Authority (Styrelsen for Patientsikkerhed, approval #31-1521-257) and the 

Danish Data Protection Agency (Datatilsynet, approval #P-2020-320) as well as the UK 

Biobank (Application ID #60861) COVID-19 cohort. Under Danish law, approval from these 

agencies are required for access to and handling of patient sensitive data, including EHR 

records. Legal approval for the study was furthermore obtained from the Danish Capital 

Region (Region Hovedstaden). 

We conducted a prospective study by including all individuals undergoing a SARS-CoV-2 

test (nasal and/or pharyngeal swap subjected to Real-Time Polymerase Chain Reaction 

testing) in the Capital and Zealand Regions (approximately 2.6 million citizens) of Denmark 

between March 1st, 2020 and June 16th 2020. Data inclusion was censored on June 16th. 
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Patients were identified through their Central Person Registry (CPR) number, a unique 

numerical combination given to every Danish citizen, enabling linking of electronic health 

records (EHRs) with nationwide medical registry data.  

During the study period, all SARS-CoV-2 tests were performed at regional hospitals. Patients 

were referred for testing based on presence of symptoms albeit test strategies shifted towards 

the end of the inclusion period to include a wider screening indication.   

For cases with at least one positive tests, we extracted data from the bi-regional EHR system, 

including demographics, comorbidities and prescription medication. In-hospital data included 

laboratory results and vital signs. 

Supplementary Table S1 lists extracted comorbidities with their definitions, Supplementary 

Table S2 extracted laboratory values, and Supplementary Table S3 extracted temporal 

features (vital signs).  

For the purpose of external validation of the ML models, we extracted data from the UK 

biobank COVID-19 cohort. The UK biobank contains detailed healthcare information on 

500.000 UK citizens, of which 1650 have been tested SARS-CoV-2 positive. This cohort has 

recently been made available for the purpose of COVID-19 research by the UK biobank 

consortium3.  

       

Prediction models 

ML models were trained and validated on the Danish dataset. A subset of models sharing 

identical data fields (e.g. age, comorbidities etc.) between the Danish and UK cohorts were 

subsequently externally validated on the UK biobank dataset.       

We constructed ML prediction models by including available data for patients up to and 

including the selected time frames or time points.  These time frames or points were 

- At time of SARS-CoV-2 positivity (all patients, Diagnosis model) 
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- The first 12 hours of hospital admission (Admission model) 

- 12 hours up to ICU admission (Pre-ICU model) 

- 12 hours after ICU admission (Post-ICU model). 

Models were trained to predict one of four events, where applicable: 

- Hospital admission (SARS-CoV-2 positive patients) 

- ICU admission (Diagnosed and hospital admitted patients) 

- Mechanical ventilation (Diagnosed, hospital and ICU admitted patients) 

- Death (all patients) 

For each task, we trained with different feature sets to study how incrementally adding data 

affects model performance as well as to gain insight into drivers of disease progression: 

- Base models: Age, sex and body mass index (BMI).  

- Comorbidities: Base model and comorbidities (Table 1 and Supplementary Table S1) 

- Temporal features: Comorbidities model and temporal features (Supplementary Table 

S3) 

- In-hospital laboratory tests: Temporal features model and in-hospital lab tests 

(Supplementary Table S2).  

For the purpose of external validation, data points were available in the UK biobank 

matching those of the base and comorbidities models. In-hospital models could not be 

externally validated due to lack of availability of these data points in the UK biobank.  

 

ML models 

We used random forests (RFs)4, implemented in the open-source machine learning library 

scikit-learn5. Because each individual tree is trained on a bootstrap sample, there is training 

data that can be used to compute the out-of-bag (OOB) error, an estimate of the RF’s 

performance.  
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All models were evaluated on the Danish set using 5-fold cross-validation. The folds were 

stratified to ensure that the splits are representative of the full cohort. For each split, we 

conducted grid search on the available training data fold to tune the hyperparameters of the 

RF models for each prediction task. The OOB error served as the selection criterion. We 

varied the number of decision trees in the ensemble in 100, 500, 1000 and the maximum 

depth of the individual decision trees in 3,4,7,9,11. When splitting a node, all input features 

were checked. 

For computing the Receiver Operating Characteristics Area Under the Curve (ROC-AUC) 

and precision/recall AUC (PR-AUC), the outputs for all test folds were combined, resulting 

in predictions for the entire data set. 

For evaluation on the UK data, models were trained on the entire Danish data set. As before, 

for each model, a grid search based on the OOB error was performed on the same parameter 

grid. Each model was then evaluated on the entire UK cohort. 

Post-hoc analysis of the use of the predictive variables across all decision trees in the RF 

allows us to derive a measure of feature importance. Feature importance was calculated by 

the mean decrease in impurity (MDI). The measure takes into account how often a feature is 

used when classifying the training data points and how well it splits the training data points 

when being used. For each predictive variable the importance was computed as the mean 

over the feature importance for each fold. The top-10 or top-20 (depending on the model) 

were extracted and visualized. The correlations of these features were then computed across 

the entire dataset. 

 

Missing data 

Missing data was considered missing at random.  
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Percentages of available data in the Danish cohort are presented in supplementary Table S4. 

Missing values for BMI were imputed by using k-nearest neighbour imputation using age and 

sex6, with k=100. Other missing data points were set to “not available” for the purpose of ML 

modelling and deleted by case wise deletion for group comparisons.  

 

Data presentation and statistical testing 

Continuous data is presented as medians (interquartile range) and compared using the Mann-

Whitney U test. Categorical data is presented as percentages and compared using the Chi-

square test. 

ML model performances are presented as ROC-AUC for Positive and Negative predictive 

value and precision/recall. Model comparisons were performed by the deLong test7.  

 The p-values for comparisons of outcome groups are provided for reference only. As these 

comparisons are not part of the study hypotheses, p-values are presented without post-hoc 

correction for multiple testing and should be interpreted as such.  

In addition, calibration curves are presented for the combined test folds and the external 

validation data. For each calibration plot, the predictions were grouped using quantile-based 

binning.  

 

Online models 

The risk prediction model for SARS-CoV-2 positive patients admitted to hospital is available 

in an online version on ￼https://cope.science.ku.dk. 

 

 

RESULTS 
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A total of 3944 individuals had at least one positive SARS-CoV-2 test in the two Danish 

regions and were included in the study. These were supplemented by the 1650 patients from 

the UK biobank used for external model validation. 

