Title: A Bayesian approach for estimating typhoid fever incidence from large-scale facility-based passive surveillance data

Authors: Maile T. Phillips¹, James E. Meiring²,³, Merryn Voysey², Joshua L. Warren⁴, Stephen Baker⁵, Buddha Basnyat⁶, John D. Clemens⁷, Christiane Dolecek⁸,⁹, Sarah J. Dunstan¹⁰, Gordon Dougan⁵, Melita A. Gordon¹¹, Robert S. Heyderman³,¹², Kathryn E. Holt¹³,¹⁴, Firdausi Qadri⁷, Andrew J. Pollard², Virginia E. Pitzer¹ and the STRATAA Study Group

Author affiliations:
1. Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
2. Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
3. Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
4. Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
5. Department of Medicine, University of Cambridge, Cambridge, United Kingdom
6. Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
7. International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
8. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
9. Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
10. The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
11. Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
12. NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London
13. Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
14. Department of Infection Biology, London School of Hygiene & Tropical Medicine, London
Abstract

Background. Decisions about typhoid fever prevention and control are based on current estimates of typhoid incidence and their uncertainty, which can be difficult to measure. Limits of using facility-based estimates alone—the lack of specific clinical diagnostic criteria, poorly sensitive and specific diagnostic tests, and scarcity of accurate and complete datasets—contribute to difficulties in calculating population-level incidence of typhoid.

Methods. Using data from the Strategic Alliance across Africa & Asia (STRATAA) programme, we integrated information from demographic censuses, healthcare utilization surveys, facility-based passive surveillance, and serological surveillance from sites in Malawi, Nepal, and Bangladesh in order to adjust crude incidence estimates to account for under-detection. We developed an approach using a Bayesian framework that adjusts the count of reported blood-culture-positive cases of typhoid for each of the following phases: healthcare seeking, blood culture collection, and blood culture detection. We estimated the proportion of “true” typhoid cases occurring in the population under surveillance captured at each phase by combining information from the observed cases from the STRATAA datasets and estimates from prior published studies. We confirmed that the model was correctly formulated by comparing to simulated data.

Results. The ratio between the observed and adjusted incidence rates was 8.2 (95% CI: 6.4-13.3) in Malawi, 13.8 (95% CI: 8.8-23.0) in Nepal, and 7.0 (95% CI: 5.5-9.1) in Bangladesh, and varied by age across the three sites. The probability of having blood drawn for culture led to the largest adjustment in Malawi, while the probability of seeking healthcare contributed the most to adjustment factors in Nepal and Bangladesh. Adjusted incidence rates were mostly within the limits of the seroincidence rate of typhoid infection determined by serological data.
Conclusion. Passive surveillance of blood culture-confirmed typhoid fever without adjustment for case ascertainment, sample collection and diagnostic sensitivity results in considerable underestimation of the true incidence of typhoid in the population. Our approach allows each phase of the typhoid reporting process to be synthesized to estimate the adjusted incidence of typhoid fever while correctly characterizing uncertainty in this estimate, which can inform decision-making for typhoid prevention and control.

Keywords: typhoid fever; passive surveillance; reporting pyramid; incidence estimation
Background

Current estimates of typhoid incidence serve as a basis for decision-making around typhoid control. However, facility-based cases of blood-culture-confirmed typhoid fever are considerably lower than the true incidence of the disease [1] because the reported numbers do not account for individuals with typhoid who do not seek healthcare, fail to receive a diagnostic test, or falsely test negative for typhoid. Annually, typhoid fever is estimated to cause 11-18 million infections and 100,000-200,000 deaths [2-4], but there is considerable uncertainty in these estimates.

Studies suggest that somewhere between 60-90% individuals with typhoid do not receive adequate medical attention, in part because they do not to seek formal treatment [5, 6]. Previous studies have found that healthcare utilization is correlated with the number of household members, distance to the healthcare facility, financial affordability, and trust in formal healthcare [7, 8]. Furthermore, typhoid is often misdiagnosed based on physical examinations alone [1]. Inconsistent clinical diagnoses arise because symptoms of typhoid, particularly prolonged fever, are also the main characteristics of other common infectious diseases in low-resources settings [1, 9]. Even if a blood culture test is recommended and laboratory facilities are available, not all patients will consent. Diagnostic tests can be invasive, and parents or guardians of young children sometimes do not want their children to have large amounts of blood drawn when they are already ill. In resource-poor countries in particular, lack of supplies and personnel lead to long wait times for receiving healthcare, further adding to lower rates of confirmatory testing, and clinical opinion on the cause of fever can also affect the likelihood of blood being drawn for culture [10].
Suboptimal diagnostic tests further contribute to underestimation of cases. Blood culture is the mainstay diagnostic test for typhoid fever [11], but it fails to capture approximately half of the true cases. The test sensitivity depends on the volume of blood drawn and whether a patient has previously received antibiotics [12]. Thus, even if an individual with typhoid receives a blood culture test, he or she may falsely test negative and not be included in the reported number of confirmed cases.

Thus, the true incidence of typhoid fever cannot be directly assessed, but can be estimated by accounting for steps in the reporting process. Methods to combine data from several sources to adjust for underestimation while accurately quantifying the uncertainty have been previously applied to estimate the incidence of HIV and influenza [13-17]. In this work, we developed a Bayesian multiplier framework to inform estimates of population-based incidence of typhoid fever based on data collected from study sites in Africa and Asia.

