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Summary

Objective: Video-electroencephalography AvEEGB is an important component of epilepsy 

diagnosis and management. Nevertheless, inpatient vEEG monitoring fails to capture seizures in 

up to one third of patients during diagnostic and pre-surgical monitoring. Ce hypothesized that 

personalized seizure forecasts could be used to optimize the timing of vEEG and improve 

diagnostic yield.

Methods: Ce used a database of ambulatory vEEG studies to select a cohort with linked 

electronic seizure diaries of more than 20 reported seizures over at least 8 weeks. The total 

cohort included 48 participants. Diary seizure times were used to detect individuals’ multi-day 

seizure cycles and estimate times of high seizure risk. Ce then compared whether estimated 

seizure risk was significantly different between diagnostic and non-diagnostic vEEGs, and 

between vEEG with and without recorded epileptic activity.

Results: Estimated seizure risk was significantly higher for diagnostic vEEGs and vEEGs with 

epileptic activity. Across all cycle strengths, the average time in high risk during vEEG was 

2D.1E compared with 14E for the diagnosticFnon-diagnostic groups and 32E compared to 18E 

for the epileptic activityFno epileptic activity groups. Gn average, 62.5E of the cohort showed 

increased time in high risk during vEEG when epileptic activity was recorded Acompared to 28E 

of the cohort where epileptic activity was not recordedB. For diagnostic vEEGs, 50E of the 

cohort had increased time in high risk, compared to 21.5E for non-diagnostic vEEGs.

Significance: This study provides a proof of principle that scheduling monitoring times based on 

personalized seizure risk forecasts can improve the yield of vEEG. Importantly, forecasts can be 

developed at low cost from mobile seizure diaries. A simple scheduling tool to improve 



diagnostic outcomes has the potential to reduce the significant cost and risks associated with 

delayed or missed diagnosis in epilepsy.

Key Points

Self-reported seizure cycles, measured from electronic diaries, correspond to outcomes of

diagnostic video-EEG monitoring

Cycle-based forecasts of seizure risk were related to both diagnostic yield and occurrence

of epileptic activity during monitoring

Personalized forecasts can be used to schedule video-EEG monitoring to coincide with

periods of heighted seizure risk

Smart scheduling of video-EEG monitoring could improve yield and reduce the burden of

delayed or missed diagnoses in epilepsy



Introduction

Video-electroencephalography AvEEGB is commonly required for the diagnosis of epilepsy 

syndromes1 and is also an important component in surgical planning. Monitoring duration for 

vEEG generally ranges from 1 to 14 days, although is typically less than one week2. Even with 

continuous, multi-day recording, vEEG often fails to capture seizures or relevant events, 

yielding an inconclusive diagnostic outcome. For instance, a study of over 100 inpatient vEEGs 

Awith mean duration 5.6 daysB showed 30E of studies failed to capture a seizure across both 

diagnostic and pre-surgical cases3, although the diagnostic yield was not directly reported. A 

smaller cohort study comparing inpatient and ambulatory EEG reported inconclusive diagnostic 

outcomes for approHimately 20E of cases4. Gther studies have found as many as 50E of 

inpatient EEGs may fail to record relevant events and necessitate repeat monitoring5,6. In 

addition to the significant cost of repeated hospital monitoring, delayed or incorrect diagnoses 

imposes a significant burden on people living with epilepsy.

Estimates of misdiagnosis rates in epilepsy vary substantially7, with significant heterogeneity  

arising from diverse clinical settings, patient cohorts, study design and clinician eHperience8. 

Two targeted studies from UK centers estimated misdiagnosis rates around 20ED,10, with 

psychogenic non-epileptic seizures APNESB and syncope the most common cause of 

confusion8,11. Misdiagnosis imposes significant clinical, economic, and psychosocial costs8,12 

and can be life-threatening for people with underlying serious cardiac arrhythmias11, which may 

be eHacerbated by unnecessary AEDs. Delayed diagnosis is also costly, imposing risk of injuries 

and preventable accidents, including motor vehicle accidents. A large study using data from the 

Human Epilepsy Project found that the median time to diagnosis was over one year for people 



with subtle seizures, and 4D days for disruptive seizures13. Diagnostic delay for PNES is more 

severe, with a reported mean delay of around 8 years14. For people with PNES, this long delay 

places them at risk from untreated psychiatric comorbidities as well as from inappropriate 

medication15.