Among the Danish cases, 1359 (34.5%) required hospitalization, and 181 (4.6%) intensive 

care.  A total of 324 patients (8.2%) died.  

Demographics and comorbidities are summarized in Table 1, selected laboratory values and 

vital signs in Table 2. Demographics information for the UK biobank external validation 

cohort is presented in supplementary Table S5. 

When compared to non-hospitalized patients, hospital admitted patients were older and more 

likely to be male. 

A number of comorbidities were overrepresented in the admitted subgroup. These included 

hypertension, diabetes, ischemic heart disease, heart failure, arrythmias, stroke, chronic 

obstructive pulmonary disease (COPD) or asthma, osteoporosis, neurological disease, cancer, 

chronic kidney failure and use of dialysis. Hospitalized patients were more likely to be 

smokers (Table 2).  

 

For hospitalized patients requiring ICU admission vs. hospitalized patients without ICU 

admission, only male sex, Body Mass Index (BMI), dementia and hypertension differed 

between patients. ICU-admitted patients were furthermore more likely to be smokers. When 

compared to survivors, non-survivors were older and male (Table 1). 

Non-survivors were furthermore more likely to suffer from hypertension, diabetes, ischemic 

heart disease, heart Failure, arrythmias, stroke, COPD or asthma, osteoporosis, Dementia, 

Mental disorders, Neurological disease, cancer, chronic kidney failure and use of dialysis.  
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When compared to non-admitted, admitted patients differed significantly in all measured 

values (Table 2). Among those hospitalised, those admitted to the ICU had derangements in 

many variables (Table 2). The same was observed for non-survivors compared with survivors 

(Table 2).  

 

ML models prediction 

ML models are presented in Table 3 and graphically depicted in supplementary Figure S1 

(Diagnosis model), Supplementary Figure S2 (Admission model), Supplementary Figure S3 

(Pre-ICU model) and Supplementary Figure S4 (Post-ICU model).  

Base models deployed on the time of diagnosis were able to predict hospital admission with a 

ROC-AUC of 0.815, ICU admission 0.785, ventilator treatment 0.801 and death 0.904 (Table 

3 and Supplementary Figure S1).  

Adding information on patient comorbidities increased the predictive ability for all outcomes.  

Models deployed at hospital admission achieved ROC-AUC scores ranging from 0.678 to 

0.818 for the selected outcomes (Table 3 and Supplementary Figure S2). Adding information 

on comorbidities, temporal features and hospital laboratory tests increased model 

performance for ICU admission, use of mechanical ventilation and death.  

Models deployed pre- or post-ICU admission achieved ROC-AUC’s from 0.587 to 0.736 

(Table 3 and Supplementary Figure S3 and Supplementary Figure S4).   

The calibration curves (supplementary figures S7 and S8) show that the models are well 

calibrated when looking at all diagnosed subjects and at patients admitted to the hospital. 

When restricted to patients admitted to ICU, the calibration gets worse as expected due to 

smaller sample size. Ventilator treatment could not be predicted accurately, and the 

calibration curves reflect this. 
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External validation results (Supplementary Table S6) on UK data indicated an overall 

reduction in model classification ability. For diagnosed patients, ROC-AUCs were 0.664 for 

predicting hospital admission, 0.548 for predicting ICU admission and 0.724 for predicting 

mortality. Inspection of the calibration curves (Supplementary Figure S7) shows that the 

models are only slightly worse calibrated for the UK data, meaning that the model outputs 

approximately the correct probability for individual patients, despite the degradation in ROC-

AUC. 

As patients progressed through the disease severity trajectories, mortality prediction remained 

in the area of 0.625 – 0.674 (Supplementary Table S6).  

 

Detection of important features and drivers of disease progression.  

Results of the drivers of disease progression feature detection analysis for each of the 

selected timepoints are depicted in Figure 1 (diagnoses model) and Figure 2 (admission 

model) as well as Supplementary Figure S4 (pre-ICU model) and Supplementary Figure S5 

(post-ICU model). 

For diagnosed patients (Figure 1), age and BMI were the most relevant features for risk of 

hospital admission and death, whereas hypertension was the most prominent risk feature for 

ICU admission and ventilator treatment.  

Among comorbidities, hypertension was the most important feature for predicting ICU 

admission.  

For admitted patients (Figure 2) the most relevant drivers of disease progression were age, 

BMI, hypertension and the presence of dementia. When the full dataset was analysed, lab 

tests indicating aspects of cell dysfunction (Lactic dehydrogenase, LDH), kidney dysfunction 

(Blood urea nitrogen and Creatinine), the inflammatory response (C-reactive protein, CRP), 
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and liver damage (Alanine Aminotransferase, ALT) were identified as important prognostic 

markers for disease progression.  

For ICU models (Supplementary Figure S5 and S6), relevant disease progression features 

again included age and BMI as well as comorbidities including hypertension, heart failure 

and neurological disease. When the full dataset was analysed, disease progression drivers 

included features reflecting insufficient respiration and metabolism (pulse oximetry oxygen 

saturation, pO2 values and slopes over time), as well as BUN and CRP levels.  

 

DISCUSSION 

In this study, we analyse prognostic and factors associated with disease progression in 3944 

SARS-CoV-2 positive patients by constructing an interpretable ML framework. In contrast to 

previous studies, these included diagnosed patients outside hospitals, and thus included the 

entire spectrum of SARS-CoV-2 positive patients in the 2.6 million regional population.  

Results indicate that by focusing on a limited number of demographic variables, including 

age, gender and BMI, it is possible to predict the risk of hospital and ICU admission, use of 

mechanical ventilation and death as early as at the time of diagnosis. Adding information on 

comorbidity to the model increased performance, indicating that these features play a 

prognostic role in the outcome of patients as they progress through the disease trajectory.  

As such, results from the ML feature detection indicate that comorbidity factors such as 

hypertension and diabetes are driving factors of adverse outcome, which is in line with 

reports from other cohort studies8-10. The role of hypertension is further underlined by reports 

indicating a role of the angiotensin converting enzyme 2 (ACE2) receptor as an entry point 

for the SARS-CoV211. Whether COVID-19 interacts unfavourably with hypertension per se, 

or whether this risk is simply a manifestation of reduced tolerance to severe infection and 

hypoxia is currently debated12. 
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Furthermore, BMI was identified as a major feature of adverse outcome, as also reported by 

others13-15. Whether this is due to a reduced respiratory capacity or chronic impairment of the 

immune system through alterations in tumour necrosis factor and interferon secretion 

associated with obesity, is also currently debated16. Caution should, however, be taken when 

analysing these results, as the median observed differences between groups were minor and 

may not be clinically relevant. Furthermore, data imputation may have impacted on these 

results.  