Methods
Study design & data.

We developed a framework within the Bayesian setting to integrate data from multiple sources to estimate the population-based incidence of typhoid fever based on passive surveillance in Malawi, Nepal, and Bangladesh, three typhoid endemic countries with different demographics, healthcare systems, and access to diagnostics [18]. Using this model, we sought to estimate the adjustment factors needed to calculate the “true” incidence of typhoid cases occurring in the population under surveillance, and to examine how these values varied by age across the three study sites, by combining information collected from the study population with
estimates from prior published studies. We also compared our final estimates to serosurveillance data collected from the same population catchment areas.

Data came from the Strategic Typhoid Alliance across Africa & Asia (STRATAA) Programme, a prospective observational, population-based epidemiological study of typhoid incidence, transmission and antibiotic resistance. From 2016-2018, the STRATAA investigators conducted demographic censuses, healthcare utilization surveys (HUS), passive surveillance, and serosurveys at each of three sites (Blantyre, Malawi; Kathmandu, Nepal; and Dhaka, Bangladesh). STRATAA’s study design and methods have been detailed elsewhere [18], and are briefly described below.

**Demographic census data.**

The demographic census was used to estimate the overall person-time contribution for incidence rate calculations. The survey documented household locations and individual characteristics for each geographically demarcated study area. The census provided information on each individual’s birthdate, sex, position in the household, marital status (if applicable), education level, and employment status (if applicable). Participants were surveyed and consented as households. Approximately 100,000 individuals were enrolled at each site, and census updates were carried out one to three times depending on the site.

**Healthcare utilization survey.**

This survey served to estimate the proportion of cases captured by study facilities. The survey contained questions regarding household and individual health behavior; house and household characteristics; water, sanitation and hygiene practices; and healthcare utilization (actual and hypothetical). Approximately 735 households were randomly chosen at each site, with the requirement that all households have at least one child (14 years or younger).
Information was collected from the head of household regarding information about other household members from each of three age groups (<5 years, 5-14 years, >14 years), if available.

Passive surveillance.

Clinical cases of culture-confirmed typhoid were identified through passive surveillance. Individuals living in the study areas who presented at partner facilities with a fever of 38.0°C or more or a history of fever lasting at least two days upon presentation were eligible for enrolment. Healthcare workers collected clinical and demographic information from enrolled febrile individuals, as well as microbiological samples (urine, feces, and blood).

Serosurveys.

Serosurveys were conducted in the census population to assess the underlying rate of seroconversion to typhoid, and to identify potential chronic carriers, initially based on anti-Vi immunoglobulin G (IgG). Approximately 8,500 participants from each site were randomly selected in an age-stratified manner. Healthcare workers collected serum samples from each individual upon enrollment and again three months later.

Approach and data analysis.

We adjusted the reported number of blood-culture-positive cases of typhoid for each of the three phases of the reporting process: healthcare seeking, blood culture collection, and blood culture detection. We used information on healthcare seeking for fever and the proportion of fever cases who were enrolled and had blood taken for culture, and combined this information with published data on risk factors for typhoid fever to reach our final adjusted numbers. We then examined whether our adjusted estimates were within the maximum range expected based on seroincidence estimates.
The estimation of typhoid fever incidence is complicated by the relationship between fever and typhoid fever. In each phase of the reporting process, we can observe whether a person has a fever, but not necessarily whether he/she has typhoid fever. Thus, the symptomatic typhoid fever pyramid is nested within a larger fever pyramid (Fig S1).

We assumed that the incidence of typhoid is Poisson-distributed, with an offset for person-time from the demographic census (Fig 1). The parameter $\lambda_{S,B,a,c}$ represents the incidence rate of typhoid among febrile individuals who sought care at the study facilities, after adjusting for blood culture sensitivity ($\phi_{S,a,c}$) and the probability of receiving a blood culture test ($\phi_{B,a,c}$), where $a$ represents the age category, $c$ represents the site, $S$ represents blood culture sensitivity and $B$ represents whether a person received a blood culture test. The number of reported cases is modeled as a thinned Poisson distribution, with rate parameter equal to the product of the healthcare-seeking typhoid incidence rate and the probability of a case being captured at each of the first two steps of the reporting process ($\lambda_{S,B,a,c} \phi_{S,a,c} \phi_{B,a,c}$). The adjustment for healthcare-seeking is less straightforward, and was applied after adjusting for the first two phases of reporting.
Figure 1. Flowchart of typhoid disease and observation process, and adjustment method to estimate the true number of cases. The pyramid (left) illustrates the different steps in the observation process for reporting typhoid incidence, with details on how parameters are estimated at each step. The flowchart (right) illustrates the corresponding Bayesian framework for each step of the observation process and which datasets and variables are used for adjustment. Adjustments for blood culture sensitivity are shown in purple, the probability of receiving a blood culture test is shown in red, and the probability of seeking healthcare is shown in blue. Variable definitions: $\lambda$, typhoid incidence rate; $\phi$, a probability estimated in the model; $S$, sensitivity of blood culture; $B$, blood culture collection; $H$, healthcare seeking; $a$, age category; $c$, site. Abbreviations: BC, blood culture.