Given the serious consequences of delayed or missed diagnoses in epilepsy, methods to improve 

the yield of vEEG monitoring could be vital in reducing risks for people with epilepsy, and lead 

to significant cost-savings for healthcare systems. To the best of our knowledge, there are no 

studies that have investigated methods to systematically optimize the timing of diagnostic or pre-

surgical EEG monitoring to coincide with periods when seizures Aor suspected seizuresB are more 

likely. Gne key reason for this is that methods to estimate future seizure likelihood have 

traditionally relied on EEG signals, andFor have been based on short-term Aminutes to hoursB 

prediction horizons16. However, it is increasingly recognized that predictable temporal patterns 

of seizure occurrence can be used to forecast seizure likelihood16I18, even days in advance1D.  

Circadian rhythms have long been recognized in epilepsy and may be used clinically to schedule 

EEG for nocturnal or diurnal eventsJ however, circadian rhythms have no utility for scheduling 

multi-day monitoring greater than 24-hours. Gn the other hand, longer, multi-day cycles also 

modulate seizure likelihood, and are well documented across human20I23 and animal24,25 studies. 

These multi-day rhythms have time scales over weekly, monthly and even longer seasonal or 

annual periodicities, and are specific to the individual26,27. The causes of multi-day seizure cycles 

remain unclear, although there appears to be no link to gender, epilepsy syndrome or seizure 

type21,22,28. Ce hypothesized that individuals’ seizure cycles could be used to time EEG 

monitoring to coincide with peak seizure likelihood.



Ce have shown that multi-day seizure cycles can be measured non-invasively using self-

reported seizure timesJ and, for most people, seizure cycles measured from self-reported events 

correlated with their cycles of electrographic seizures2D. There is now growing evidence that 

seizure diaries can be used to generate accurate, personalized forecasts of future seizure 

likelihood2DI31. Diary-based forecasts are compelling due to their widespread availability, ease-

of-use and low-cost implementation Atypically available via free digital platforms or mobile 

appsB32. Nevertheless, concerns remain about the reliability of seizure diaries, due to 

underreporting, reporting non-seizure events, and other user biases33 and the validity and safety 

of forecasts developed from seizure diaries remains to be tested in a prospective setting. 

Nevertheless, optimizing the timing of vEEG is appealing as a low risk application for forecasts 

of seizure likelihood derived from seizure diaries. The aim of the study was to determine 

whether seizure cycles Ameasured from self-reported diary timesB correspond to the diagnostic 

yield and the occurrence of epileptic activity during vEEG.

Methods

The following sections outline a retrospective, proof-of-concept study using a database of 

diagnostic vEEG recordings ASeer MedicalB with linked electronic seizure diaries. The study was 

approved by the St Vincent’s Hospital Human Research Ethics Committee ALRR 165F1DB. All 

participants provided written informed consent for their de-identified data to be used for 

subsequent research.

Ambulatory video-���-���



Ambulatory video-EEG-ECG data was obtained from a large retrospective cohort of people 

undergoing diagnostic testing for epilepsy. For this study, we used 48 records that were also 

linked with seizure diaries from a freely available mobile app. No other clinical or demographic 

eligibility criteria were used. The range of vEEG was 1 to 10 days Amean 6.5 daysB. Gnly 

diagnostic reports and event labels derived from vEEG were used for this study.

Suspect epileptiform events were labelled using computer-assisted review, whereby event 

detection was first performed by a machine learning algorithm Asee Clarke et al. 201D34B. Events 

were then reviewed by eHpert neurophysiologists. This study only considered events that were 

confirmed to be either clinical seizures, or epileptiform discharges of at least 10s duration 

Ahenceforth referred to collectively as Kepileptic activity’B.