The addition of more data points, including temporal features and lab tests improved the 

model’s predictive value for hospitalized patients. Group comparisons indicated alterations of 

a plethora of laboratory tests for admitted patients, including features of immune activation 

and organ dysfunction. Interestingly, laboratory tests differed to a lesser extent between ICU 

and non-ICU patients, except for CRP levels, lymphocyte counts, LDH, ALT, neutrophil, D-

dimer and ferritin levels as well as arterial blood gas values. As expected, ICU admitted 

patients had lower oxygen saturation and higher respiratory rates, likely reflecting the acute 

respiratory distress from COVID-19 pneumonia. 

Feature analysis indicated that strong prognostic markers expectedly included CRP levels, 

but also markers of organ damage, including kidney injury (creatinine and blood urea 

nitrogen), liver injury (ALAT), cell damage (LDH), anaemia (haemoglobin levels) as well as 

ferritin levels. These, as well as vital signs and arterial blood gas values superseded many of 

the comorbidities in feature importance once the patient progressed through hospital and ICU 

admission. This again indicates that drivers and prognostic markers of adverse outcomes 

represent a dynamic field affected by the patient’s current point on the disease trajectory, and 

that differential values should be considered when risk-assessing COVID-19 patients 

depending on their current status (e.g. in hospital, in ICU etc.). A caveat is, however, that 

multiple comorbidities and advanced age may resulted in decisions by patients, relatives or 
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clinicians limiting the use of life-support, and thus potentially precluding them from ICU 

admission and reducing the effect of comorbidities and age on model predictions.   

Kidney injury has previously been reported in patients with COVID-1917,18. Our finding that 

markers of kidney injury may be important at hospital admission supports the notion that 

COVID-19 associated kidney injury plays an important pathophysiological role.  

The importance of LDH for COVID-19 patients has previously been reported in other ML19 

as well as clinical studies20. These results are supported by the feature detection from this 

study, indicating that LDH levels serve as an important prognostic marker on hospital 

admission, although its value is superseded by other biomarkers when the patient advance to 

the ICU stage. As LDH can be seen as a general marker of cell and organ damage with a 

reported prognostic value for mortality in ICU patients21, these findings likely indicate a 

general organ affection associated with COVID-19 disease progression. 

Abnormal liver function tests, including ALAT, has previously been associated with COVID-

19 disease severity22. As such, reports have indicated the presence of elevated liver enzymes 

in both severe and non-severe COVID-19 cases23. Whether this is a function of viral 

infection, shock or a consequence of hepatotoxic treatments deployed during treatment is still 

not clear24.  

Ferritin levels have previously been associated with COVID-1925, presumably due to its role 

in immunomodulation and association with the cytokine storm response seen in critical 

illness26. 

Taken together, the feature importance of laboratory tests indicating affection of several 

organ systems indicates that COVID-19 disease severity follows a predictable pattern 

characterized by multi-organ affection (albeit not always dysfunction), which is in line with 

previous findings27. 
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Once patients progress to the ICU stage, feature detection indicated a switch towards vital 

signs and biomarkers indicating that the severity of respiratory failure, shock and 

inflammatory markers were the most important features of risk of death (Supplementary 

Figure S5 and Supplementary Figure S6).  

When the feature importance of all models is analysed, the results indicate that COVID-19 

outcomes are at the time of diagnoses largely predictable through a relatively limited number 

of features, dominated by age, BMI and comorbidities, effectively proxies for frailty. 

As patients follow their disease trajectories, differential features supersede each other in 

prognostic importance, and prognostic models should thus consider the patient’s place in the 

disease trajectory.   

The results of the external validation did, however, show an overall reduction in the model’s 

classification ability when the UK biobank cohort was analysed. This will impact on the 

generalizability of the presented models, but results should be interpreted with caution.  

As such, the UK cohort was assembled for the purpose of biobanking studies, and thus 

comprise a highly selected subset of patients, whereas the Danish cohort was population wide 

in the two analysed geographical regions. Demographic data also highlights differences in the 

two populations, including an age difference between groups. Actually, when predicting 

death for ICU patients, where demographics are similar, we do not observe a reduction in 

model performance.  

The differences in results can be explained by the change of the underlying data distribution. 

The results demonstrate that caution should be exercised when evaluating whether ML 

models are useful for local health care practitioners if developed on other cohorts, especially 

when developed on early phase COVID-19 data. As such, significant variations in national 

factors such as isolation policies and triage for ICU and mechanical ventilation, population 

demographics etc. may impact on results.  This notion is supported by the finding that our 
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model retained reasonable classification ability for mortality in UK patients, but failed to 

predict ICU admission risk. 

These results could thus indicate that potential users of ML models for COVID-19 patients 

should carefully examine the generalizability of the training cohort and healthcare 

infrastructure where patients originated from and compare these with local features prior to 

model usage.  

Our study has several limitations. The number of patients available for this analysis was 

limited, and additional patient data could change the results. Secondly, we have extracted a 

subset of clinical variables from the EHR system. Analysing other features could affect the 

model. Furthermore, the changing criteria for SARS-CoV-2 testing associated with the course 

of the pandemic, likely also affects the results.  

Even with these limitations, we may conclude that ML may be leveraged to perform outcome 

prediction in COVID-19 patients, as well as serve as a potential tool for identifying drivers 

and prognostic markers.  
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FIGURES 

 

 

Figure 1: Feature importance for the basic (including age, sex, body mass index, and 

comorbidities) diagnosis models, predicting risk of intensive care admission (first row), 

hospital admission (second row), ventilator treatment (third row) and death (fourth row) on 

SARS-CoV-2 positivity. 

 

 

Figure 2: Feature importance for the basic (including age, sex, body mass index, and 

comorbidities) and advanced (all data) admission models, predicting risk of intensive care 

admission (first row), ventilator treatment (second row) and death (third row) on hospital 

admission. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.06.20207209doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20207209


TABLES 
 

Table 1: Demographic information on the group of SARS-CoV-2 positive patients, including 

information on pre-existing comorbidities.  Supplementary Table S2 holds information on 

diagnoses codes included in the individual comorbidity classifications. The table presents 

information on the full cohort (admitted and non-admitted SARS-CoV-2 positive patients) as 

well as subgroups admitted to a hospital and Intensive Care Unit (ICU) respectively. 