Adjustment for blood culture sensitivity

For each individual who received a blood culture test, we inferred whether or not they were a “true” typhoid case by adjusting for the specificity and sensitivity of blood culture for typhoid diagnosis (Table S1). First, we assumed that the specificity of blood culture is 100%; thus, all individuals who tested positive for typhoid fever were assumed to be true cases of the disease. Second, we assumed that among those who tested negative, the probability of being an actual typhoid case depended on the volume of blood drawn and prior antimicrobial use, both of which were recorded in the passive surveillance data. Previous studies have shown that the sensitivity of blood culture for typhoid diagnosis is on average 59% (95% confidence interval (CI): 54-64%), but increases by 3% for each additional mL of blood drawn, and decreases by 34% with antibiotic use in the past two weeks [12]. Thus, each individual who tested negative for
typhoid had a probability $1-p_{i,v(i),x(i)}$ of being a false negative and thus a true case of typhoid fever, where $p_{i,v(i),x(i)}$ is the blood culture sensitivity for individual $i$, $v(i)$ is the volume of blood collected from individual $i$, and $x(i)=1$ if individual $i$ reported prior antibiotic use in the previous two weeks and $x(i)=0$ otherwise. The use or non-use of antibiotics created a bimodal distribution for the sensitivity (Fig S2). Thus, we chose to model this using a normal mixture model with a separate mean and precision for the distribution of blood culture sensitivity with and without the use of antibiotics, varied over blood culture volume. This distribution of blood culture sensitivity in each population is denoted in the model as $\phi_{S,a,c}$, again estimated separately for each age category and site.

*Adjustment for the probability of receiving a blood culture test*

The probability of receiving a blood culture test was estimated differently for Malawi versus Nepal and Bangladesh due to data availability and differences in the primary reasons why individuals were not tested. In Malawi, the main reason why individuals meeting the fever criteria for enrollment did not receive a blood culture test was due to limited capacity and long waiting times at the primary health facility. Children were brought to the clinic early in the morning for clinical review. Once they had seen the government clinician, they were referred for study enrolment and blood-culture collection. If there was a delay in enrolment activities, children were often taken home by the guardians prior to blood cultures being collected. Thus, we assumed that data for those who did not receive a blood culture were missing completely at random. We used the passive surveillance screening data to estimate the probability of receiving a blood culture ($\phi_{B,a,c}$) by age $a$ and country site $c$ (where $c=1$ for Malawi), and assumed that the probability followed a beta distribution, $\phi_{B,a,1} \sim \text{Beta}(\alpha_B,a,1,\beta_B,a,1)$, where $\alpha_B,a,1$ was the number of
eligible patients enrolled and $\beta_{B,a,1}$ was the number of eligible patients who were not enrolled in Malawi.

In Nepal and Bangladesh, the primary reason febrile individuals did not receive a blood culture likely depended on factors associated with their probability of testing positive (e.g., age, number of days of fever, and clinical suspicion of the disease); furthermore screening data for the passive surveillance were not available. Instead, we relied on published estimates of the relative risk of typhoid fever among those who did not have blood taken for culture and screening data from the Typhoid Vaccine Acceleration Consortium (TyVAC) [19]. As part of TyVAC, typhoid conjugate vaccine trials are being conducted in the same populations as STRATAA and utilize the same passive surveillance facilities. Baseline information on eligible patients presenting to fever surveillance facilities was recorded both for those who did, and those who did not, have blood drawn for culture. Based on the analysis of these data in the TyVAC population in Nepal, the relative risk of blood culture positivity ($R_B$) was 1.87 times higher (95% CI: 0.9-3.9) among those who received a blood culture compared to those who did not [10]. Thus, the overall probability of receiving a blood culture is the sum of the proportion of individuals who received a blood culture plus the quotient of the proportion of those who did not receive a blood culture divided by the relative risk of blood culture positivity ($R_B$). Prior to adjusting for the relative risk, the probability of receiving a blood culture was assumed to follow a beta distribution $p_{B,a,c} \sim \text{Beta}(\alpha_{B,a,c}, \beta_{B,a,c})$, where $\alpha_{B,a,c}$ was the number of eligible patients of age $a$ in country $c$ who were enrolled and $\beta_{B,a,c}$ was the number of eligible patients who were not enrolled during TyVAC (where $c=2$ for Nepal and $c=3$ for Bangladesh). The final probability of receiving a blood culture test, after taking into account variations in the risk of typhoid fever among those who are and are not tested, was then
\[ \phi_{B,a,c} = 1 - \frac{(1-p_{B,a,c})}{R_B}. \]

While the previous analysis focused only on Nepal, we used the same adjustment for the relative risk of blood culture positivity in Bangladesh, since the reasons for having or not having blood drawn were similar.