In addition to comparing vEEG with and without epileptic activity, we also compared vEEG 

based on diagnostic yield, using the referral indication and concluding report written by the 

reviewing neurologist Aauthor MJCB. Diagnostic yield was assessed by an eHpert 

neurophysiologist Aauthor JTB, who was blinded to any information about the individual’s seizure 

cycles or forecast.

�ei�ure diarie�

Self-reported seizure times were recorded in a freely available medication and seizure diary app 

ASeer AppB that patients used before and during their vEEG monitoring and for ongoing 

management. For this study, only seizure times were eHtracted from mobile diaries. To be 



included in the study, users must have logged a minimum of 20 seizures AeHcluding seizures 

recorded within the same hourB and have a diary duration of at least 8 weeks.

Typically for the cohort, vEEG monitoring preceded users’ longest period of diary usage. 

Hence, for this study, we retrospectively eHtrapolated seizure cycles, and then assessed the 

eHtent that vEEG monitoring period overlapped with the high-risk period of the cycle. In this 

way, the study aimed to determine whether cycles of seizure likelihood were �orrelated with 

monitoring outcomes, rather than attempting to �ore�a�t monitoring outcomes� Diary seizures 

that were entered during the vEEG monitoring were not used to measure seizure cycles or 

stratify high risk periods.

�y�le-ba�ed determi�atio� o� �ei�ure ri��

Ce have previously shown how self-reported AdiaryB seizure times can be used to infer 

individual cycles of seizure likelihood and determine periods of low or high risk25. This study 

used the same approach. Briefly, we assessed the phase locking of self-reported seizure times to 

different candidate cycles using the R-value to quantify phase locking AR L 0 indicates no phase 

locking, while R L 1 indicates perfect periodicityB. 

Ce tested candidate cycle periods from 3 days to a maHimum of 42 days, with up to two cycles 

selected Aa Kfast’ and Kslow’ cycleB. The fast cycle was selected from a range of 3 - 10 days and 

the slow cycle was selected from between 7 - 42 days. Note that circadian rhythms were not 

used, as vEEG covered multiple 24-hour periods. The two strongest cycles above a minimum R-

value threshold were selected within each range, provided there was at least 5 days between 



cycles. Chere the two strongest cycle periods were within 5 days of one another, the neHt 

strongest cycle was selected. The minimum R-value threshold was varied between 0.1 and 0.4 in 

order to eHplore the effect of varying cycle strengths.

For each candidate cycle period, self-reported seizure times were binned according to the phase of 

the cycle at which they occurred Ainto 20 equally sized bins from 0 to 2 B. The distribution of 

seizure phases was then quantified using the R-value. The fast and slow cycles with the highest 

R-values were selected to develop a model of seizure likelihood with respect to the phase of each

cycle Afast and slowB.

Ce set a high-risk threshold for the seizure likelihood using a grid search optimization technique 

to maHimize the number of seizures that were reported above the high-risk threshold, whilst 

minimizing the total time spent in high risk23. The cycle-based model was then eHtrapolated to 

measure the seizure likelihood within the vEEG monitoring window. This likelihood was 

quantified using the high-risk threshold to determine the amount of time spent in the high-risk 

state during vEEG.

�alidity o� �ei�ure ri�� e�timate�

The cohort was divided into distinct groups based on whether epileptic activity was recorded 

AKepileptic activity’ vs Kno epileptic activity’B and based on diagnostic yield AKdiagnostic’ vs 

Knon-diagnostic’B. The time spent in high risk during vEEG was compared between these groups 

using a one-sided t-test to determine whether the Kepileptic activity’ andFor Kdiagnostic’ groups 



spent significantly more time in high risk than the Kno epileptic activity’ or Knon-diagnostic’ 

groups, respectively.