Furthermore, differential demographics between survivors and non-survivors (in-hospital 

mortality) is presented. Continuous variables are presented as medians with (interquartile 

range) 

**p<0.001 when subgroups are compared (e.g. hospitalized vs. non-hospitalized, ICU vs. 

non-ICU, survivors vs. non- survivors). 

COPD: Chronic Obstructive Pulmonary Disease.  

 

 

All 
SARS-
CoV-2 
patients 
(n=3944) 

Non-
hospitalized 
(n=2585) 

Hospitalized 
patients 
(n=1359) 

Hospitalized 
patients 
without ICU 
admission 
(n=1178) 

Hospitalized 
patients with 
ICU 
admission 
(n=181) 

Survivors 
(n=3620) 

Non-
survivors 
(n=324) 

Body Mass Index 

25.9 
(22.7-
29.8) 

25.8 (22.6-
29.7) 

26.0 (22.7-
29.9) 

25.7 (22.6-
29.4) 

27.3 (23.5-
31.4) 

26.0 
(22.7-
29.9) 

25.2 
(22.0-
28.8) 

Age 

53.0 
(36.0-
69.0) 

44.0 (31.0-
58.0) 

70.0 (55.0-
80.0)** 

71.0 (54.0-
81.0) 

69.0 (58.0-
75.0) 

50.0 
(34.0-
64.0) 

81.0 
(73.0-
87.0)** 

Male Sex 41.9 35.6 53.9** 51.4 70.2** 40.6 56.2** 

Diabetes 13.4 8.0 23.5** 23.4 24.3 12.0 28.7** 

Ischemic heart 
disease 9.1 5.2 16.5** 16.0 19.3 8.0 21.0** 

Heart failure 4.2 1.5 9.4** 9.5 8.8 3.1 16.7** 

Arrhythmia 10.4 4.9 20.9** 21.0 20.4 8.5 32.1** 

Stroke 6.7 3.1 13.5** 14.1 9.9 5.7 17.9** 

COPD or Asthma 11.4 9.2 15.7** 15.4 17.1 10.9 17.0** 

Sleep apnoea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Arthritis 1.6 1.4 2.2 2.1 2.8 1.5 3.1 
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Osteoporosis 6.0 2.9 12.1** 12.0 12.7 4.9 18.5** 

Dementia 2.9 1.3 5.9** 6.7 0.6** 1.8 14.8** 

Severe mental 
disorder 1.7 1.5 2.0 2.1 1.1 1.5 4.3** 

Immunodeficiencies 0.4 0.3 0.5 0.5 0.6 0.4 0.6 

Neurological 
manifestations 18.1 15.0 24.1** 25.1 17.1 16.8 33.0** 

Cancer 10.3 6.3 18.0** 17.8 18.8 8.8 27.5** 

Chronic kidney 
failure 2.4 0.7 5.7** 5.6 6.6 1.8 9.6** 

Dialysis 0.5 0.1 1.3** 1.3 1.1 0.4 1.5 

Hypertension 30.1 18.3 52.5** 48.6 78.5** 27.0 65.1** 
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Table 2: Temporal features (laboratory tests and vital signs).  The table presents information 

on the full cohort (admitted and non-admitted SARS-CoV-2 positive patients) as well as 

subgroups admitted to a hospital and Intensive Care Unit (ICU) respectively. Furthermore, 

differential temporal features between survivors and non-survivors (in-hospital mortality) is 

presented. Continuous variables are presented as medians with (interquartile range) 

**p<0.001 when subgroups are compared (e.g. hospitalized vs. non-hospitalized, ICU vs. 

non-ICU, survivors vs. non- survivors). 

 

Unit All 
SARS-
CoV-2 
patients 
(n=3944) 

Non-
hospitalized 
(n=2585) 

Hospitalized 
patients 
(n=1359) 

Hospitalized 
patients without 
ICU admission 
(n=1178) 

Hospitalized 
patients with 
ICU admission 
(n=181) 

Survivors 
(n=3620) 

Non-
survivors 
(n=324) 

CRP 

mg/l 65.0 
(29.0-
122.0) 

21.0 (8.7-
46.5) 

66.0 (30.0-
124.0)** 

58.0 (26.0-
110.0) 

142.0 (86.8-
231.0)** 

59.5 (24.3-
119.0) 

79.5 (42.0-
160.0)** 

Lymphocyte 
Count 

109/l 0.9 (0.6-
1.4) 1.2 (0.8-1.7) 

0.9 (0.6-
1.3)** 10.0 (0.7-1.4) 0.8 (0.5-1.1) 

1.0 (0.7-
1.4) 

0.8 (0.6-
1.1)** 

Lactic 
dehydrogenase 

U/l 274.5 
(210.0-
376.8) 

215.5 
(176.5-
234.3) 

277.5 (214.0-
381.5)** 

263.0 (206.0-
342.5) 

430.0 (323.0-
579.0)** 

272.0 
(207.0-
366.5) 

292.0 
(226.0-
411.5)** 

Alanine 
aminotransferase 

U/l 27.0 
(18.0-
45.0) 

26.0 (17.5-
35.0) 

27.5 (18.0-
46.0)** 26.0 (18.0-43.0) 

36.0 (23.3-
62.0)** 

28.0 (19.0-
46.3) 

25.0 (17.0-
41.0)** 

Hemoglobin 
mmol/l 8.0 (7.1-

8.7) 8.3 (7.6-8.9) 
8.0 (7.1-
8.7)** 8.0 (7.1-8.8) 7.6 (6.9-8.4) 

8.1 (7.2-
8.8) 

7.7 (6.7-
8.4)** 

White blood cells 
109/l 6.8 (5.1-

9.4) 6.3 (4.7-7.3) 
6.8 (5.1-
9.5)** 6.8 (5.1-9.3) 7.9 (5.3-10.6) 

6.7 (5.0-
9.0) 

7.4 (5.6-
10.7)** 

Neutrophil count 
109/l 5.0 (3.5-

7.4) 
4.15 (3.3-
5.2) 

5.0 (3.5-
7.5)** 4.9 (3.5-7.1) 6.1 (4.2-8.8) 

4.8 (3.4-
6.9) 

5.7 (4.1-
8.7)** 

D dimer 
mg/l 1.0 (0.6-

2.4) 0.7 (0.7-1.9) 
1.0 (0.6-
2.4)** 0.9 (0.5-2.1) 1.4 (0.8-4.3)** 

0.9 (0.5-
2.1) 