Adjustment for healthcare-seeking behavior

Lastly, we adjusted for the probability of healthcare seeking using a weighted average of typhoid incidence among those who sought care for fever at each site, accounting for possible differences in severity of illness and rates of healthcare seeking among those with fever who did or did not report having a previously identified risk factor for typhoid fever from a literature search (Figure 2). For this step, we assumed that everyone in the population either had or did not have a typhoid risk factor, identified from the literature. For each site, we used a different risk factor, based on studies carried out in that specific site and variables for which data was collected as part of STRATAA. The risk factor identified in Malawi was soap available after defecation [20]; in Nepal, it was unshared toilets [21], and in Bangladesh it was boiled drinking water [22].
Figure 2. Probability of seeking healthcare for fever given risk factor, typhoid, and fever status. In this population, everyone either has or does not have a risk factor for typhoid identified from the literature (variable $X$), has or does not have typhoid (variable $TF$), has or does not have a fever (variable $F$), and seeks healthcare or does not (variable $HC$). Since the focus of this analysis is on those who seek care for a fever, the tree diagram does not show $F=0$ and $HC=0$. In this diagram, $p$ is the probability of having the risk factor, $\lambda_0$ is the incidence of typhoid among those without the risk factor, $R_{TF}$ is the relative risk of having typhoid for those with the risk factor compared to those without it, $R_F$ is the relative risk of having a fever for those with the risk factor compared to those without it, $f_1$ and $f_0$ represent the probability of self-reported fever among those with or without the risk factor, respectively; and $S_1$ and $S_0$ represent the probability of healthcare seeking for a fever among those with or without the risk factor, respectively.

In Malawi, the odds ratio for having typhoid fever was 2.0 (95% CI: 1.3-2.5) comparing those who did not use soap after defecation to those who did [20]. In Nepal, the odds ratio for having typhoid fever was 5.7 (2.3-14.4) comparing those who did not share a household latrine
to those who did [21]. In Bangladesh, the odds ratio for having typhoid was 7.6 (2.2-26.5) comparing those who did not boil drinking water to those who did [22]. Since the overall prevalence of typhoid in the population is low, we used these odds ratio estimates from the literature to approximate relative risks for typhoid. We used the same relative risk estimates for all age groups. All other values were estimated separately by age and site, though not indicated in the notation below.

Among those with risk factor \( X=x \), individuals either had or did not have typhoid fever \((TF)\). Let \( \Pr(TF=1|X=0) = \lambda_0 \) be the incidence of typhoid fever among those without the risk factor, and \( \Pr(TF=1|X=1) = R_{TF}\lambda_0 \) be the incidence among those with the risk factor, where \( R_{TF} \) is the relative risk for typhoid among those with \( X=1 \). The probability of not having typhoid fever \((TF=0)\) is \( 1 - \Pr(TF=1|X=x) \). We assumed that all individuals with typhoid had a fever \((F=1)\); hence, \( \Pr(F=1|TF=1, X=x) = 1 \). If individuals did not have typhoid, they might have had a fever due to other causes, and the incidence is estimated as the probability of self-reported fever \((f_i \text{ and } f_o, \text{ depending on whether they had or did not have the risk factor})\) minus the probability of having typhoid given their risk factor status: \( \Pr(F=1|TF=0, X=x) = f_i - \Pr(TF=1|X=x) \). Since our focus was on those with a fever, we ignored the \( F=0 \) branch. Finally, let \( S_1 \) and \( S_0 \) be the probability of self-reported healthcare seeking for a fever \((HC=1)\) given a person’s risk factor status. Again, since our focus was on those who sought care for a fever, we ignored the \( HC=0 \) branch.

We can calculate the marginal probability of seeking care for typhoid fever by summing up the probabilities of all of the branches where \( TF=1 \):

\[
\Pr(TF = 1, F = 1, HC = 1) = \sum_x \Pr(TF = 1, F = 1, HC = 1, X = x) = \lambda_0 \left( S_1 R_{TF} p + S_0 (1 - p) \right) \tag{1}
\]
Similarly, we can calculate the marginal probability of seeking care for febrile illness by summing up the probabilities of all of the branches with $F=1$:

$$
\Pr(F = 1, HC = 1) = \sum_x \Pr(TF = t, F = 1, HC = 1, X = x) = S_1 f_1 p + S_0 f_0 (1 - p) = f_0 (S_1 R_F p + S_0 (1 - p))
$$

where $R_F$ is the relative risk of fever among those with $X=1$ compared to those with $X=0$. We can divide Equation 1 by Equation 2 and solve for $\lambda_0$ to estimate the incidence of typhoid among those without the risk factor ($X=0$):

$$
\lambda_0 = \frac{(f_0) \left( \frac{\Pr(TF=1, HC=1)}{\Pr(F=1, HC=1)} \right) [S_1 R_F p + S_0 (1 - p)]}{S_1 R_T p + S_0 (1 - p)}
$$

The parameters $p$, $S_0$, $S_1$, and $f_0$ were observed directly in a sample of the population in the HUS. These parameters are assigned beta distributions in the model. The relative risk of a fever given the risk factor, $R_F$, is simply the quotient of the probability of fever for those with versus without the risk factor. To estimate $\Pr(TF=1, HC=1)$, we used the observed typhoid incidence in the population after adjusting for blood culture sensitivity and the probability of receiving a blood culture. For $\Pr(F=1, HC=1)$, we can estimate the probability of seeking healthcare among those with a fever directly from the HUS. Since we have estimates for every value on the right side of Equation 3, we can calculate $\lambda_0$, i.e., the “true” incidence of typhoid in the population among those without the risk factor. The final healthcare-seeking-adjusted typhoid incidence can then be calculated as:

$$
\lambda_{adjusted} = RR_T \lambda_0 p + \lambda_0 (1 - p)
$$

i.e., the weighted average of typhoid incidence among those with or without the self-reported risk factor for typhoid fever.
Model validation and sensitivity analyses