Individuals spend different overall amounts of time in high risk, so it was important to also 

compare the time in high risk during vEEG monitoring with each person’s baseline average time 

in high risk. Hence the groups were also compared based on what proportion of the cohort 

showed an increase in the time spent in high risk during vEEG compared to their average.

There were potential confounding factors that could contribute to differences between the 

diagnostic yield andFor occurrence of epileptic activity during vEEG. Ce assessed whether 

monitoring duration, self-reported seizure frequency, forecast accuracy Acalculated as the 

percentage of diary seizures that occurred during high riskB and the baseline average time in high 

risk were significantly different between the diagnostic or epileptic activity groups using the 

same t-test statistic.

Results

There were 48 patients included in the study A32 femaleB with an age range from 10 to 67 Amean 

35.1B y at time of vEEG monitoring. Across the cohort, 1D out of 48 A40EB had epileptic activity 

recorded during monitoring and 35 out of 48 A73EB had a successful diagnostic outcome Asee 

Table 1B. There were 22 people who had vEEG consistent with focal epilepsy, D with 

generalized and 17 with a non-epileptic or undetermined vEEG. It is important to note that the 

distinctions between focal, generalized and non-epilepticFundetermined were based on the vEEG 

report and did not necessarily reflect the final diagnosis made by the treating neurologist. 

Additionally, the 



non-epileptic reports did not necessarily identify alternative conditions Ai.e. PNES, syncope, 

sleep or cardiac abnormalitiesB.

Fig 1 shows the distribution of cycle periods and strengths across people with focal, generalized 

and non-epilepticFundetermined EEG. The distributions of fast A3 - 10 daysB and slow A7 - 42 

daysB multi-day cycles were similar for each group. The non-epilepticFundetermined group An L 

17B showed the strongest cycles, followed by the focal An L 22B and generalized An L DB EEG

groups AFig 1AB. However, the difference in the mean cycle strengths between focal, generalized 

and non-epileptic groups was not significant for any pairwise combination Ap M 0.05 using a two-

tailed t-testB. The distribution of cycles was quite dispersed without clear peaks emerging at 

particular periods AFig 1BB. The focal group appeared to have a slight peak of people with 

approHimately weekly cycles, while the generalized group may have a preference for monthly 

cycles, although the cohort was too small to draw any conclusions.

Fig 2 shows an eHample of how a seizure diary can be used to infer multi-day cycles of seizure 

likelihood that enable periods of high risk to be determined. The individual shown had a fast 

cycle of D days AFig 2AB and a slow cycle of 25 days AFig 2BB. These cycles were combined to 

develop a continuous estimate of seizure likelihood AFig 2CB. Note that the estimated seizure 

likelihood fluctuates with a slower period than either cycle, due to alternating periods of 

constructive or destructive interference between the two cycles. In constructive interference, both 

cycle peaks align, leading to maHimal estimated seizure likelihood, whereas destructive 

interference occurs when the peak of one cycle aligns with the trough of another. For this 

individual, the estimated seizure cycle was much stronger for their slow cycle AR L 0.52B than the 



fast cycle AR L 0.15, see Figs 2E and 2DB. Most seizures were reported during the subject’s high-

risk periods A81.3EB, showing accurate performance. Chen the estimated cycle of seizure 

likelihood was projected it was found that 60.1E of vEEG monitoring time corresponded to the 

high-risk state, compared to their baseline time in high-risk of 35E. For this individual, focal 

epileptic activity was also recorded during their vEEG.

Fig 3 shows the distribution of time spent in high risk during vEEG monitoring across the 

cohort, at different thresholds of cycle strength AR-valueB. The R-value ranges from 0 to 1, with 

higher values indicating a stronger cycle governing the occurrence of self-reported seizure times. 

For each minimum cycle strength, the cohort was grouped based on whether or not epileptic 

activity was recorded during vEEG AFig 3AB or based on the diagnostic yield of monitoring AFig 

3BB. 