1.8 (0.8-
4.4)** 

Blood urea 
nitrogen 

mmol/l 6.3 (4.3-
9.9) 4.3 (3.8-6.7) 

6.4 (4.4-
10.0)** 6.3 (4.4-9.9) 6.8 (5.1-10.8) 

5.7 (4.1-
8.4) 

9.8 (6.8-
14.8)** 

Creatinine 

umol/l 81.5 
(65.6-
108.0) 

67.0 (58.0-
85.0) 

83.0 (65.0-
109.0)** 

82.0 (65.0-
107.0) 

85.5 (67.0-
111.3) 

79.0 (63.0-
100.0) 

99.0 (75.6-
149.0)** 

Ferritin 

ug/l 557.0 
(203.0-
1125.0) 

167.0 (99.0-
613.0) 

570.0 (219.5-
1145.0)** 

399.0 (176.3-
913.3) 

1100.0 (741.0-
1910.0)** 

516.0 
(204.0-
1140.0) 

649.0 
(201.0-
1110.0)** 

Base excess 
mmol/l 0.8 (-1.4-

3.0) 
0.3 (-0.9-
2.7) 

0.8 (-1.4-
3.1)** 0.7 (-1.4-3.0) 1.0 (-1.7-3.6) 

0.8 (-1.1-
3.1) 

0.6 (-2.8-
3.0) 
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HCO� 

mEQ/l 25.2 
(23.6-
27.0) 

25.0 (24.3-
26.8) 

25.2 (23.6-
27.0)** 25.2 (23.6-26.9) 

25.4 (23.6-
27.4)** 

25.3 (24.0-
27.0) 

24.9 (22.2-
27.0)** 

Lactate 
mmol/l 1.1 (0.8-

1.5) 1.2 (0.8-1.8) 
1.1 (0.8-
1.5)** 1.0 (0.8-1.5) 1.3 (1.0-1.7)** 

1.0 (0.8-
1.4) 

1.3 (0.9-
1.7)** 

Arterial O� 
saturation  

% 0.94 
(0.92-
0.99) 

0.95 (0.92 -
0.97) 

0.94 (0.92-
0.97)** 0.95 (0.92-0.97) 

0.92 (0.91-
0.94)** 

0.95 (0.92-
0.97) 

0.93 (0.92-
0.96)** 

pCO� 
mmHg 4.6 (4.1-

5.1) 4.7 (4.4-5.0) 
4.6 (4.1-
5.1)** 4.6 (4.1-5.1) 4.7 (4.1-5.2)** 

4.6 (4.1-
5.1) 

4.7 (4.0-
5.2)** 

pH 

- 7.46 
(7.43-
7.49) 

7.47 (7.43-
7.49) 

7.46 (7.43-
7.49)** 7.46 (7.43-7.49) 

7.47 (7.42-
7.49)** 

7.47 (7.43-
7.49) 

7.45 (7.41-
7.49)** 

pO� 
/min 9.1 (8.0-

10.9) 
10.0 (7.9-
10.7) 

9.1 (8.0-
10.9)** 9.4 (8.2-11.1) 8.3 (7.5-9.6)** 

9.3 (8.2-
11.1) 

8.8 (7.8-
10.2)** 

Pulse 

/min 83.0 
(72.0-
94.0) 

86.0 (74.0-
102.25) 

83.0 (72.0-
93.0)** 82.0 (71.0-92.0) 

86.0 (76.0-
97.0) 

82.0 (72.0-
93.0) 

85.0 (72.8-
98.3)** 

Temperature 

C 37.4 
(36.8-
38.1) 

37.3 (36.6-
38.0) 

37.4 (36.8-
38.1)** 37.3 (36.8-38.0) 

37.6 (37.1-
38.3) 

37.4 (36.8-
38.1) 

37.3 (36.7-
38.0)** 

Early Warning 
Score 

- 3.0 (2.0-
6.0) 2.0 (1.0-4.0) 

4.0 (2.0-
6.0)** 3.0 (2.0-5.0) 6.0 (5.0-8.0)** 

3.0 (2.0-
5.0) 

5.0 (3.0-
6.0)** 

Respiratory rate 

/min 20.0 
(17.0-
22.0) 

18.0 (16.0-
20.0) 

20.0 (18.0-
22.0)** 20.0 (17.0-21.0) 

24.0 (20.0-
30.0)** 

20.0 (17.0-
22.0) 

20.0 (18.0-
24.0)** 

Saturation 

% 96.0 
(94.0-
98.0) 

98.0 (96.5-
99.0) 

96.0 (94.0-
97.0)** 96.0 (95.0-98.0) 

94.0 (92.0-
95.0) 

96.0 (95.0-
98.0) 

95.0 (93.0-
97.0)** 
 

Is smoking 
 

4.8 0.5 13.1** 12.1 19.3 3.4 21.3** 
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Table 3: Main results from the prediction models. Predictions were performed with data 

available from four different time frames in the patient disease trajectories (left column): On 

diagnosis (Diagnoses model), On hospital admission and 12-hours into admission (Admission 

model), 12 hours leading up to Intensive Care Unit (ICU) admission (Pre-ICU model) and 12 

hours after ICU admission (post-ICU model). 

Models were trained to predict risk of hospital admission, ICU admission, ventilator 

treatment and death (top row).  

All models were trained with incremental data, starting with age, gender and Body Mass 

Index, then adding comorbidity information, temporal features (e.g. vital signs) and finally by 

adding hospital laboratory tests where applicable. Please see supplementary tables S1 and S2 

for data definitions.  

Performance metrics are presented as the Receiver Operating Characteristics Area Under the 

Curve (ROC-AUC) for True/False positive rates (TPR/FPR) and Precision/Recall (Pre/Rec). 

*Model is significantly (p<0.01) better than the base prediction model (Age+gender+Body 

Mass Index, BMI) 

#Model is significantly (p<0.01) better than the comorbidities model 

§Model is significantly (p<0.01) better than the temporal model 

--: Insufficient data available at the time point, or prediction irrelevant (e.g. predicting 

hospital admission for patients already in the ICU). 