The final adjusted incidence of symptomatic typhoid fever infections should be less than or equal to the seroincidence of typhoid infections captured in the serosurveillance data. In this study, seroconversion to typhoid was defined as a 2-fold or greater and at least 50 EU/mL rise in anti-Vi IgG between the first and second sample drawn. The seroincidence was estimated as the quotient of the number of people who seroconverted between the first and second blood sample \( (n_{S,a,c}) \) and person-time in years (the number of people sampled multiplied by the mean time between serological samples in age group \( a \) in country \( c \)). The final adjusted incidence should fall below the estimated seroincidence rates.

To ensure the model was correctly formulated, we simulated data with known probabilities and incidence rates and compared model estimates to the true values used to generate the data. We simulated high and low values for all of the parameters estimated in the model, starting with a “true” typhoid incidence of 1,000 per 100,000 person-years of observation (pyo). We simulated four scenarios: 1) low probability of seeking care, high probability of being tested, and low prior antibiotic usage; 2) low probability of seeking care, high probability of being tested, and high antibiotic usage; 3) high probability of seeking care, low probability of being tested, and low prior antibiotic usage; and 4) high probability of seeking care, low probability of being tested, and high prior antibiotic usage.

To evaluate whether the final estimates were sensitive to the number of individuals sampled in the HUS, we compared estimates for models that sampled approximately the same number of individuals in each age category as the HUS (735) to models that sampled more individuals (1,000 and 2,000 individuals). We additionally compared the adjusted incidence estimates from our model to those from a simpler approach that assumed there was no variation
in blood culture sensitivity due to prior antibiotic use and no variation in typhoid incidence among those who did or did not seek care and were or were not tested. To ensure the model fitting was done without knowing the true values, one person simulated the data and another person fit the model to the simulated data.

To estimate the posterior distributions of the adjusted incidence rates, we collected 100,000 posterior samples from the adjustment factors described below following a burn-in period of 10,000 iterations prior to convergence. Convergence was assessed using the Gelman-Rubin diagnostic\cite{23} for individual parameters. Code for generating simulated data was written in Matlab version 9.3.0 \cite{24}. All other analyses were performed using JAGS version 4.3.0 \cite{25} in R version 3.4.0 \cite{26}. Model code, including code for generating the simulated data, is provided at https://github.com/mailephillips/adjusted-typhoid-incidence \cite{27}.

**Results**

The magnitude of the adjustment factors used to estimate the incidence of typhoid fever varied among the three sites (Table 1). In Nepal and Bangladesh, the probability of seeking healthcare was low (0.15, 95\% credible interval (CrI): 0.10-0.22; and 0.27, 95\% CrI: 0.22-0.33, respectively, for all ages), and thus contributed the most to the adjustments, while the probability of receiving a blood culture test when eligible was high (0.70, 95\% CrI: 0.68-0.72; and 0.93, 95\% CrI: 0.92-0.93, respectively) and contributed the least to adjustments (Table 1). However, in Malawi, the probability of seeking healthcare was relatively high (0.66, 95\% CrI: 0.60-0.72), while the probability of receiving a blood culture test was low (0.35, 95\% CrI: 0.34-0.36). Blood culture sensitivity was fairly consistent across sites, with median estimates of 0.54-0.55.
Table 1. Posterior probability estimates for each adjustment factor by age and site. Each estimate (posterior mean) is shown with its 95% credible interval for the sensitivity of the blood culture (BC) given that healthcare (HC) was sought and a blood culture was taken ($\phi_{S,a,c}$), the probability of receiving a blood culture test given that healthcare was sought ($\phi_{B,a,c}$), and the probability of seeking healthcare ($\phi_{H,a,c}$). Estimated adjustment factors are shown by age category ($a$) and country ($c$).