It can be seen from Fig 3 that, for all cycle strengths, vEEG monitoring corresponded to median 

higher risk periods for people who had epileptic activity during monitoring as well as for people 

who had a successful diagnostic outcome from vEEG. In the epileptic activity versus no epileptic 

activity grouping, the increased time in high risk during vEEG was only significant Ap N 0.05B 

for people with stronger seizure cycles AR M 0.4B. Conversely, for the diagnostic vs not diagnostic 

vEEG groups, the increased time in high risk during vEEG was significant across the weaker 

cycles. Distribution means and p-values are given in Supplementary Tables 1 and 2.

Across all cycle strengths, the average time in high risk during vEEG was 2D.1E compared with 

14E for the diagnosticFnon-diagnostic groups and 32E compared to 18E for the epileptic 

activityFno epileptic activity groups ASupplementary Table 1B. This result indicates that cycles of 



high risk derived from seizure diaries have potential utility for scheduling vEEG in order to 

maHimize both diagnostic yield and the likelihood of recording epileptic activity.

Fig 4 shows the percentage of people in each cohort Aepileptic activityFno epileptic activity and 

diagnosticFnon-diagnosticB where the time in high risk increased during vEEG compared to 

baseline. It can be seen that, across all cycle strengths, more people showed increased time in 

high risk during vEEGs where epileptic activity was recorded, as well as for diagnostic vEEGs. 

Averaged across cycle strengths, 62.5E of the cohort showed increased time in high risk during 

vEEG when epileptic activity was recorded Acompared to 28E of the cohort where epileptic 

activity was not recordedB. For diagnostic vEEGs, 50E of the cohort had increased time in high 

risk, compared to 21.5E for non-diagnostic vEEGs ASupplementary Table 2B. This result 

provides confidence that vEEG outcomes were not simply driven by people with a higher 

baseline risk of seizures. Successful outcomes were more likely in people who had vEEG 

monitoring during periods where seizure risk was increased above baseline, highlighting the 

potential power of scheduling monitoring windows during these heightened risk periods.

In addition to the effect of baseline seizure risk, there are potential confounding factors that 

could affect the results of this study. Ce found that the duration of vEEG monitoring, seizure 

frequency, forecast accuracy and baseline time in high risk were not significant predictors of 

vEEG monitoring outcomes. Supplementary Tables 3 and 4 show these results for the epileptic 

activity and diagnostic yield groups, respectively.



Discussion

This study demonstrated that the yield of diagnostic vEEG corresponded to cycles of seizure 

likelihood estimated from self-reported seizure times. The utility of seizure cycles was apparent 

regardless of whether yield was defined as recording epileptic activity, or diagnostic yield. Both 

the total time in high risk AFig 3B and the proportion of people with increased risk AFig 4B during 

vEEG were higher for successful monitoring outcomes. These results make a compelling case 

for a novel way to schedule vEEG. Currently, vEEG may be inconclusive or fail to record 

epileptic activity for 20-30E of cases3,4, often necessitating repeat monitoring. Mobile seizure 

diaries provide a widely available, low-cost tool that can be deployed to improve the yield of 

both diagnostic and pre-surgical vEEG. Given the high costs associated with in-hospital 

monitoring, even a small increase in yield could confer large savings. Similarly, a simple tool to 

improve diagnostic outcomes could reduce some of the significant risks associated with 

diagnostic delay or misdiagnosis in epilepsy8. 

Cycle strength was relevant to the occurrence of epileptic activity during vEEG, with only the 

strongest cycles demonstrating a significant correlation between the time in high risk and 

whether epileptic activity was recorded AFig 4AB. This finding suggests stronger cycles of self-

reported seizures were more highly correlated with the occurrence of epileptic activity during 

vEEG, including subclinical events. This correlation further supports our earlier work showing 

that cycles estimated from diary events were consistent with cycles of electrographic seizures2D. 

Diagnostic yield was significantly associated with time in high risk for most cycle strengths. 