Hospital admission ICU admission Ventilator treatment Death 

TPR/FPR Pre/Rec TPR/FPR Pre/Rec TPR/FPR Pre/Rec TPR/FPR Pre/Rec 

Diagnosis 

Age+Gender+BMI 0.815 0.695 0.785 0.161 0.801 0.174 0.904 0.413 

+Comorbidities 0.823 0.709 0.831* 0.201 0.844* 0.174 0.902 0.411 

+Temporal Features -- -- -- -- -- -- -- -- 

+In-hospital Tests -- -- -- -- -- -- -- -- 
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Admission 

Age+Gender+BMI -- -- 0.678 0.221 0.699 0.206 0.787 0.434 

+Comorbidities -- -- 0.727* 0.271 0.718 0.224 0.798 0.443 

+Temporal Features -- -- 0.72 0.261 0.722 0.254 0.797 0.449 

+In-hospital Tests -- -- 0.792*#§ 0.412 0.742 0.293 0.818* 0.527 

Pre-ICU 

Age+Gender+BMI -- -- -- -- 0.587 0.878 0.731 0.58 

+Comorbidities -- -- -- -- 0.552 0.842 0.702 0.536 

+Temporal Features -- -- -- -- 0.593 0.885 0.724 0.549 

+In-hospital Tests -- -- -- -- 0.446 0.849 0.723 0.579 

Post-ICU 

Age+Gender+BMI -- -- -- -- 0.587 0.878 0.731 0.58 

+Comorbidities -- -- -- -- 0.56 0.845 0.723 0.558 

+Temporal Features -- -- -- -- 0.559 0.868 0.733 0.56 

+In-hospital Tests -- -- -- -- 0.683 0.927 0.736 0.591 
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SUPPLEMENTARY TABLES 
 

 
Supplementary Table S1: International Classification of Diseases (ICD) 10 and Anatomical 

Therapeutic Classification (ATC) codes used of the definition of chosen comorbidities. ICD-

10 codes list the presence of a given comorbidity in the Electronic Health Record, whereas 

the ATC code indicates that the patient is on a drug targeting the specific comorbidity.  

A comorbidity was classified if either the ICD-10 or ATC code was present for the given 

patient.  

COPD: Chronic Obstructive Lung Disease 

Neurological manifestations: Pre-existing neurodegenerative diseases such as Parkinson’s 

disease.  

 

Comorbidity Included ICD-10 codes Excluded 

ICD-10 

codes 

Included 

ATC codes 

Excluded 

ATC codes 

Diabetes E10,E11,E12,E13,E14,H28.0 

H36.0 

 A10  

Ischemic Heart 

Disease 

I20, I212, I23, I24, I25  CO1D  

Arrythmias I47, I48, I49  CO1AA05  

Heart Failure I50. I42.0, I42.2, I42.6, 

I42.7, I42.8, I42.9, I11.0, 

I13.0, I13.2,  

 CO9DX04  

Stroke G45, G46, I60, I62, I63, I64, 

I65, I66, I67, I68, I69 

 BO1AC30, 

BO1AC07 
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COPD or Asthma J40, J41, J42, J43, J44, J45, 

J46, J47 

   

Sleep apnea G47.3    

Arthritis MO5, MO.6    

Osteoporosis M80, M81, M82  MO5B, 

GO3XC01, 

HO5AA02, 

HO5AA03 

 

Dementia F00, G30, F01, F02.0, F03.9, 

G31.8B, G31.8E, G31.9, 

G31.0B 

 NO6D  

Mental disorder F20, F21, F22, F25, F28, 

F29, F31 

   

Immunodeficiency D80, D81, D82, D83, D84    

Neurological 

Manifestations 

G G45, G46   

Cancer    LO1AA01,  

LO1BA01, 

LO1X02 

Chronic Kidney 

Failure 

N18 N181   
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Supplementary Table S2: List of extracted laboratory tests, where available. 

Group Test Abbreviation Analysed from 

Inflammation/Infection C-reactive protein CRP Plasma 

 Lymphocyte Count - Blood 

 Leucocyte Count - Blood 

 Neutrophil Count - Blood 

Liver Lactate Dehydrogenase LDH Plasma 

 Alanine 

Aminotransferase 

ALAT Plasma 

Coagulation and blood D-Dimer - Plasma 

 Hemoglobin Hgb Blood 

 Ferritine - Plasma 

Renal Blood Urea Nitrogen BUN Plasma 

 Creatinine - Plasma 

Arterial Blood gas Base Excess BE Plasma 

 Bicarbonate - Plasma 

 Lactate - Plasma 

 pO2 - Plasma 

 pCO2 - Plasma 

 pH - Plasma 
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Supplementary Table S3: List of extracted vital signs 

Pulse 

Temperature 

Diastolic Blood Pressure 

Systolic blood pressure 

Early Warning Score 

Oxygen supplementation (liters per minute) 

Oxygen Saturation 
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Supplementary Table S4: Data availability in percentages 

All 
patients 

Non-
hospitalized 

Hospitalized 
patients 

Hospitalized 
patients 
without ICU 
admission 

Hospitalized 
patients 
with ICU 
admission Survivors 

Non-
survivors 

BMI 67.9 63.2 76.9 74.4 92.8 66.8 80.9 

CRP (mean) 31.1 1.8 86.9 86.7 88.4 26.4 84.6 

CRP (slope) 8.9 0.2 25.4 19.0 66.9 7.2 28.1 

CRP (most recent) 31.1 1.8 86.9 86.7 88.4 26.4 84.6 

Lymphocyte Count 
(mean) 28.9 1.7 80.7 80.5 82.3 24.5 77.8 

Lymphocyte Count 
(slope) 7.2 0.0 20.7 14.7 59.7 5.8 22.8 

Lymphocyte Count 
(most recent) 28.9 1.7 80.6 80.4 82.3 24.5 77.8 

Lactate 
dehydrogenase 
(mean) 25.7 1.2 72.3 71.2 79.0 21.9 68.8 

Lactate 
dehydrogenase 
(slope) 4.4 0.0 12.6 7.4 46.4 3.6 12.7 

Lactate 
dehydrogenase 
(most recent) 25.7 1.2 72.3 71.2 79.0 21.9 68.8 

Alanine 
aminotransferase 
(mean) 28.8 1.5 80.8 80.1 85.1 24.4 78.1 

Alanine 
aminotransferase 
(slope) 5.5 0.0 15.8 10.2 52.5 4.4 17.6 

Alanine 
aminotransferase 
(most recent) 28.8 1.5 80.8 80.1 85.1 24.4 78.1 

Hemoglobin 
(mean) 31.5 2.2 87.3 87.0 89.0 26.8 84.6 

Hemoglobin 
(slope) 20.0 0.7 56.8 53.1 80.7 15.9 66.4 

Hemoglobin (most 
recent) 31.5 2.2 87.3 87.0 89.0 26.8 84.6 

White blood cells 
(mean) 31.0 1.9 86.4 86.1 88.4 26.2 84.0 

White blood cells 
(slope) 8.8 0.0 25.4 18.8 68.0 7.0 29.9 

White blood cells 
(most recent) 30.7 1.9 85.4 85.4 85.6 26.0 83.0 

Neutrophil (mean) 29.0 1.7 80.9 80.6 82.3 24.6 78.1 

Neutrophil (slope) 7.6 0.0 21.7 15.2 64.1 6.0 24.7 
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Neutrophil (most 
recent) 29.0 1.7 80.9 80.6 82.3 24.6 78.1 