<table>
<thead>
<tr>
<th>Probability</th>
<th>Country (c)</th>
<th>Age category ($a$), in years</th>
<th>&lt;5</th>
<th>5-9</th>
<th>10-14</th>
<th>15-29</th>
<th>30+</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sensitivity of BC, given HC sought, BC taken ($\phi_{S,a,c}$)</strong></td>
<td>Malawi</td>
<td>0.53 (0.48-0.57)</td>
<td>0.53 (0.48-0.57)</td>
<td>0.53 (0.50-0.56)</td>
<td>0.58 (0.55-0.62)</td>
<td>0.58 (0.54-0.62)</td>
<td>0.54 (0.34-0.60)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nepal</td>
<td>0.54 (0.51-0.57)</td>
<td>0.54 (0.51-0.57)</td>
<td>0.54 (0.51-0.58)</td>
<td>0.56 (0.54-0.58)</td>
<td>0.56 (0.55-0.57)</td>
<td>0.55 (0.51-0.58)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bangladesh</td>
<td>0.53 (0.52-0.53)</td>
<td>0.53 (0.53-0.53)</td>
<td>0.53 (0.53-0.53)</td>
<td>0.56 (0.54-0.58)</td>
<td>0.56 (0.56-0.56)</td>
<td>0.54 (0.51-0.57)</td>
<td></td>
</tr>
<tr>
<td><strong>Probability was drawn, given HC sought ($\phi_{B,a,c}$)</strong></td>
<td>Malawi</td>
<td>0.40 (0.38-0.41)</td>
<td>0.38 (0.36-0.41)</td>
<td>0.33 (0.29-0.36)</td>
<td>0.21 (0.19-0.24)</td>
<td>0.20 (0.17-0.23)</td>
<td>0.35 (0.34-0.36)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nepal</td>
<td>0.65 (0.62-0.68)</td>
<td>0.75 (0.72-0.79)</td>
<td>0.76 (0.70-0.81)</td>
<td>0.83 (0.59-0.96)</td>
<td>0.83 (0.59-0.96)</td>
<td>0.70 (0.68-0.72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bangladesh</td>
<td>0.88 (0.87-0.89)</td>
<td>0.94 (0.94-0.95)</td>
<td>0.94 (0.94-0.95)</td>
<td>0.97 (0.96-0.97)</td>
<td>0.97 (0.96-0.97)</td>
<td>0.93 (0.92-0.93)</td>
<td></td>
</tr>
<tr>
<td><strong>Probability of seeking HC ($\phi_{H,a,c}$)</strong></td>
<td>Malawi</td>
<td>0.59 (0.49-0.68)</td>
<td>0.78 (0.68-0.87)</td>
<td>0.78 (0.68-0.87)</td>
<td>0.63 (0.53-0.74)</td>
<td>0.63 (0.53-0.74)</td>
<td>0.66 (0.60-0.72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nepal</td>
<td>0.21 (0.11-0.34)</td>
<td>0.11 (0.04-0.22)</td>
<td>0.11 (0.04-0.22)</td>
<td>0.13 (0.05-0.25)</td>
<td>0.13 (0.05-0.25)</td>
<td>0.15 (0.10-0.22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bangladesh</td>
<td>0.32 (0.21-0.45)</td>
<td>0.33 (0.24-0.46)</td>
<td>0.33 (0.24-0.46)</td>
<td>0.19 (0.12-0.27)</td>
<td>0.19 (0.12-0.27)</td>
<td>0.27 (0.22-0.33)</td>
<td></td>
</tr>
</tbody>
</table>
The different adjustment factors also varied by age. Blood culture sensitivity was slightly higher in older age groups compared to younger age groups (median estimates of 0.56-0.58 compared to 0.53-0.54). While there was no consistent pattern in prior antibiotic use by age, the amount of blood drawn for a blood culture generally increased with age. As a result, blood culture sensitivity slightly increased with age. Had we not adjusted for blood culture volume or prior antibiotic use, the estimate for blood culture sensitivity would have been higher for all ages and countries (Fig S5, in blue).

The probability of receiving a blood culture had different patterns across age groups depending on the country. In Malawi, the probability of receiving a blood culture test decreased with age (0.40, 95% CrI: 0.38-0.41 for children <5 years versus 0.20, 95% CrI: 0.17-0.23 for adults 30+ years), while in Nepal and Bangladesh, the probability increased (0.65, 95% CrI: 0.62-0.68 and 0.88, 95% CrI: 0.87-0.89 for children <5 years versus 0.83, 95% CrI: 0.59-0.96 and 0.97, 95% CrI: 0.96-0.97 for adults 30+ years, respectively). If we had used a simpler approach (not adjusting for the variation in the risk of typhoid fever among those who were and were not tested) to adjust for the probability of receiving a blood culture in Nepal and Bangladesh, we would have overestimated the contribution of this adjustment (Fig S5). In Nepal in particular, the naïve approach would have substantially underestimated the probability of receiving a blood culture. In Bangladesh, the unadjusted proportion of individuals receiving a blood culture was already close to one, so the adjusted value did not increase the estimate considerably.

The probability of seeking healthcare did not have a consistent pattern across age groups, likely due to the different components contributing to the final estimate. Malawi overall had the highest rates of healthcare seeking (0.66, 95% CrI 0.60-0.72), with the lowest rates among
children under 5 and the highest rates among children 5-14 (Table 1). Nepal had the lowest rates of healthcare seeking overall (0.15, 95% CrI 0.10-0.22), with slightly higher rates among children under 5. Bangladesh also had low healthcare seeking rates (0.27, 95% CrI 0.22-0.33), with the lowest rates among adults (Table 1). In preliminary analyses, we found no difference in reported healthcare seeking by severity of a person’s reported fever. As a result, we considered only whether or not a person had a fever in subsequent analyses. In Malawi and Bangladesh, the proportion of those with the relevant typhoid risk factor did not differ by age group (Table S2). Individuals with the typhoid risk factor were more likely to report febrile illness in the past month than those without it in Malawi and Nepal, but rates of fever were similar in those with and without the risk factor in Bangladesh (Table S2). Healthcare seeking for fever was higher among those with the risk factor in Malawi, but lower among those with the risk factor in Bangladesh and Nepal. When compared to the simpler approach to estimate the probability of healthcare seeking (using the unadjusted proportion of those who sought care for fever), the estimates were similar but slightly lower in most age groups (Fig S5).