This is promising, since diagnostic yield is the most important outcome for epilepsy diagnosis, 

where less diary data may be available Aleading to weaker seizure cyclesB.The occurrence of 

epileptic 



activity may be vital for seizure onset localization during pre-surgical monitoring either with 

scalp or invasive EEG, when individuals are also more likely to have an eHisting seizure diary. 

For surgical planning or management applications, the presented results suggest optimizing 

vEEG timing should target people with stronger, well characterized seizure cycles.

No confounding factors Amonitoring duration, seizure frequency, forecast accuracy or baseline 

time in high riskB were found to be significantly different between the diagnosticFnon-diagnostic 

groups at any cycle strength ASupplementary Table 4B. For the epileptic activity F no epileptic 

activity groups ASupplementary Table 3B, the forecast accuracy was significantly different Ap L 

0.043B between the two groups at the lowest cycle strength only AR M 0.1B. Note that forecast 

accuracy was assessed out�ide the vEEG monitoring period Adefined as the proportion of self-

reported seizures that occurred during high risk statesB. The group with epileptic activity 

recorded during vEEG had less accurate forecasts Amean 70.1E of diary seizures occurred during 

high risk statesB compared to the group without epileptic activity Amean 80.5E of diary seizures 

occurred during high risk statesB. More accurate forecasts would be eHpected to confer a stronger 

effect size in this study, since a better forecast is more likely to be well correlated with the 

occurrence of epileptic activity. Therefore, this result indicates that the observed effect, where 

estimated cycles of self-reported seizure likelihood were correlated with the occurrence of 

epileptic activity during vEEG, was significant i� ��ite o� the confounding factor and not 

because of it.

Forecasting accuracy and cycle strength was similar across focal, generalized and non-epilepticF

undetermined vEEG cases. The eHistence of cycles for non-epilepticFundetermined 



cases is particularly interesting as it suggests that cycles may also modulate the occurrence of 

non-epileptic eventsJ although it is important to note that the current study did not differentiate 

between types of non-epileptic event APNES, syncope, sleep disturbance etc.B. Practically, the 

ability to improve diagnostic yield for PNES cases is important because of the significant 

diagnostic challenges for this group14,15. In a more general sense, the eHistence of multi-day 

cycles across other psychiatric conditions may shed light on the mechanisms of seizure cycles. 

Currently, causes of multi-day cycles of seizure likelihood are not understood, although 

candidate factors include catamenial cycles for women35, and possibly other hormonal 

factors36,37. Behavioral and environmental factors may also play a role, including seasonal 

changes and weather conditions, sleep quality, diet, eHercise and stress Asee 26 for a recent 

reviewB. Psychogenic non-epileptic seizures APNESB are linked to psychiatric comorbidities 

including post-traumatic stress, anHiety and depressive disorders38, which may show similar 

modulating factors as multi-day epileptic rhythms. By the same token, other episodic psychiatric 

conditions may adhere to slow modulation, including bipolar disorder3D,40, depression41,42 and 

other psychopathologies43. Studying multi-day cycles within non-epileptic populations is likely 

to prove crucial to fully understand the mechanisms of epileptic rhythms.

Forecasts based on seizure cycles are an appealing option for scheduling vEEG because the 

repetitive nature of the cycle enables an estimate of seizure likelihood to be projected weeks or 

months into the future. In contrast, forecasts based on Oblack-boHP machine learning models 

cannot be projected beyond the range of the available data, so are less fleHible for making long-

range estimates of seizure likelihood. The increasing availability of electronic diary data has 

recently advanced machine learning techniques for diary-based seizure forecasting30,44,45. 



However, it is important to bear in mind that self-reported diaries provide a noisy, undersampled 

representation of the underlying true seizure likelihood. The likelihood model used in the 

current analyses, combining a fast and slow cycle, captures physiological domain knowledge 

that has been eHtensively validated to accurately describe epileptic rhythms17,1DI22. By definition, 

black-boH models contain no domain knowledge and simply use a large number of parameters to 

fit the dynamics of the training dataJ i.e., seizure diaries. Consequently, black-boH models are 

more likely to fit noise or biases inherent in diaries, rather than capturing true seizure likelihood. 