D dimer (mean) 7.9 0.2 22.5 19.7 40.9 6.6 21.9 

D dimer (slope) 1.1 0.0 3.0 0.7 18.2 0.8 4.0 

D dimer (most 
recent) 7.9 0.2 22.5 19.7 40.9 6.6 21.9 

Blood urea 
nitrogen (mean) 27.5 1.2 77.6 76.9 82.3 23.2 75.6 

Blood urea 
nitrogen (slope) 5.1 0.0 14.6 9.0 51.4 4.1 16.4 

Blood urea 
nitrogen (most 
recent) 27.5 1.2 77.6 76.9 82.3 23.2 75.6 

Creatinine (mean) 31.0 1.7 86.8 86.5 88.4 26.2 84.9 

Creatinine (slope) 10.4 0.0 29.9 23.9 69.1 7.9 38.0 

Creatinine (most 
recent) 31.0 1.7 86.8 86.5 88.4 26.2 84.9 

Ferritin (mean) 9.3 0.3 26.4 23.9 42.5 7.9 25.6 

Ferritin (slope) 1.6 0.0 4.5 1.8 22.1 1.2 5.2 

Ferritin (most 
recent) 9.3 0.3 26.4 23.9 42.5 7.9 25.6 

Base excess 
(mean) 19.1 0.9 53.6 49.5 80.7 15.2 62.0 

Base excess 
(slope) 7.8 0.3 22.1 15.0 68.0 5.6 31.8 

Base excess (most 
recent) 19.0 0.9 53.4 49.5 79.0 15.1 62.0 

HCO₃ (mean) 19.6 1.0 55.1 51.0 81.8 15.6 64.2 

HCO₃ (slope) 7.7 0.2 21.9 14.9 68.0 5.6 31.5 

HCO₃ (most 
recent) 19.6 1.0 55.1 51.0 81.8 15.6 64.2 

Lactate (mean) 14.7 0.9 41.0 37.6 63.0 11.8 47.2 

Lactate (slope) 6.1 0.3 17.2 11.7 53.0 4.4 24.7 

Lactate (most 
recent) 14.7 0.9 41.0 37.6 63.0 11.8 47.2 

O₂ (mean) 18.2 0.9 51.2 46.8 80.1 14.4 61.1 

O₂ (slope) 7.2 0.2 20.4 13.5 65.2 5.2 28.4 

O₂ (most recent) 18.2 0.9 51.2 46.8 80.1 14.4 61.1 

pCO₂ (mean) 18.2 0.9 51.3 46.9 80.1 14.4 61.1 

pCO₂ (slope) 7.3 0.2 20.6 13.6 66.3 5.3 29.3 

pCO₂ (most 
recent) 18.2 0.9 51.3 46.9 80.1 14.4 61.1 

ph (mean) 18.2 0.9 51.3 46.9 80.1 14.4 61.1 

ph (slope) 6.9 0.2 19.8 13.1 63.5 5.1 28.1 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.06.20207209doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20207209


ph (most recent) 18.2 0.9 51.3 46.9 80.1 14.4 61.1 

pO₂ (mean) 18.2 0.9 51.2 46.8 80.1 14.4 61.1 

pO₂ (slope) 7.6 0.2 21.5 14.4 67.4 5.5 30.6 

pO₂ (most recent) 18.2 0.9 51.2 46.8 80.1 14.4 61.1 

Pulse (mean) 33.5 4.8 88.0 87.9 89.0 28.8 85.2 

Pulse (slope) 27.8 0.7 79.4 78.4 86.2 23.2 79.6 

Pulse (most 
recent) 33.5 4.8 88.0 87.9 89.0 28.8 85.2 

Temperature 
(mean) 33.3 4.5 88.2 88.0 89.0 28.7 84.9 

Temperature 
(slope) 27.2 0.5 78.0 77.0 84.5 22.8 75.9 

Temperature (most 
recent) 33.3 4.5 88.2 88.0 89.0 28.7 84.9 

Early Warning 
Score (mean) 29.1 2.1 80.4 79.4 86.7 24.3 82.1 

Early Warning 
Score (slope) 23.9 0.3 68.7 66.5 82.9 19.5 72.5 

Early Warning 
Score (most 
recent) 26.0 2.0 71.7 69.6 85.1 21.4 77.2 

Respiratory rate 
(mean) 33.1 4.4 87.5 87.4 88.4 28.5 84.6 

Respiratory rate 
(slope) 25.0 0.4 71.7 69.8 84.0 20.6 73.8 

Respiratory rate 
(most recent) 33.1 4.4 87.5 87.4 88.4 28.5 84.6 

Saturation (mean) 33.5 4.8 88.2 88.0 89.0 28.9 85.2 

Saturation (slope) 25.6 0.7 72.9 71.1 84.5 21.2 74.4 

Saturation (most 
recent) 33.5 4.8 88.2 88.0 89.0 28.9 85.2 
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Supplementary Table S5: Demographic information on the group SARS-CoV-2 positive 

patients from the United Kingdom biobank cohort used for external validation. The table 

presents information on the full cohort (admitted and non-admitted SARS-CoV-2 positive 

patients) as well as subgroups admitted to a hospital and Intensive Care Unit (ICU) 

respectively. Furthermore, differential demographics between survivors and non-survivors 

(in-hospital mortality) is presented. Continuous variables are presented as medians with 

(interquartile range) 

**p<0.001 when subgroups are compared (e.g. hospitalized vs. non-hospitalized, ICU vs. 

non-ICU, survivors vs. non- survivors). 

COPD: Chronic Obstructive Pulmonary Disease.  