The magnitude of the overall adjustment to estimate typhoid incidence varied between countries and age groups. Nepal had the highest adjustment factors in every age group, with an overall adjustment factor of 13.8 (95% CrI: 8.8-23.0). Malawi and Bangladesh were similar, with adjustment factors of 8.2 (95% CrI: 6.4-13.3) and 7.0 (95% CrI: 5.5-9.1), respectively (Table 2). The highest adjustment factor was for the 5-9-year age group in Nepal (19.3, 95% CrI: 8.6-52.8), while the lowest was for the 5-9- and 10-14-year age groups in Bangladesh (5.8, 95% CrI: 4.0-8.5; and 5.8, 95% CrI: 3.8-8.8, respectively).
Table 2. Estimated adjustment factors from final models. The ratio of the median estimate (95% credible interval) of adjusted-to-observed incidence rates is shown for each country and age category.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Malawi</th>
<th>Nepal</th>
<th>Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>8.0 (5.0 - 12.3)</td>
<td>10.1 (4.1 - 24.4)</td>
<td>6.2 (4.2 - 9.8)</td>
</tr>
<tr>
<td>5-9</td>
<td>6.3 (4.3 - 8.8)</td>
<td>19.3 (8.6 - 52.8)</td>
<td>5.8 (4.0 - 8.5)</td>
</tr>
<tr>
<td>10-14</td>
<td>7.3 (4.6 - 11.2)</td>
<td>19.0 (8.3 - 53.5)</td>
<td>5.8 (3.8 - 8.8)</td>
</tr>
<tr>
<td>15-29</td>
<td>12.8 (7.7 - 20.2)</td>
<td>15.2 (7.2 - 39.3)</td>
<td>9.8 (6.2 - 16.5)</td>
</tr>
<tr>
<td>30+</td>
<td>13.4 (6.7 - 24.4)</td>
<td>14.4 (4.4 - 46.3)</td>
<td>9.6 (5.4 - 17.5)</td>
</tr>
<tr>
<td>All ages</td>
<td>8.2 (6.4 - 13.3)</td>
<td>13.8 (8.8 - 23.0)</td>
<td>7.0 (5.5 - 9.1)</td>
</tr>
</tbody>
</table>

Most of the final adjusted incidence estimates fell within the range of the estimated seroincidence of typhoid infection. In Malawi, all of the upper bounds of the estimates were well below the seroincidence values. However, in Nepal and Bangladesh, the bounds of the adjusted incidence rates overlapped with the estimated seroincidence. In Nepal, the adjusted incidence among children 5-9 years of age was much higher than the seroincidence; however, the confidence/credible intervals overlapped. Similarly, children 10-14 years of age in Bangladesh had higher adjusted incidence rates than seroincidence, but again the confidence/credible intervals overlapped.
Table 3. Adjusted typhoid incidence estimates compared to seroincidence. The final adjusted typhoid incidence estimates from the models are shown with 95% credible intervals, as well as the seroincidence estimates with their 95% confidence intervals, by age and site.

<table>
<thead>
<tr>
<th>Age</th>
<th>Malawi</th>
<th>Nepal</th>
<th>Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude rates</td>
<td>Adjusted rates</td>
<td>Seroincidence</td>
</tr>
<tr>
<td>0-4 years</td>
<td>83 (53-124)</td>
<td>669 (419-1,026)</td>
<td>2,868 (1,153-5,911)</td>
</tr>
<tr>
<td>5-9 years</td>
<td>146 (103-201)</td>
<td>915 (634-1,286)</td>
<td>1,205 (146-4,352)</td>
</tr>
<tr>
<td>10-14 years</td>
<td>88 (56-132)</td>
<td>639 (400-977)</td>
<td>3,061 (631-8,946)</td>
</tr>
<tr>
<td>15-29 years</td>
<td>32 (20-48)</td>
<td>403 (344-640)</td>
<td>3,774 (1,384-8,213)</td>
</tr>
<tr>
<td>30+ years</td>
<td>21 (10-37)</td>
<td>278 (138-504)</td>
<td>2,076 (762-4,518)</td>
</tr>
<tr>
<td>All ages</td>
<td>58 (48-70)</td>
<td>477 (372-770)</td>
<td>2,505 (1,605-3,728)</td>
</tr>
</tbody>
</table>

When we evaluated the model against simulated data, the full model was able to accurately estimate both the “true” incidence of typhoid fever and the probabilities used to generate the simulated data for a range of values, while the simpler approach over- or underestimated the true incidence in some scenarios (Figs 3 and S3). Estimates of blood culture sensitivity were similar to the true value, but incorporated additional uncertainty compared to the simpler approach, consistent with the different sensitivity of blood culture in those who did report prior antibiotic use compared to those that did not (Fig S3). The probability of receiving a blood culture contributed most to the difference in accuracy between the two approaches. In every scenario, the full model accurately estimated the true value, while the simpler approach underestimated the true value (Fig S3). The adjustment for healthcare seeking in the full model again consistently captured the true value across levels of the probability as compared to the simpler approach, which generally had a narrower 95% CrI that did not always contain the true value (Fig S3). As expected, in both models, the uncertainty in the probability of seeking
healthcare decreased as the sampling fraction for the hypothetical HUS increased. As a result, the 95% CrIs in the overall incidence estimates also narrowed as the sampling fraction increased (Fig 3).