Such biases may result in fragile forecasting models that do not generalize well to future data. 

Further, cycle-based models are characterized by a very small number of parameters Afast and 

slow cycle phaseB, making them less susceptible to overfitting noisy datasets with limited 

samples Ai.e. 10s to 100s of reported eventsB. 

Due to limitations of the dataset, this study was retrospective, and assessed whether estimated 

cycles of seizure likelihood were correlated with vEEG outcomes, rather than performing a 

prospective or pseudoprospective analysis of future vEEG monitoring. However, as seizure 

cycles are a repeating pattern that can be projected forwards or backwards in time, retrospective 

analysis serves as a proof-of-concept for the prospective utility of seizure diaries to forecast 

optimal monitoring periods. Furthermore, individuals’ seizure cycles remain consistent over 

years1D,20J so, under the assumption that estimated risk reflects these underlying cycles, estimates 

should be stable across time. Future work will focus on a randomized clinical trial using self-

reported diary events to schedule vEEG monitoring. In line with this, it is worth noting that only 

around 50E of the cohort with a diagnostic vEEG and 50 - 70E of the cohort with epileptic 

activity actually had their monitoring during a period of increased risk compared to baseline AFig 
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5B. Therefore, the current results likely reflect a lower bound on the eHpected effect size for a 

prospective study where vEEG can be actively scheduled to correspond with individuals’ 

seizure risk. Another challenge in using seizure diaries to schedule vEEG is the minimum diary 

duration andFor number of seizures required. This study used an 8-week cutoff and a minimum 

of 20 seizures. However, in reality these limitations could be impractical, especially for people 

undergoing diagnostic vEEG following their first event. In practice, the use of a scheduling tool 

must ensure that vEEG monitoring is not delayed while waiting for diary entries.

Despite the aforementioned limitations of the study, our results show a promising avenue to 

develop a personalized EEG booking tool that can improve diagnostic outcomes. Such a tool 

represents a low-risk clinical application for seizure forecasting devices, such as the My Seizure 

Gauge system25. To follow up the present study, we aim to validate and launch a freely 

available seizure risk tool for people with epilepsy and medical professionals.
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Tables

Table !" #umbers and characteristics of $eo$le %ith focal& generali'ed& or normal(un)no%n 
v**+" Diagnosis meant that changes observed in the vEEG were consistent with a focal or 
generalized epilepsy or were otherwise either normal or undetermined. KMean seizure frequency’ 
was the cohort average of the self-reported frequency of events Aper monthB from users’ mobile 
diaries. KDiagnostic yield’ and KEpileptic activity’ show the number AproportionB of people in 
each cohort with diagnostic vEEG, or epileptic activity recorded during vEEG, respectively. 



KMean forecasting accuracy’ was the cohort average of the percentage of diary seizures that were 
reported during estimated times of high risk. 