All SARS-
CoV-2 
patients 
(n=1650) 

Non-
hospitalized 
(n=897) 

Hospitalized 
patients 
(n=753) 

Hospitalized 
patients 
without ICU 
admission 
(n=1519) 

Hospitalized 
patients  
with ICU 
admission 
(n=131) 

Survivors 
(n=1345) 

Non-
survivors 
(n=305) 

Body Mass  
Index 

28.0 
(25.1-
31.5) 

27.3 (24.6-
30.5) 

28.8 (25.9-
32.6)** 

27.8 (25.0-
31.2) 

29.9 (27.1-
33.8)** 

27.7 
(25.0-
31.2) 

28.8 
(25.9-
32.6) 

Age 

69.0 
(59.0-
76.0) 

64.0 (57.0-
75.0) 

73.0 (67.0-
78.0)** 

69.0 (59.0-
77.0) 

69.0 (61.5-
75.0) 

66.0 
(58.0-
75.0) 

76.0 
(71.0-
79.0)** 

Male Sex 47.8 56.6 37.2** 49.0 32.8** 50.7 34.8** 

Diabetes 14.1 10.3 18.7** 14.3 12.2 12.1 23.0** 

Ischemic heart 
disease 14.7 10.6 19.7** 14.8 13.7 12.6 24.3** 

Heart failure 4.2 2.7 6.0** 4.2 3.8 3.4 7.5** 

Arrhythmia 9.9 6.8 13.5** 10.0 8.4 8.4 16.4** 

Stroke 5.9 5.8 6.1 6.3 1.5 5.0 10.2** 

COPD or 
Asthma 15.2 12.2 18.7** 15.1 15.3 13.8 21.0** 

Sleep apnoea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Arthritis 2.4 1.6 3.5 2.4 3.1 1.8 5.2** 

Osteoporosis 3.0 2.5 3.7 3.1 2.3 2.8 3.9 

Dementia 2.1 2.5 1.7 2.3 0.0 1.6 4.3 

Severe mental 
disorder 0.8 0.7 1.1 0.8 1.5 0.6 2.0 

Immunodeficie
ncies 0.3 0.3 0.3 0.3 0.0 0.2 0.7 

Neurological 
manifestations 19.2 16.6 22.3 19.6 14.5 17.2 27.9** 

Cancer 12.8 10.3 15.9** 12.9 12.2 11.4 19.3** 

Chronic 5.2 3.7 7.0 5.1 6.1 4.6 7.9 
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kidney failure 

Dialysis 0.9 1.1 0.7 0.9 0.8 1.0 0.7 

Hypertension 35.5 28.2 44.1** 35.3 37.4 31.1 54.8** 
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Supplementary Table S6: Main results from the external validation of the prediction 

models.  

Performance metrics are presented as the Receiver Operating Characteristics Area Under the 

Curve (ROC-AUC) for True/False positive rates (TPR/FPR) and Precision/Recall (Pre/Rec). 

*Model is significantly (p<0.01) better than the base prediction model (Age+gender+Body 

Mass Index, BMI) 

 

--: Insufficient data available at the time point, or prediction irrelevant (e.g. predicting 

hospital admission for patients already in the ICU). 

Hospital admission
 

ICU admission
 

Death 
 

 
TPR/FPR Pre/Rec TPR/FPR Pre/Rec TPR/FPR Pre/Rec 

Diagnoses 
      

Age+Gender+BMI 0.648 0.561 0.509 0.083 0.716 0.294 

+Comorbidities 0.664* 0.58 0.548 0.094 0.724 0.302 

Admission 
      

Age+Gender+BMI -- -- 0.557 0.189 0.607 0.394 

+Comorbidities -- -- 0.518 0.182 0.625 0.413 

Pre-ICU 
      

Age+Gender+BMI -- -- -- -- 0.623 0.524 

+Comorbidities -- -- -- -- 0.679 0.606 

Post-ICU 
      

Age+Gender+BMI -- -- -- -- 0.623 0.524 

+Comorbidities -- -- -- -- 0.674 0.58 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure S1: Receiver operator characteristics – area under the curve (ROC-

AUC) of the patients tested positive for SARS-CoV-2 (Diagnosis model). The model 

predicted risks of hospital admission (bottom left), intensive care admission (bottom right), 

ventilator treatment (top right) and death (top left). Orange line indicates results obtained on 

Danish data; green line indicates results obtained in external validation data from the UK 

biobank.  

 

 Supplementary Figure S2: Receiver operator characteristics – area under the curve (ROC-

AUC) of the patients admitted to the hospital. Model inputs included data available up to 12 

hours after the admission timepoint (admission model). The model predicted risks of 

intensive care admission (bottom), ventilator treatment (top right) and death (top left). 

Orange line indicates results obtained on Danish data; green line indicates results obtained in 

external validation data from the UK biobank.  

 

 
Supplementary Figure S3: Receiver operator characteristics – area under the curve (ROC-

AUC) of the patients admitted to the Intensive Care Unit (ICU). Model inputs included data 

available from the admission model, as well as temporal features available during the 12 

hours leading up to ICU admission.  The model predicted risks of ventilator treatment (right) 

and death (left). 

Orange line indicates results obtained on Danish data; green line indicates results obtained in 

external validation data from the UK biobank.  
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Supplementary Figure S4:  Receiver operator characteristics – area under the curve (ROC-

AUC) of the patients admitted to the Intensive Care Unit (ICU). Model inputs included data 

available from the admission model, as well as temporal features available during the 12 

hours after ICU admission.  The model predicted risks of ventilator treatment (right) and 

death (left). 

Orange line indicates results obtained on Danish data; green line indicates results obtained in 

external validation data from the UK biobank.  

 

Supplementary Figure S5: Feature importance for the basic (including age, sex and body 

mass index) and advanced (all data) pre-ICU model, predicting risk ventilator treatment (first 

row) and death (second row). 

 

Supplementary Figure S6: Feature importance for the basic (including age, sex and body 

mass index) and advanced (all data) post-ICU model, predicting risk ventilator treatment 

(first row) and death (second row). 

 

Supplementary Figure S7: Calibration curves for basic models. Orange line indicates 

Danish data, green line indicates data from the United Kingdom biobank. For each calibration 

plot, the abscissa shows the mean of the predictions within a bin and the ordinate shows the 

fraction of positive labels for the corresponding samples. 

 

Supplementary Figure S8: Calibration curves for advanced models. Orange line indicates 

Danish data. For each calibration plot, the abscissa shows the mean of the predictions within 

a bin and the ordinate shows the fraction of positive labels for the corresponding samples. 
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