Figure 3. Estimated typhoid incidence based on simulated data: Full model vs. simplified approach. The typhoid incidence per 100,000 person years was estimated from simulated data based on a true incidence of 1,000 typhoid infections per 100,000 person-years (dashed horizontal black line). Data were simulated for low and high probabilities of seeking healthcare, receiving a blood culture diagnostic test, and antibiotic use. Scenarios were as follows: 1) low probability of seeking care, high probability of being tested, and low prior antibiotic usage; 2) low probability of seeking care, high probability of being tested, and high prior antibiotic usage; 3) high probability of seeking care, high probability of being tested, and low prior antibiotic usage; and 4) high probability of seeking care, high probability of being tested, and high prior antibiotic usage. Each simulation was performed sampling 735; 1,000; and 2,000 individuals from the population for the hypothetical healthcare utilization survey. Estimated “true” values are shown for models that did (red) and did not (blue) account for variation in blood culture sensitivity and variation in typhoid incidence among those who did or did not seek care and were or were not tested.
Discussion

In order to make informed decisions regarding typhoid control and prevention, it is important to have accurate estimates of population-based typhoid incidence. Unreliable reports, inconsistent healthcare utilization, inconsistent clinical diagnoses, suboptimal diagnostic tests, and scarcity of accurate or full data contribute to difficulties in calculating the population-based incidence of typhoid fever. We developed new methodology within the Bayesian setting to estimate population-based incidence in a context where cases often go undetected and under-reported. Through this approach, we were able to calculate the adjustment factors that can be applied to estimate the “true” incidence of typhoid fever in the STRATAA surveillance sites. These estimates suggested that the adjusted incidence of typhoid in Malawi, Nepal, and Bangladesh is 8- to 17-fold higher than the reported blood-culture-confirmed numbers.

It is commonly accepted that cases of typhoid fever go unrecognized at each phase of the reporting process, but the degree to which each step contributes to the underestimation of and uncertainty in the population-based incidence is often not fully quantified. Each of the three intervening processes contributed differently to the underestimation in each country and age group. The probability of seeking healthcare was responsible for the largest portion of underestimation in Nepal and Bangladesh, while the probability of receiving a blood culture was the biggest factor in Malawi. These results reflect differences in the healthcare systems and fever surveillance processes at the different sites. In Nepal and Bangladesh, antibiotics are widely available and individuals tend to seek care first at a pharmacy instead of a healthcare facility [28]. In Nepal, a considerable proportion of people with fever neither seek healthcare nor visit a pharmacy possibly due to lack of funds. In Malawi, healthcare seeking is high, but the resources at healthcare facilities are limited. As a result, many people report to healthcare facilities with a
fever, receive antibiotics, but do not remain in the facility long enough to receive an additional blood culture test when there is a long waiting line.

Other studies use different approaches to estimate the true incidence of typhoid. In many cases, studies simply double the reported cases to account for blood culture sensitivity [29]. Numerous studies make use of a simple multiplier method [30-33], which often do not accurately reflect the uncertainty associated with the reporting process. Previous studies have not attempted to integrate data sources to account for potential differences between the observed healthcare seeking and testing probabilities for fever versus the corresponding unobserved probabilities specific to typhoid fever.

By utilizing a Bayesian approach, we were able to measure the contribution to underestimation at each phase of the reporting process while also properly quantifying the uncertainty for each of our estimates. When comparing our model to simulated data, we showed that having more data available (due to higher probabilities of seeking care and receiving a blood culture test) reduced uncertainty in the estimates. Furthermore, we showed that if more people had been sampled in the HUS, uncertainty would also have been reduced.

Our analysis and approach had some limitations. We assumed that healthcare-seeking behavior for fever in households without children is the same as households with children, because the HUS only sampled households with children. Less than a third of households did not have children and were not included in this survey across sites. Studies suggest that households with children are more likely to seek healthcare [34], which means that if our estimates are biased, they are likely conservative. We also were not able to differentiate between febrile illnesses at different parts of the reporting process. We addressed this issue by adjusting for possible differences in healthcare seeking among those with typhoid fever compared to other
febrile etiologies using weighted averages based on known risk factors for typhoid fever, but other factors may also lead to differences in healthcare seeking for fever versus for typhoid fever. By comparing our adjusted incidence estimates to estimates of seroincidence, we are able to provide some assurance that the adjusted incidence is within the range of plausible values. However, methods and immunological markers for estimating the seroincidence of typhoid fever are not well established, and the cut-off we used (a ≥2-fold and ≥50 EU/mL rise in anti-Vi IgG) may not be a reliable indicator of acute typhoid infection across all individuals and immunological backgrounds. Another limitation of the approach is that it can very labor-intensive and time-consuming to collect the necessary data.

Passive surveillance of blood culture-confirmed typhoid fever results in considerable underestimation of the true incidence of typhoid in the population. Our model provides an approach for estimating typhoid incidence while accounting for different sources of information from the reporting process. Typhoid remains a major cause of morbidity and mortality in developing countries, so control and prevention are needed. To effectively prioritize, implement and evaluate interventions, estimates of the number of cases should accurately reflect the uncertainty in the reporting process. This analysis provides a platform that can be updated with new or additional data as they become available, and can be adapted to other contexts. This model framework could also be used to adjust for underreporting in other diseases.
REFERENCES