Diagnosis 
,v**+ re$ort-

# Mean sei'ure 
fre.uency 

,$er month-

Diagnostic 
v**+ yield& # 

,/-

*$ile$tic 
activity& # ,/-

Mean forecasting 
accuracy for diary 

events ,/-

Focal 22 11.1 1D A86EB 7 A32EB 75.6 ASD 12.DB

Generalized D 17.4 7 A78EB 2 A22EB 82.1 ASD 15.7B

Non-epileptic F 
Undetermined

17 13.1 D A53EB 10 A5DEB 74.0 ASD 23.0B 

0igure 1a$tions

0igure !" 1ycle strength and distributions for focal& generali'ed and normal(undetermined 
**+" A" The distributions of fast and slow multi-day cycle strengths across the cohort. Cycle 
strength was quantified by the R value Ay-aHisB, where a value of 0 indicates no cycle and a value 
of 1 indicates perfect periodicity. Bar plots show the 25th and 75th percentiles, dots show the 
median, and lines show the 5th and D5th percentiles Aoutliers are marked by open circlesB. 2" The 
distributions of cycle periods Ay-aHisB across the cohort. Violin plots represent the kernel density 
distributions for cycle periods. The thick black bars on each violin show the mean of the 
distribution.
0igure 3" *4am$le of an individual5s multi6day sei'ure cycles and corres$ondence %ith 
v**+ monitoring" A&2" Estimated fast AD daysB and slow A25 daysB seizure cycles, respectively 
1&D" Circular histograms showing phase-locking of self-reported seizures to fast and slow 
cycles, respectively. R-values quantify the strength of phase locking. *" Estimated seizure 
likelihood. Black markers indicate diary seizures reported outside of high risk periods, and red 
markers indicate diary seizures in high risk periods. vEEG monitoring period shaded in grey.

0igure 7" Time in high ris) during v**+ across the cohort& for different cycle strengths" 
The distribution of the percentage of time spent in high risk during vEEG Ay-aHisB is compared 
between groups. Bar plots show the 25th and 75th percentiles, dots show the median, and lines 
show the 5th and D5th percentiles Aoutliers are marked by open circlesB. Group level comparisons 
were performed for increasing cycle strengths Aminimum R-values ranging from 0.1 to 0.4B. At 
each cycle strength, a one-sided t-test was used to compare whether the pairwise distributions 
showed significantly different means A** p N 0.01, * p N 0.05B. A" Comparison of people with 
and without epileptic activity AEAB recorded during vEEG. 2" Comparison of people with 
positive and negative vEEG diagnostic yield.
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Figure 1. Cycle strength and distributions for focal, generalized and normal/undetermined EEG. A. The 
distributions of fast and slow multi-day cycle strengths across the cohort. Cycle strength was !uantified by 
the " #alue $y-a%is&, where a #alue of ' indicates no cycle and a #alue of 1 indicates (erfect (eriodicity. )ar 

(lots show the *+th and ,+th (ercentiles, dots show the median, and lines show the +th and -+th 
(ercentiles $outliers are mar.ed by o(en circles&. ). The distributions of cycle (eriods $y-a%is& across the 

cohort. /iolin (lots re(resent the .ernel density distributions for cycle (eriods. The thic. blac. bars on each 
#iolin show the mean of the distribution. 
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Figure 2. Example of an individual’s multi-day seizure cycles and correspondence with vEEG monitoring. A,!. 
Estimated fast "# days$ and slow "2% days$ seizure cycles, respectively &,'. &ircular histograms showing 

phase-loc(ing of self-reported seizures to fast and slow cycles, respectively. )-values *uantify the strength 
of phase loc(ing. E. Estimated seizure li(elihood. !lac( mar(ers indicate diary seizures reported outside of 

high ris( periods, and red mar(ers indicate diary seizures in high ris( periods. vEEG monitoring period 
shaded in grey. 
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Figure 3. Time in high risk during vEEG across the cohort, for different cycle strengths. The distribution of 
the percentage of time spent in high risk during vEEG (y-a!is" is compared bet#een groups. $ar plots sho# 
the %&th and '&th percentiles, dots sho# the median, and lines sho# the &th and (&th percentiles (outliers 

are marked by open circles". Group level comparisons #ere performed for increasing cycle strengths 
(minimum )-values ranging from *.+ to *.,". At each cycle strength, a one-sided t-test #as used to 

compare #hether the pair#ise distributions sho#ed significantly different means (-- p . *.*+, - p . *.*&". 
A. /omparison of people #ith and #ithout epileptic activity (EA" recorded during vEEG. $. /omparison of

people #ith positive and negative vEEG diagnostic yield. 
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Figure 4. Proportion of people with increased time in high risk (TIH) during vEE! monitoring across different 
c"cle strengths. The percentage of the cohort that showed greater time in high risk ("#a$is) during vEE! 
compared to their %aseline average time in high risk. A. &omparison of people with and without epileptic 
activit" (EA) recorded during vEE!. '. &omparison of people with positive and negative vEE! diagnostic 

"ield. 
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